A prototype gene drive to suppress invasive mice on islands

Owain R Edwards^{1*}, Luke Gierus², Aysegul Birand² & Paul Q Thomas²

¹CSIRO Environment, Perth, Australia

²University of Adelaide, Adelaide, Australia

*e-mail: Owain.Edwards@csiro.au

Abstract

Invasive rodents are a major cause of environmental damage and biodiversity loss, particularly on islands. Population-suppressing gene drives with biased inheritance have not previously been developed in any vertebrate system. We have recently developed a mouse gene drive prototype (t_{CRISPR}) that leverages super-Mendelian transmission of the t haplotype to spread inactivating mutations in a haplosufficient female fertility gene (PrI). Spatially explicit individual-based in silico modeling shows that t_{CRISPR} can eradicate island populations under a range of realistic field-based parameter values. We also engineer transgenic t_{CRISPR} mice that, crucially, exhibit biased transmission of the modified t haplotype and PrI mutations at levels our modeling predicts would be sufficient for eradication. Our next step is to develop a proof-of-concept laboratory mouse that targets a gene carrying a sequence variant that is locally fixed within a target island population, but is found only at low to intermediate frequencies in non-target populations. We are also discussing with Australian regulators strategies for testing such a prototype mouse first in laboratory cages, then in contained field pens, to determine whether it behaves as predicted under semi-field conditions.

Key words: mouse, gene drive, genetic control, locally fixed alleles