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Abstract: We decompose stock idiosyncratic volatility into long-run and short-run components 

and find that both are negatively related to delta-hedged option returns. The effects of the long-run 

and short-run components are explained by the limits-of-arbitrage and stock return jumps, 

respectively. Unlike the long-run component, the short-run component can be used to create a 

trading strategy that remains profitable after considering transaction costs. In downturns, only the 

short-run idiosyncratic volatility effect is significant. Further analysis shows that the limits-of-

arbitrage’s explaining power arises from its intercept and common component, while jump’s 

explaining power arises from its residual component relating to corporate news arrivals.  
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1 Introduction 

The relationship between idiosyncratic volatility and asset prices is a research question that 

has attracted much attention.1 Studying returns in the options market, Cao and Han (2013) find 

that stock idiosyncratic volatility is negatively related to delta-hedged option returns, and the 

trading strategy that buys options on low idiosyncratic volatility stocks and sells options on high 

idiosyncratic volatility stocks yields significant profit. However, recent research challenges the 

importance of the idiosyncratic volatility option premium by showing that after accounting for a 

reasonable level of transaction cost, the option strategy based on idiosyncratic volatility becomes 

unprofitable (O'Donovan & Yu, 2024). Indeed, a substantial proportion of the idiosyncratic 

volatility premium is attributed to limits of arbitrage (Cao & Han, 2013). Hence, to benefit from 

the option strategy related to idiosyncratic volatility, it is necessary to quantify the component of 

idiosyncratic volatility that is not significantly associated with the costs of arbitrage. In this study, 

we utilize idiosyncratic volatility decomposition to seek an option trading strategy that remains 

profitable after considering transaction costs and study the distinct roles of the idiosyncratic 

volatility components in option returns. 

The asset pricing literature documents an important characteristic of idiosyncratic volatility 

that idiosyncratic volatility is persistent over long horizons and occasionally surges for short 

 

 

 

1 The theoretical work (Merton, 1987) and empirical evidence (Ang et al., 2006; Ang et al., 2009; Cao et al., 

2021; Fu, 2009) show mixed results on the direction of the relation between idiosyncratic volatility and stock returns. 

Various studies investigate the economic mechanisms underlying the pricing effect of idiosyncratic volatility in stock 

returns (Hou & Loh, 2016). 
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durations (Ang et al., 2009; Bekaert et al., 2012; Brandt et al., 2010; Liu, 2022). Liu (2022) shows 

that idiosyncratic volatility consists of a long-run (persistent) and a short-run (transient) 

component, and both components have asset pricing implications for stock returns and are driven 

by different economic channels. Given that limits of arbitrage proxies tend to be highly persistent 

(Acharya & Pedersen, 2005; Bali et al., 2013), the short-run component of idiosyncratic volatility 

is unlikely to be driven by limits of arbitrage and may generate an option premium that remains 

significant after transaction costs. No less important is the need to study the distinct roles of the 

two idiosyncratic volatility components in the options market. It remains unknown how the long-

run and short-run idiosyncratic volatility components are related to option returns and what 

economic mechanism drives the effect of each component.2 

Using the volatility decomposition method as in Adrian and Rosenberg (2008) and Liu 

(2022), we decompose idiosyncratic volatility into the long-run and short-run components. We 

find that the long-run and short-run components of idiosyncratic volatility are both negatively 

related to delta-hedged option returns.3 Our results suggest that the options market makers demand 

compensation for the idiosyncratic volatility increase in both its persistent and transient 

components. Further, we find that the pricing of the two components differs in terms of persistence. 

 

 

 

2 While the long-run and short-run components of total volatility have the same pricing direction in stock returns 

(Adrian & Rosenberg, 2008), the long-run and short-run components of idiosyncratic volatility have opposite pricing 

implications for stock returns (Liu, 2022).  

3 These relationships are not subjected to the look-ahead biases identified by Duarte et al. (2023). 
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The negative premium for the long-run component persists over multi-year horizons, while that 

for the short-run component exists only for short horizons.  

