## The effect of streamwise rotation on plane Couette flow

## Geert Brethouwer\*

Previously, we have studied the effect of spanwise system rotation on turbulent heat and momentum transfer in plane Couette flow using DNS<sup>1</sup>. We showed that spanwise rotation can break the Reynolds analogy, and that the heat transfer can be much faster than momentum transfer when the rotation is anti-cyclonic<sup>2</sup>.

We now study the effect of **streamwise** system rotation on plane Couette flow (PCF). As a first step, we study the stability of streamwise rotating PCF using linear stability analysis and DNS<sup>3</sup>. We also perform a stability analysis of streamwise rotating plane Poiseuille flow (PPF) for comparison. The linear stability analysis, considering three-dimensional perturbations, reveals in both flow cases a low-Ro and a high-Ro asymptotic regime, where Ro is the non-dimensional rotation rate. In the low-Ro regime, the critical Reynolds  $Re_c \propto Ro$ , the critical streamwise wavenumber  $\alpha_c \propto Ro$  and spanwise wavenumber  $\beta_c$  is constant. In the high-Ro regime, when  $Ro \to \infty$ ,  $Re_c = 66.45$  and  $\beta_c = 2.459$  in streamwise rotating PPF, and  $Re_c = 20.66$  and  $\beta_c = 1.558$  in streamwise rotating PCF, and  $\alpha_c \propto 1/Ro$ . The results for streamwise rotating PPF agree with a previous linear stability analysis of the same case<sup>4</sup>. The critical vortices are most oblique to the streamwise direction when Ro = O(1) and increasingly align with the streamwise direction when  $Ro \to 0$  and  $Ro \to \infty$ . Interestingly,  $\beta_c$  and  $Re_c$  at  $Ro \to \infty$  in **streamwise** rotating PPF and PCF are the same as  $\beta_c$  and the minimum  $Re_c$  in **spanwise** rotating PPF at Ro = 0.3366 and PCF at Ro = 0.5 reported previously.

To study the flow field near  $Re_c$  and to determine whether a subcritical transition can occur, we perform DNS in a range of Ro and Re. At low Ro subcritical transition can occur and a transitional regime with large-scale turbulent patterns can emerge in streamwise rotating PPF when  $Ro \leq 0.034$  and  $Re \geq 1000$ , and in streamwise rotating PCF when  $Ro \leq 0.05$  and  $Re \geq 340$ . At higher Ro no subcritical transition is observed and the flow relaminarizes once  $Re < Re_c$ . Figure 1 summarizes the observed flow regimes in streamwise rotating PCF. We also find that in a small Ro range, turbulent-laminar patterns can develop under supercritical conditions when  $Re > Re_c$ . The patterns can then form in the DNS of streamwise rotating PPF and PCF after a linear instability starting from laminar flow with small noise (figure 1).

We are now carrying out DNS of streamwise rotating turbulent PCF with heat transfer in extended domains at Re = 1500 and 4000 at low to high Ro. We observe very clear oblique large-scale structures that can be up to  $5\pi\delta$  wide and a strong secondary flow with a maximum mean spanwise velocity up to  $W = 0.18U_w$  at Ro = O(1). Here,  $\delta$  is the channel half gap-width and  $U_w$  the velocity of the moving walls. At higher Ro the structures become less oblique and the secondary flow becomes weaker.





Figure 1: Flow regimes as a function of Ro and Re (left plot) and visualization of the streamwise velocity field in the centre plane at Ro = 0.1 and Re = 350 (right plot) in streamwise rotating PCF.

<sup>\*</sup>FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden

<sup>&</sup>lt;sup>1</sup>Brethouwer, *J. Fluid Mech* **912**, A31 (2021)

<sup>&</sup>lt;sup>2</sup>Brethouwer, Int. J. Heat Mass Transfer **205**, 123920 (2023)

<sup>&</sup>lt;sup>3</sup>Brethouwer, Submitted to J. Fluid Mech., (2025)

<sup>&</sup>lt;sup>4</sup>Masuda et al., J. Fluid Mech. **603**, 189–206 (2008)