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ABSTRACT 
Ensuring the quality of industrial radiography is integral to its use for the inspection of components. This research 
work focused on applying an existing object detection and instance segmentation framework called Mask R-CNN to 
the recognition of image quality indicators (IQIs) in industrial radiographs. For the purposes of this project, a Mask 
R-CNN has been trained in a supervised manner, beginning with pre-trained ImageNet weights, toward the 
identification and localization of IQIs within digital radiographs. The goal of training the Mask R-CNN is for it to 
learn a mapping from the input radiographs to the output predictions of the bounding boxes and masks for each IQI 
in the input radiographs. On a high level, the Mask R-CNN serves as a function that takes a digital radiograph as 
input and provides a Python dictionary object as output. The output dictionary contains each region of interest 
predicted by the model for the given input radiograph, as well as their class IDs, probability scores, and mask 
images. Mask R-CNN is shown to be capable of adequately segmenting IQIs from radiographs when the standard 
practices for IQI placement are followed. This study explored the difference in Mask R-CNN performance when the 
training datasets are both small and contain IQIs at various orientations. A comparison is made between models 
trained with only parallel IQI examples and models trained with parallel, transverse, and askew IQI examples. This 
publication is focused on providing readers with a general understanding of the concepts, and numerical results are 
omitted in favor of visually depicting the best Mask R-CNN predictions. The results of this study have important 
implications for the application of existing computer vision and narrow artificial intelligence systems toward the 
detection of quality assurance objects within industrial radiography.  
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INTRODUCTION 
Radiography is a nondestructive evaluation (NDE) technique that is commonly used in the aerospace industry to 
locate internal flaws in both ferrous and nonferrous materials. Irrespective of the material caught between the 
detector and the X-ray source, the quality of each radiograph must be adequately assessed, and image quality 
indicators (IQIs) are used towards this end. In digital radiography, image quality is most often analyzed using 
quantitative parameters such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image unsharpness 
[1]. An IQI is defined as a device or combination of devices whose demonstrated image or images provide visual or 
quantitative data, or both, to determine radiographic quality and sensitivity [2]. This research work is primarily 
focused on the segmentation and localization of plaque hole-type IQIs in digital radiograph images. Plaque hole-
type IQIs are most often used for the determination of the CNR for a given radiograph and for qualifying the 
sensitivity of the radiograph according to industrial standards and guidelines based on the CNR value. Obtaining 
metrics related to the quality and sensitivity of the radiographic technique naturally follows the recognition of the 
IQI within the radiograph. This research work focused on applying an existing deep learning model for object 
detection and instance segmentation, called Mask R-CNN, to the problem of finding the plaque hole type IQIs as an 
initial step towards measuring the CNR in the IQI and determining its acceptability. The progression of the paper 
begins with some background information and a discussion of the methodology employed. Then, the results will be 
presented and discussed, followed by a section concluding the paper.  
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BACKGROUND AND METHODOLOGY 
Object detection and instance segmentation are closely related image processing tasks that entail the leveraging of 
features within the digital images to perform a narrow intelligent task. Within the context of IQI recognition, object 
detection involves drawing a bounding box around each IQI and labeling it as such. Instance segmentation entails 
the classification of every pixel in the image as belonging to one of the IQIs that are present. Mask R-CNN [3] is 
capable of performing both tasks at once. The differences in these tasks are illustrated in Figure 1 below. With 
object detection, the interest is in obtaining bounding box coordinates and their corresponding class labels, while 
instance segmentation involves attributing a class label to every pixel in the image. 
 

 
Figure 1: Example of object detection versus instance segmentation 

 
Mask R-CNN is a state-of-the-art deep learning framework developed by the Facebook AI Research group in 2017 
that has participated in deep learning and image recognition competitions that involved hundreds of distinct class 
categories. Mask R-CNN can detect objects within an image and generate a high-quality segmentation mask for each 
instance [3]. Figure 2 provides a diagrammatic description of Mask R-CNN where the input image is fed forward 
through the network, and a set of bounding boxes is produced as an output. Each output bounding box has a 
classification (confidence) score and a mask associated with it. The confidence score of a trained model is a measure 
of how confident it is that an IQI is present in the bounding box region. The utility of such a model lies in the 
potential for it to generalize well to images that were not in its training set, reducing the time required to generate 
accurate labels for each IQI in a very large set of radiograph images. 
 