Examining the economic mechanism underlying each idiosyncratic volatility component, we 

find that the relation between long-run idiosyncratic volatility and option returns can be explained 

by limits of arbitrage and that the relation between short-run idiosyncratic volatility and option 

returns can be explained by stock return jumps. Further analysis reveals that growth options (Cao 

et al., 2008), variance risk premium (Goyal & Saretto, 2009), gambling preference (Bali & Murray, 

2013; Byun & Kim, 2016), earnings surprise (Jiang et al., 2009), salience theory (Cosemans & 

Frehen, 2021), and corporate variables identified in Zhan et al. (2022) play a little role in 

weakening the abovementioned relationships.  

Why are the limits of arbitrage related to the effect of long-run idiosyncratic volatility? 

Extensive literature shows that the limits of arbitrage hinder asset pricing anomalies from 

disappearing, making the anomalies exist persistently (Doukas et al., 2010; Sadka & Scherbina, 

2007). The limits of arbitrage proxies such as firm size and Amihud (2002) illiquidity are 

themselves stable firm characteristics. For example, Acharya and Pedersen (2005) and Bali et al. 

(2013) show that stock illiquidity is highly autocorrelated. Also, limits of arbitrage are usually 

considered an explanation for the pricing of idiosyncratic volatility in the options market (Cao & 

Han, 2013) and the stock market (Hou & Loh, 2016). Following the demand-based option pricing 

theory (Gârleanu et al., 2009; Ramachandran & Tayal, 2021), we use the CBOE data to compute 

the end-user net option demand and show that high limits of arbitrage induce high option demand. 

High net demand from end users, together with difficulty for market makers in hedging illiquid 

stocks, results in high option prices and low subsequent option returns. 
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Why are jumps related to the effect of short-run idiosyncratic volatility? Eraker et al. (2003) 

argue that the impact of jumps on stock returns is transient. Andersen et al. (2007) highlight jump 

occurrence as a non-persistent and important predictor of future volatility. Stock price jumps 

represent an unhedgeable risk faced by option market makers, inducing them to require higher 

option prices (Gârleanu et al., 2009). Todorov (2009) shows that when jumps occur, investors are 

more willing to pay for the protection offered by options against future jump increases. Tian and 

Wu (2023) show that historical jumps in the recent month can predict option returns. Using CBOE 

net option demand data, we find a strong positive relation between realized jumps and option 

demand by end users. Hence, the demand-based option pricing theory supports the negative 

relation between realized jumps and option returns. Further, being consistent with the prior 

literature linking corporate news arrivals to jumps (Kapadia & Zekhnini, 2019) and temporary 

increases in volatility (Bushee & Noe, 2000), we find that both realized jumps and short-run 

idiosyncratic volatility are positively related to corporate news arrivals. Thus, price jumps resulting 

from firm news releases can explain the effect of short-run idiosyncratic volatility in option returns. 

Uncovering the mechanism behind each idiosyncratic volatility component is important for 

designing option trading strategies. We find that the influence of long-run idiosyncratic volatility 

on option returns, which is driven by limits of arbitrage, is significant only in the high transaction 

cost subsample. After considering transaction costs, the trading strategy based on long-run 

idiosyncratic volatility is not profitable. On the contrary, the effect of short-run idiosyncratic 

volatility, which is not explained by limits of arbitrage, is found to be significant in both high and 

low transaction cost subsamples. In the low transaction cost subsample, investors can still form a 

long-short option strategy based on short-run idiosyncratic volatility to earn a significant profit 

(0.46% per month) after paying transaction costs. 
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We also revisit the relationship between idiosyncratic volatility and delta-hedged option 

returns. Cao and Han (2013) show that after controlling limits of arbitrage, the relationship 

between idiosyncratic volatility and option returns decreases by about 40% but remains significant. 

It means that a full explanation for the pricing of idiosyncratic volatility remains unknown. We 

show that limits of arbitrage or stock realized jumps alone cannot fully explain the idiosyncratic 

volatility-option returns relation, but combining the two channels can.  

We then examine the importance of long-run and short-run idiosyncratic volatilities in 

different economic states. We find that though both volatility components influence option returns 

in up markets, only the short-run idiosyncratic volatility is related to option returns in down 

markets. In downturns, stock price jumps become the dominant channel in explaining the relation 

between idiosyncratic volatility and option returns. This is in line with the increases in 

discretionary disclosure in high macroeconomic uncertainty periods to mitigate information 

asymmetry (Nagar et al., 2019), and aligned with the greater roles of stock jumps (Eraker et al., 

2003) and news (Garcia, 2013) in asset pricing during down markets. 

