
Presented At: ASNT Research Symposium: 
25 – 28 June 2024 
Pittsburgh, Pennsylvania, USA 

 

Acoustic emission RA value-average frequency data analysis with an entropy-
based probabilistic model 

Pedram Bazrafshan, Arvin Ebrahimkhanlou 
 

Civil, Architectural, and Environmental Engineering, Drexel University 
3141 Chestnut St., Philadelphia, PA, USA 

fax 215.895.1363; email ae628@drexel.edu 
 

ABSTRACT 
This study presents a novel probabilistic modeling technique for the analysis of acoustic emission (AE) data, using 
maximum entropy and a fourth-order non-Gaussian distribution. The aim is to explore AE data, specifically RA (rise 
time to amplitude) value versus average frequency (AF), with a new approach. The model employs the concept of 
maximum entropy to fit a higher-order probabilistic model to the distribution of the RA-AF data. Validated with 
acoustic emission RA-AF data, the model shows a significant accuracy increase and a Kullback-Leibler (KL) 
Divergence reduction from 0.49 for a Gaussian distribution to 0.02 for a fourth-order distribution. When compared to 
AE metrics for early crack detection, the probability parameters of the proposed model show robust performance in 
detecting the onset of crack propagation. Additionally, the proposed model is able to capture the transition of the 
cracking mechanism, differentiating between shear and tensile cracks. These outcomes confirm the accuracy and 
reliability of the proposed entropy-based probabilistic model. 
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INTRODUCTION 
This study introduces a mathematical model to analyze acoustic emission (AE) data. The model uses the concept of 
maximum entropy to capture the behavior of the data distribution. The need for higher-order probability models arises 
from the inadequacy of Gaussian assumptions in many engineering scenarios. The proposed model adds flexibility, 
allowing for more accurate capture of data behaviors, especially where Gaussian distributions fall short, like in RA-
AF data for AE. Therefore, this paper presents a novel approach for analyzing non-Gaussian data, specifically RA-
AF data in AE. 
Identifying the initiation and evolution of cracks is crucial for structural integrity, with the challenge being the 
distinction between tensile and shear cracks. Although other approaches exist [1–6], AE has shown promise for this 
purpose [7]. Cracks in concrete structures first happen at a micro-level then progress to the macro-level in a brittle 
manner with no warning. To capture the initiation of cracks, researchers have proposed different methods of using AE 
data [8–10]. In addition, artificial intelligence (AI) and machine learning (ML) [11, 12] are utilized to enhance the 
performance of conventional damage detection methods. For instance, researchers attempted to utilize ML-based 
algorithms to separate RA-AF data points based on their crack modes [13–16]. The number of applications of 
supervised algorithms is insignificant with respect to unsupervised algorithms, while there are successful examples 
[17]. Within this domain, the reason lies in the scarcity of labeled data, which undermines the generalizability of 
supervised ML practices. On the other hand, unsupervised algorithms are extensively studied, among which only the 
Gaussian Mixture Model addresses the RA-AF data (crack mode) separation with a probabilistic vision [18–20]. 
The novelty of this paper is in incorporating the concept of maximum entropy to address the problem with a 
probabilistic vision. It proposes a fourth-order probability distribution model to accurately capture the behavior of the 
data. In this regard, RA-AF data of an AE test are used to validate the presented method. Using the entropy-based 
fourth-order probabilistic model, the model not only detects the onset of cracking but also captures the changes in the 
cracking mechanism within the structures. 
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PROBABILISTIC ENTROPY 
This paper uses the probabilistic distribution of RA and AF values to present a novel method for early defect detection 
within a generalizable platform. To this end, the concept of maximum entropy [21] is utilized to analyze the probability 
distribution of RA-AF values of AE events. Entropy quantifies the degree of disorder or randomness within a system. 
In its essence, it provides a way to assign probabilities to events in situations where information is incomplete. In this 
context, incomplete information suggests that although the location of the next AE event in the RA-AF plot is 
unknown, the statistical mean, variance, skewness, and kurtosis (higher order moments) act as constraints for the 
entropy (randomness). 
Left to occur naturally, AE events exhibit random frequencies, amplitudes, and RA values throughout the structure. 
However, the nature and physics of the problem impose constraints on tensile cracks, resulting in higher AFs and 
lower RA values, while shear cracks are expected to have lower AFs and higher RA values. Hence, this paper leverages 
the knowledge and characteristics of the problem to investigate the probability distribution of AE events. To achieve 
this, a fourth-order probability distribution is employed to model the AE events within specific intervals. Figure 1 
shows that only the fourth-order probability distribution captures the curvatures in 2D, for which this paper used a 
fourth-order probability distribution. Table 1 presents a description of the different orders of probability parameters. 

