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ABSTRACT 
This study explores the cybersecurity implications of artificial intelligence (AI) advancements, focusing on differentiating 
real from AI-generated fake images in nondestructive evaluation. With the rise of sophisticated cyberattacks that can 
substitute genuine data with indistinguishable AI-generated fakes, there is a growing need for robust mechanisms to detect 
such fakes. This research introduces an anti-image forensic attack method to distinguish between genuine and synthetic AI-
generated images, employing U-Net architecture to train a Denoising Diffusion Probabilistic Model for image generation 
and using convolutional neural networks for fake image detection. This approach aims to enhance cybersecurity defenses 
against AI-generated fakes, ensuring the reliability of data-driven decisions in infrastructure maintenance and monitoring. 
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INTRODUCTION 
This study focuses on the cybersecurity implications brought about by advancements in artificial intelligence (AI), aiming 
to differentiate real from fake images within the context of nondestructive evaluation (NDE). The emergence of sophisticated 
cyberattacks that can tamper with data acquisition systems to substitute genuine data with indistinguishable AI-generated 
fakes poses a significant threat. Concurrently, while generative AI offers solutions to data scarcity, its potential misuse in 
cyberattacks underscores the critical need for robust fake data detection mechanisms, ensuring the integrity of data-driven 
decisions in infrastructure maintenance and monitoring. 
The paper highlights the recent proliferation of generative AI technologies like Generative Adversarial Networks (GANs) 
[1–6], Variational Autoencoders (VAEs) [7–10], and Denoising Diffusion Probabilistic Models (DDPMs) [11–14]. These 
technologies, capable of producing highly realistic synthetic data, are revolutionizing NDE  by generating ample synthetic 
datasets for algorithm training and validation [15, 16]. These generated data can further be used for structural assessment 
purposes, such as robotic and virtual reality frameworks [17–20], crack quantification of concrete/masonry shear walls [21–
25], concrete columns [26–31], concrete fiber-reinforced [32], and welding residual stresses [33]. However, generative AI 
also introduces vulnerabilities, as cyberattacks employing AI-generated fakes could compromise the reliability of NDE and 
endanger the safety of the underlying asset. Therefore, there is a growing demand for advanced detection methods to 
safeguard against such threats. 
This research presents an anti-image forensic attack method to discern genuine from synthetic AI-generated images, aiming 
to strengthen cybersecurity defenses. This paper first employs a U-Net architecture to train a generative DDPM using the 
dataset images of phased array ultrasonic scans [34]. Using the trained DDPM, fake DDPM-generated images are used to 
train a fake detection model. By training convolutional neural networks (CNNs) with datasets of real and AI-generated 
images, the study showcases the feasibility of accurately identifying fake images. This approach not only fills a crucial gap 
in safeguarding NDE data from cyber threats but also underscores the importance of merging AI advancements with robust 
security measures to ensure the safe application of generative AI in NDE  practices. 
 
METHODOLOGY 
In the field of AI for image synthesis, DDPMs stand out for producing highly detailed images that closely mimic their 
training data, surpassing other generative algorithms like GANs and VAEs in quality and detail. However, their accuracy 
poses a challenge in distinguishing real images from generated ones, underscoring the need for enhanced analytical tools. 
DDPMs operate through a Markov chain process, adding Gaussian noise to data progressively before reversing this process 
to create new samples. This involves a forward diffusion that makes the data noisy and a reverse mechanism where a neural 
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network iteratively denoises the data. This training process aims to accurately predict and subtract the noise added during 
diffusion, thereby generating new data samples. 
The U-Net architecture plays a crucial role in DDPMs, enabling precise localization and context capture through its unique 
structure that combines an encoder for context and a decoder for detail reconstruction. This model is particularly effective 
for the denoising task in DDPMs, due to its capability to blend detailed low-level information with high-level context, 
making it ideal for generating complex, high-fidelity images. 
CNNs excel in distinguishing between real and AI-generated images by identifying intricate patterns within images, a 
capability crucial for binary classification tasks. In such classifications, CNNs leverage convolutional layers to extract 
features and employ dense layers and sigmoid functions to classify images as real or generated. This process benefits from 
CNNs' ability to discern subtle details, making them powerful tools for authenticating images in the face of advanced 
generative models like DDPMs. 
 
IMPLEMENTATION 
This paper uses a U-Net architecture to train the DDPM image generator. For this, a dataset of 19810 images of phased array 
ultrasonic of adjacent ultrasonic scans along weld lines in a steel structure has been used to train the DDPM. The images are 
of size 256 × 256 in grayscale and resized to 64 × 64 for training and generating purposes. The diffusion process in the 
DDPM training phase is illustrated in Figure 1. 

 
Figure 1. The diffusion process of the DDPM training phase 
 

 
Figure 2. Convolutional neural network fake detector 
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Afterward, DDPM is used to generate fake ultrasound scan images. Then, the DDPM-generated images, along with the 
authentic ones, are used to train the fake detector neural networks. The framework for detecting fake images from real ones 
is presented in Figure 2. 
 
RESULTS AND DISCUSSION 
As depicted in Figure 3, the CNN fake detector is capable of detecting fake images from the real ones for both the validation 
and test sets. The CNN fake detector has no false positives and false negatives. This shows a robust and reliable performance 
in detecting fake data in the context of NDE.  
 

 
Figure 3. The confusion matrices for the validation and test sets for fake image detection 

CONCLUSIONS 
The implementation of a U-Net-trained DDPM and CNN-based fake detector demonstrated a robust and reliable method for 
distinguishing between real and AI-generated images, crucial for NDE. DDPM generated high-quality fake images, and the 
CNN classifier detected fake images with no false positives and negatives. This research highlights the importance of 
integrating AI advancements with stringent security measures to safeguard assets from cyber threats, contributing to the safe 
application of generative AI in NDE practices. 
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