After decomposing idiosyncratic volatility into two components and uncovering their 

respective economic mechanisms, we further decompose each mechanism to understand the source 

of its explanation power. Particularly, we examine whether the economic mechanism's systematic 

or idiosyncratic component plays the dominant role in explaining the return predictability patterns 

documented in our study. Our approach is motivated by Herskovic et al. (2016), who show that 

each firm’s idiosyncratic volatility comoves with the market-wide common idiosyncratic volatility 

and commonality in idiosyncratic volatility has asset pricing implications. The commonality 

structure is also found in illiquidity (Chordia et al., 2000) and jump risk (Bégin et al., 2020). 

Following the literature on co-movement, we decompose illiquidity and jump each into an 
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intercept, a common component (comoving with the market average), and a residual component 

(unrelated to the market average). We find that the explaining power of illiquidity in the relation 

between long-run idiosyncratic volatility and option returns arises exclusively from the intercept 

and the common illiquidity component. In contrast, the explaining power of realized jumps in the 

relation between short-run idiosyncratic volatility and option returns arises exclusively from the 

residual jump component.  

Bringing our results into the stock market, we first confirm the results in Liu (2022) that the 

long-run idiosyncratic volatility is negatively related to stock returns and the short-run 

idiosyncratic volatility is positively related to stock returns. We then find that the explanation for 

the short-run idiosyncratic volatility based on jumps also holds in the stock market setting.  

Our study advances the growing literature that studies equity option returns; for instance, 

research on volatility-related option mispricing (Goyal & Saretto, 2009), investors’ skewness and 

gambling preferences (Bali & Murray, 2013; Byun & Kim, 2016), idiosyncratic volatility (Cao & 

Han, 2013), underlying stock’s mispricing (Ramachandran & Tayal, 2021), volatility of volatility 

(Ruan, 2020), and a comprehensive list of firm characteristics (Zhan et al., 2022). We show that 

the pricing effects of the two idiosyncratic volatility components can be explained by limits of 

arbitrage and stock jumps. Unlike the long-run component, the short-run component can be used 

to create a profitable option trading strategy after considering transaction costs. In line with 

Gârleanu et al. (2009), Ramachandran and Tayal (2021), and Golez and Goyenko (2022), we 

demonstrate the crucial role of demand-based option pricing in explaining the cross-section of 

option returns.  

Our study also contributes to the extensive literature on idiosyncratic risk and its asset pricing 

implications. Ang et al. (2006); Ang et al. (2009); Fu (2009) examine the relation between 
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idiosyncratic volatility and stock returns, and other studies provide evidence that the relation 

between idiosyncratic volatility and stock returns arises because of return reversals (Huang et al., 

2009), liquidity biases (Han et al., 2015; Han & Lesmond, 2011), arbitrage asymmetry of 

overpriced and underpriced stocks (Stambaugh et al., 2015), and is affected by aggregate investor 

sentiment (Peterson & Smedema, 2011), incomplete information (Berrada & Hugonnier, 2013). 

Our study reveals that idiosyncratic jumps, driven by corporate news as a major source of 

unhedgeable risk, matter in both the options and stock markets. Idiosyncratic jumps help us to 

understand the puzzle of the discrepancy between the theory prediction of Merton (1987) and 

empirical asset pricing findings.  

The paper proceeds as follows. Section 2 discusses the data used in the study and the design 

of empirical analysis. Section 3 presents the empirical results, and section 4 concludes. 

2 Data and model description 

Data for US equity options are obtained from OptionMetrics Ivy DB from January 1996 to 

December 2021. Stock and firm-related information is retrieved from the Center for Research on 

Security Prices (CRSP) and Compustat database. Daily and monthly Fama-French common risk 

factors are from Kenneth French’s website.  