 
Figure 1. Fitting the probability curves to the AE data 
 
Table 1. Description of different orders of probability distribution parameters 

Order Item Description 
First mean value 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑚𝑚 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠 𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑚𝑚 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑠𝑠⁄  
Second moment of inertia measures the variance of the data 
Third skewness a measure of the asymmetry of a probability distribution around its mean 
Fourth kurtosis quantifies the degree of peakedness of a distribution relative to a normal distribution 

 
EXPERIMENTAL SETUP 
This paper uses the data from a published paper of a scaled-down quarter-circle specimen of a post-tensioned concrete 
wall, which was used for experimental testing of wall delamination of a containment structure [22]. To monitor and 
record AE activity during the structural testing, eight AE sensors (Physical Acoustic Corporation, R6α) with a 
resonance frequency of 60 kHz were positioned in a hexagonal pattern.  
 
RESULTS 
Figure 1 illustrates the improvement of the probabilistic model by incorporating higher-order constraints. In this 
regard, the Kullback-Leibler Divergence (KL Divergence) metric decreased from 0.49 between the fourth-order and 
Gaussian distribution to 0.02 between the fourth and the third-order distribution. In the experiment, 161,760 hits 
exceeded the triggering threshold (i.e., AMP > 45 dB). Hits with amplitudes below this threshold were not included 
in the hit-driven analysis to eliminate artificially zero-duration hits that result in inaccurate AF and RA values [22]. 
After performing preprocessing on the AE data, every 2000 AE hits from sensor #1 were categorized into batches 
based on their recording time. 
As depicted in Figure 3, the probability model aligns with the expected behavior of the problem. Figure 3 reveals that 
the probability contours of the first batch exhibit higher RA values and lower AFs, indicating the presence of shear 
cracks. As the test progresses, radial stresses build up within the structure, eventually resulting in failure and 
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delamination due to the tensile weakness of concrete. The development of shear and tensile crack modes in Figure 3 
shows a shift of AE hits from shear to tensile cracks, reflected by lower RA values and higher AFs in the probability 
contours. Finally, at the time of failure, a combination of tensile and shear cracks, with the dominance of tensile cracks, 
is observed in the structure.  
Figure 3 displays the measurement of the delamination gauge in comparison to the probability parameters. E10 in 
Figure 3 represents the model parameter (kurtosis) calculated using only the RA value data, while E14 represents the 
parameter calculated using the AF data. Other parameters of the fourth order did not reveal significant visual 
information and were not reported. As Figure 3 demonstrates, E10 clearly captures the start of delamination, remains 
relatively flat, and then abruptly changes direction. The increase in the first part of E10 until it flattens is due to the 
accumulation of micro cracks, which is traceable from the changes in probability contours. 
 

 
Figure 2. Changes in the cracking mechanism detection using fourth-order probability parameters; probability 
contours illustrating the shift of the nature of the cracks from shear to tensile in the structure and the 
combination at the time of failure; respectively from left to right 
 
CONCLUSIONS 
This study introduced an innovative probabilistic approach for analyzing the RA-AF data in the context of AE. The 
model’s efficacy was confirmed through experimental AE data. By analyzing the average frequency (AF) against the 
rise time (RA) from acoustic emission (AE) data, the research differentiated between shear and tensile cracks using a 
fourth-order, entropy-driven probabilistic model. This approach not only tracked crack development but also captured 
the initial stages of cracking. Experimental findings suggest that this method can be applied to any AE analysis where 
RA-AF plots differentiate between crack types. The reliability of these results shows that the model's parameters are 
ideal for training machine learning models for identifying damage in various structures like bridges and concrete 
without further AE testing. 
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