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Typical Reynolds-averaged Navier-Stokes (RANS) turbulence models are known to be unreliable in pre-
dicting complex flow, including separated and compressible flow. Data-driven RANS modeling with neural
networks has gained attention for improving turbulence models for such complex flow1,2. Nonetheless,
early data-driven models could not yield acceptable universality3, presumably due to deficiency in satis-
fying constraints well-known in conventional turbulence modeling4. The current study incorporates major
constraints in the field inversion and machine learning (FIML) framework. Note that early FIML versions5,6

rely on a flow feature which depends on the Reynolds number, one of so-called hard fallacies in the model-
ing guideline7. Therefore, the current study explores various flow features to comply with well-established
constraints.

Figure 1 illustrates a neural network model whose inputs are judiciously determined from well-designed
turbulence model corrections, including compressibility and rotation corrections8,9. Physics-driven correc-
tions that satisfy recommended criteria for turbulence modeling are employed to identify appropriate input
features for machine learning. The current neural network model is trained with compressible separated
flow across the Mach number. As Fig. 1 shows, supersonic separated flow includes rapid expansion at the
separation and recompression around the rear stagnation point in the supersonic base flow. The current study
demonstrates that physics-driven corrections as input features that satisfies turbulence modeling constraints
eventually help to enhance the performance of the machine-learning model. Enhanced performance of the
trained turbulence model is attributed to the proper adjustment of compressible separated flow. Detailed
input features and the mechanism for model improvement will be discussed in the presentation.

Figure 1: Overview of data-driven turbulence modeling with physics-driven corrections
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