For each firm, the monthly idiosyncratic volatility is measured as the standard deviation of 

the residuals in the regression of daily excess stock return in each month on the three Fama and 

French (1993) factors and the resulting monthly idiosyncratic volatility (𝑖𝑣𝑜𝑙) is then decomposed 

into long-run and short-run components (𝑖𝑣𝑜𝑙𝑙𝑟 and 𝑖𝑣𝑜𝑙𝑠𝑟) with the models (1)-(3) following 

Adrian and Rosenberg (2008); Christoffersen et al. (2008); Liu (2022): 

Idiosyncratic volatility: log 𝑖𝑣𝑜𝑙𝑡
𝑖 = 𝑖𝑣𝑜𝑙𝑙𝑟𝑡

𝑖 + 𝑖𝑣𝑜𝑙𝑠𝑟𝑡
𝑖  (1) 

Short-run component: 𝑖𝑣𝑜𝑙𝑠𝑟𝑡+1
𝑖 = 𝜌𝑠

𝑖𝑖𝑣𝑜𝑙𝑠𝑟𝑡
𝑖 + 𝜎𝑠

𝑖𝜖𝑠,𝑡
𝑖   (2) 
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Long-run component: 𝑖𝑣𝑜𝑙𝑙𝑟𝑡+1
𝑖 = ∅𝑖+𝜌𝑙

𝑖𝑖𝑣𝑜𝑙𝑙𝑟𝑡
𝑖 + 𝜎𝑙

𝑖𝜖𝑙,𝑡
𝑖   (3) 

In models (1)-(3), log 𝑖𝑣𝑜𝑙𝑡 
𝑖  (the log of idiosyncratic volatility of firm i in month t) is 

decomposed into the sum of two time-series components, 𝑖𝑣𝑜𝑙𝑙𝑟𝑡
𝑖 and 𝑖𝑣𝑜𝑙𝑠𝑟𝑡

𝑖; each follows a 

first-order autoregressive AR(1) process. The short-run component has a zero mean, while the 

long-run component contains a constant ∅𝑖 . The mean reversion parameters (𝜌𝑙
𝑖 ,  𝜌𝑠

𝑖)  in the 

autoregressive process are required to satisfy 𝜌𝑙
𝑖 > 𝜌𝑠

𝑖  to identify the models. In other words, the 

long-run component is more persistent than the short-run component. We use the Kalman filter to 

estimate the models (1)-(3) using log 𝑖𝑣𝑜𝑙𝑡
𝑖  as the input time series (observations) to the filter and 

conduct the decomposition so that the expectation of each component at time t is predicted from 

observations until time t-1. Further discussion on the long-run and short-run decomposition with 

Kalman filter can be found in Liu (2022). According to Liu (2022), it is crucial to study the 

dynamics of idiosyncratic volatility over long and short horizons, as idiosyncratic volatility 

consists of a component that decays quickly and a component that persists over long horizons, and 

these two components can have different stock pricing implications. 

The long-run and short-run decomposition of idiosyncratic volatility is aligned with the 

literature that idiosyncratic volatility is characterized by a relatively stable autoregressive process 

that sometimes switches into a higher-variance regime for short durations (Bekaert et al., 2012; 

Brandt et al., 2010). According to Christoffersen et al. (2008), the two-component volatility model 

outperforms the single-component volatility model in explaining equity market volatility. Most 

importantly, Adrian and Rosenberg (2008) show that the pricing effects of the long-run and short-

run components of stock total volatility are attributed to different economic mechanisms. 

Similarly, the two components of idiosyncratic volatility can also have different interpretations. It 

is also worth noting that the economic mechanisms behind idiosyncratic volatility components 



9 

need not be the same as the economic mechanisms in Adrian and Rosenberg (2008), because 

Adrian and Rosenberg (2008) refer to total volatility components. Both studying the relations 

between stock return and long-run/short-run volatilities, Adrian and Rosenberg (2008) show two 

components of total volatility are priced in the same direction, while Liu (2022) shows two 

components of idiosyncratic volatility are priced in the opposite directions. Our study differentiates 

from the above two by analyzing the long-run/short-run idiosyncratic volatilities’ option pricing 

implications. 

[Insert Figure 1 about here.] 

We execute the decomposition and illustrate the distribution of the autoregressive parameters 

of long-run and short-run components in Figure 1. The long-run idiosyncratic volatility 

autoregressive parameters, 𝜌𝑙
𝑖 , have a mean of 0.69 and a median of 0.74. These values of 𝜌𝑙

𝑖  tend 

to be close to but smaller than 1, suggesting that the long-run component of idiosyncratic volatility 

is persistent but not permanent. Following Adrian and Rosenberg (2008), we test whether the 

autoregressive parameters of the long-run component equal one; with the t-statistics of -189.01, 

we reject the null hypothesis 𝜌𝑙
𝑖 = 1 . The short-run idiosyncratic volatility autoregressive 

parameters, 𝜌𝑠
𝑖 , have the mean of -0.18 and the median of -0.19.  