 
Figure 2: Mask R-CNN diagram 

 
Mask R-CNN is trained via supervised learning and is comprised of several components whose exact mathematics 
could be the subject of an entire paper of its own. Supervised learning is a method of model training that involves 
the supplementing of input-output pairs to the model with iterative updates that bring the model’s prediction closer 
to the output for every input. The model weights are initialized from a repository of pre-trained ImageNet weights, 
and thus, the supervised learning is technically called transfer learning, as the weight values obtained from 
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pretraining on the ImageNet competition dataset are directly transferred to the model prior to the start of the 
supervised learning process. Supervised learning starts with a dataset of input-output pairs 𝒟 = (𝐱୧, 𝐲୧) where each 

𝐱୧ and 𝐲୧ are the i୲୦ input and output, respectively. The dataset is then broken into training and testing portions 
making the dataset 𝒟 = {(𝐱୫, 𝐲୫), (𝐱୬, 𝐲୬)} where m is the dummy index for examples in the training set and n is 
the dummy index for the testing set examples. It is desired that the mask R-CNN serve as a function mapping all 
inputs to their corresponding output pairs. It is the mathematics of backpropagation that enables the model to be 
incrementally updated in the direction of the correct mapping. This also means that a model trained in a supervised 
manner on a finite dataset is optimized for making predictions on that finite dataset and may not necessarily 
generalize to input examples extraneous to that finite dataset used for training. As the ImageNet competition dataset 
does not contain examples of IQIs, the weights pre-trained on it cannot necessarily be expected to generalize well to 
the problem at hand. Every prediction provided by the model (𝐲ො) is either correct or incorrect. The model is 
considered “trained” when the difference between 𝐲୫ and 𝐲ො୫ is minimized for all m and the model is considered to 
be “generalized” when the difference between 𝐲୬ and 𝐲ො୬ is minimized for all n.  
 
A GitHub repository [4] of the Mask R-CNN model running on Tensorflow 2.0 was utilized within this research 
work. The goal of Mask R-CNN in this project is to output a bounding box and mask label for every IQI present in a 
radiograph image. To achieve this, radiographs with IQIs had to be procured and then labeled with mask, bounding 
box, and class information. The approach used in this work was to label the radiographs utilizing a custom Python 
program that started with the definition of four points within the radiograph for every IQI. These four points 
complete a four-sided polygon for each IQI and are used to generate mask images. Mask images start out as blank 
images of the same shape as the original radiograph. The mask generation process involves assigning a unique 
greyscale value to all pixels lying inside a given polygon region for all polygons. Once the mask has been generated, 
bounding box information is determined for each polygon region. So, a polygon is defined for each IQI, and for each 
polygon, a bounding box. An XML file containing the filename, bounding box, and class information is generated 
for every image. With the filename, bounding box information, and path to the mask image from the XML file, the 
radiograph images and their labels are ready to be opened and manipulated within the Python environment. The 
primary performance metric used to assess the model’s ability to generalize to the images in the test set is the mean 
average precision (mAP). Readers interested in learning more about this metric and how it is used with Mask R-
CNN are referred to an existing publication [4] on the subject. It suffices, for the presentation of results in this 
publication, for the reader to know that increasing mAP implies that the model made better predictions, while a 
mAP closer to zero means that the model made more inaccurate predictions with respect to the labels provided to it.  
 

RESULTS AND DISCUSSION 
A single training and inference loop involves (a) generating the training, validation, and testing subsets, (b) training 
the model, and (c) obtaining the mAP value for the trained model on the testing subset. IQIs are present within the 
data at different orientations. The majority of examples fall under the “Parallel” orientation. The datasets used for 
training are broken up according to the IQI orientation and the augmentation applied. For each dataset, several 
training and inference loops are run with randomization of the training, validation, and testing subsets between each 
loop. The mAP on the testing subset is averaged across all runs. All augmentations are applied “on the fly” during 
training, and test images are not augmented prior to inference. The following are observations of the study: 
 

 mAP declined with the introduction of augmentations for datasets containing only parallel examples. 

 mAP for datasets with only parallel examples was higher overall. 

 mAP increased with the introduction of augmentations for datasets containing nonparallel examples. 
 
A visual depiction of ‘good’ test results is provided in Figure 3 below. These results are ones where the predicted 
bounding box, mask, and label matched their ground truth counterparts. A well-trained model would ideally make 
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predictions just like these for every input image. The original radiograph images are very faint to the human eye and 
thus contrast enhanced originals are provided above the predictions for human viewers to see the IQIs. 
 

   

   
Figure 3: Example predictions made by a trained Mask R-CNN model 

 

CONCLUSION 
In this investigation, multiple instances of Mask R-CNN were trained, initialized from weights pretrained on the 
ImageNet competition dataset, to detect IQIs in industrial radiographs using a limited set of images.  Training 
datasets were constructed based on the relative orientation of IQIs (parallel vs. non-parallel + parallel) and the 
number of augmentation operations applied during training. Results show that the Mask R-CNN generalizes better 
to the datasets containing only parallel instances of IQIs, while models trained on both parallel and non-parallel IQI 
examples saw a drop in performance.  This is likely due to the relatively low number of non-parallel examples, 
making them outliers in each dataset. This scenario can be easily prevented in industrial radiographic applications, 
though, as ASTM E 2698-18e1 [5] calls for parallel orientation (± 5° relative to the weld) of IQIs in radiographs.  
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