Our objective is to study the relation between the two idiosyncratic volatility components and 

equity option returns. Hence, we compute the returns of the delta-hedged call option strategy, 

which are a long position of one call option (with price C) combined with a short position in delta 

(Δ) shares of underlying equity (with price S). Following Cao and Han (2013) and Zhan et al. 

(2022), we form the portfolio on the first trading of each month and select the options which mature 

on the option expiration day of the next month (third Friday of each month). In our analysis, we 

select at-the-money (ATM) call options, determined by the moneyness (strike price to stock price) 
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being closest to 1. To avoid the look-ahead biases discussed by Duarte et al. (2023), all filters are 

applied at the time of portfolio formation, and no future information is involved in the prediction 

of option returns. The delta-hedged option portfolio is held until maturity and the return to the 

portfolio is calculated as portfolio gain until maturity scaled by (∆*S-C) (Cao & Han, 2013). This 

method of computing delta-hedged option returns is common in the literature (Goyal & Saretto, 

2009; Zhan et al., 2022). Our final sample contains 412,049 option-month observations.  

The relationship between long-run and short-run idiosyncratic volatility and option returns is 

examined in the following specification with Fama and MacBeth (1973) regressions: 

𝑑𝑟𝑒𝑡𝑖,𝑡+1  = 𝛽0 + 𝛽1𝑖𝑣𝑜𝑙𝑙𝑟𝑖 ,𝑡 + 𝛽2𝑖𝑣𝑜𝑙𝑠𝑟𝑖,𝑡 + 𝛾𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡 + 𝜀𝑖,𝑡   (4) 

where 𝑑𝑟𝑒𝑡𝑖,𝑡+1 is the delta-hedged option return, 𝑖𝑣𝑜𝑙𝑙𝑟𝑖,𝑡 is the long-run component of 

idiosyncratic volatility, 𝑖𝑣𝑜𝑙𝑠𝑟𝑖,𝑡 is the short-run component of idiosyncratic volatility. Following 

Cao and Han (2013) we control for systematic volatility 𝑠𝑦𝑠𝑣𝑜𝑙𝑖,𝑡 = √𝑡𝑣𝑜𝑙𝑖,𝑡
2 − 𝑖𝑣𝑜𝑙𝑖,𝑡

2 , where 

𝑡𝑣𝑜𝑙𝑖,𝑡 is the monthly total volatility and 𝑖𝑣𝑜𝑙𝑖,𝑡 is the idiosyncratic volatility of stock returns. 

Depending on the tests, we also control for other variables. Internet Appendix Table IA1 

summarizes the definition of variables used in our study. 

3 Empirical results  

3.1 Summary statistics 

[Insert Table 1 about here.] 

Table 1 shows the summary statistics of our main variables. From the statistics for the full 

sample in panel A, we find that the average delta-hedged option returns are -0.3%. This is 

consistent with Bakshi and Kapadia (2003) in that delta-hedged option strategy underperforms 

zero and this negative premium reflects the compensation for volatility risk. In panel B, we find 

that the average delta-hedged option returns are more negative for small firms (-0.7%), implying 
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that option prices tend to be higher for small firms. Since the options are selected so that they are 

closest to at-the-money, the average delta in our sample is about 0.5, similar for both small and 

large firms, in panels B and C, respectively. In terms of idiosyncratic volatility, panels B and C 

show that the volatility is larger for small firms than for large firms. The same is observed when it 

comes to systematic volatility: average sysvol is 1.8% for small firms versus 1.3% for large firms. 

In terms of limits of arbitrage, the average Amihud illiquidity is higher for small firms than for 

large firms, suggesting that the cost of arbitrage is higher in small firms. The average excess 

kurtosis (kurtosis minus three) of stock return is positive, indicating that stock return data are 

heavy-tailed relative to a normal distribution. Panels B and C further show that the heavy tails are 

more pronounced for small firms than for large firms. This suggests that the unhedgeable risk 

arising from jumps in the underlying asset price tends to be larger for small firms. 

3.2 Long-run and short-run components of idiosyncratic volatility and option returns 

We discuss our baseline results in this section. Panel A of Table 2 shows the results of Fama–

MacBeth regressions where the delta-hedged option returns are regressed on idiosyncratic 

volatility components and systematic volatility. In column (1), we verify the result of Cao and Han 

(2013) by showing that idiosyncratic volatility is negatively related to delta-hedged option returns. 

In columns (2) to (4), we show that both long-run and short-run idiosyncratic volatilities are 

negatively related to delta-hedged option returns, and all coefficients are significant at the 1% 

level. One standard deviation of long-run idiosyncratic volatility (0.560 as shown in Table 1) is 

associated with -0.34% monthly returns to the delta-hedged option portfolio, and one standard 

deviation of short-run idiosyncratic volatility (0.171 as shown in Table 1) is associated with -

0.21% monthly returns to the delta-hedged option portfolio. Both are economically significant 

when compared with the unconditional mean of monthly returns of the delta-hedged option 
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portfolio (-0.30% as shown in Table 1). When either idiosyncratic volatility or long-run 

idiosyncratic volatility is present in the regression, the effect of systematic volatility becomes 

insignificant (columns (1) and (2)), and when only short-run idiosyncratic volatility is present, 

systematic volatility has a significantly negative relation with delta-hedged option returns (column 

(3)).  

[Insert Table 2 about here.] 

In panel B of Table 2, we use the portfolio sorting approach to confirm the results obtained 

by the regression analysis in panel A. First, we examine the equal-weighted option return spread 

based on sorting the idiosyncratic volatility. At the beginning of each month, we sort stocks into 

five quintiles based on their idiosyncratic volatility and compute the differential delta-hedged 

option returns between the top and bottom quintile groups. The resulting series represents the 

returns of the option strategy that buys delta-hedged call options on high idiosyncratic volatility 

stocks and sells delta-hedged call options on low idiosyncratic volatility stocks. The average delta-

hedged option return spread between high and low idiosyncratic volatility quintile groups is -

0.94% and is highly significant at the 1% level. We then show our new findings on the option 

return spreads sorted by long-run and short-run idiosyncratic volatilities. The 5-1 return spreads 

based on long-run idiosyncratic volatility and short-run idiosyncratic volatility sorting are -0.88% 

and -0.64% respectively and are significant at the 1% level. We also show that delta-hedged option 

returns monotonically decrease with the long-run and short-run idiosyncratic volatilities, across 

quintile groups. Investors pay a premium for options written on stocks with high long-run and 

short-run idiosyncratic volatilities.  

In panel C of Table 2, we investigate the difference in persistence between the pricing effects 

of the long-run and short-run idiosyncratic volatilities. Specifically, we study the relation between 
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delta-hedged option returns and idiosyncratic volatility components when idiosyncratic volatility 

components are estimated 12 months and 24 months before the formation of the delta-hedged 

option portfolios. The results show that 12-month (or 24-month) lagged long-run idiosyncratic 

volatility is still significantly and negatively related to delta-hedged option returns, while 12-month 

(or 24-month) lagged short-run idiosyncratic volatility changes to positively relate to delta-hedged 

option returns. This means that the negative relationship between long-run idiosyncratic volatility 

and delta-hedged option returns is persistent over long horizons, whereas the negative relationship 

between short-run idiosyncratic volatility and delta-hedged option returns is transient. This result 

is consistent with Liu (2022) and suggests the distinct implications of the two idiosyncratic 

volatility components. The result implies that the underlying economic mechanisms of the two 

idiosyncratic volatility components could be very different, leading us to further investigate the 

mechanisms that are persistent (to explain the long-run component) and transient (to explain the 

short-run component) separately. 

3.3 Explanation for the influence of long-run idiosyncratic volatility 

We investigate what explains the effect of long-run idiosyncratic volatility in delta-hedged 

option pricing. One potential explanatory factor is the limits of arbitrage. Idiosyncratic volatility 

is known to be strongly correlated with illiquidity (Spiegel & Wang, 2005) and is recognized as 

an important hindrance to arbitrage activity (Pontiff, 2006; Shleifer & Vishny, 1997). Further, 

limits of arbitrage tend to explain the pricing of idiosyncratic volatility. Particularly, in the stock 

market, limits of arbitrage proxies explain about 10% of the idiosyncratic volatility-stock returns 

relation (Hou & Loh, 2016); in the options market, limits of arbitrage explain about 40% of the 

idiosyncratic volatility-option returns relation (Cao & Han, 2013). An important characteristic of 

the limits of arbitrage is their persistence. Proxies for limits of arbitrage, such as firm size and 
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Amihud (2002) illiquidity, tend to be stable variables. Acharya and Pedersen (2005) and Bali et 

al. (2013) highlight that Amihud illiquidity measure is highly autocorrelated. Further, extensive 

literature shows that high limits of arbitrage hinder asset pricing anomalies from disappearing, 

making their effects persistent (Doukas et al., 2010; Sadka & Scherbina, 2007). Hence, we 

conjecture that limits of arbitrage can explain the long-run relation between idiosyncratic volatility 

and option returns.  

[Insert Table 3 about here.] 

In panel A of Table 3, we control for three limits of arbitrage proxies, including firm size 

(market capitalization), stock price, and Amihud illiquidity, in the regressions and see how these 

proxies affect the coefficients of long-run and short-run idiosyncratic volatility. The results in 

columns (1) to (3) of panel A show that when we control for either firm size or stock price or 

Amihud illiquidity, the coefficient of long-run idiosyncratic volatility becomes insignificant, but 

the coefficient of the short-run idiosyncratic volatility remains significant with larger magnitude 

compared with the results in Table 2. The delta-hedged option returns are negatively associated 

with high limits of arbitrage. Limits of arbitrage explain the effect of long-run idiosyncratic 

volatility but not that of short-run idiosyncratic volatility. Cao and Han (2013) find that controlling 

for limits of arbitrage proxies reduces the strength of the relation between idiosyncratic volatility 

and delta-hedged option returns by about 40%. Our findings suggest that this reduction is due to 

the diminished influence of the long-run idiosyncratic volatility.  

Since stock illiquidity is highly persistent, we further investigate the pricing implication of 

the persistent stock illiquidity versus the illiquidity shock and thereby elucidate why limits of 

arbitrage explain the long-run effect of idiosyncratic volatility. Bali et al. (2013) show that, while 

illiquidity is compensated with higher stock return, illiquidity shock (illiquidity minus average of 
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illiquidity over the prior 12 months) predicts low stock return, highlighting that the stock market 

underreacts to illiquidity shock. We examine the illiquidity shock underreaction in the options 

market by decomposing each firm’s stock illiquidity into mean past 12-month illiquidity, illiqm, 

and illiquidity shock, illiqu, as in Bali et al. (2013). The results in panel B of Table 3 show that 

option returns are negatively related only to the average past illiquidity (column (1)), but not to 

illiquidity shock (column (2)), suggesting that the options market reacts to persistent illiquidity but 

not to transient illiquidity shocks. Further, columns (3) and (4) show that the average past 

illiquidity, rather than illiquidity shock, fully explains the pricing of long-run idiosyncratic 

volatility. Our results suggest that the options market tends to assess firms’ limits of arbitrage in 

their long-run consideration. 

One of our proxies for limits of arbitrage is firm size. The result that firm size explains the 

option pricing implication of long-run idiosyncratic volatility is consistent with the stock market 

result of Liu (2022) that the stock return spread based on long-run idiosyncratic volatility has the 

strongest correlation with the size factor among the five Fama and French (2015) factors, 

indicating that the persistent effect of idiosyncratic volatility can be a manifestation of firm size. 

Although Liu (2022) attributes the influence of long-run idiosyncratic volatility on stock returns 

to growth options, we rule out this explanation for option returns in the later part of this study. As 

options are short-lived instruments, option prices may not reflect the cross-sectional difference in 

firms’ potential for future growth.     

Finally, though limits of arbitrage serve as an important explanation for the pricing of 

idiosyncratic volatility, they cannot fully explain the influence of idiosyncratic volatility on stock 

and option returns. Prior research in the stock market (Han & Lesmond, 2011; Huang et al., 2009; 

Spiegel & Wang, 2005) shows that the illiquidity-stock returns relation is largely weakened with 
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the presence of idiosyncratic volatility, thereby emphasizing the important role of idiosyncratic 

volatility relative to illiquidity. Ang et al. (2006); Ang et al. (2009) show that idiosyncratic 

volatility-stock returns relation holds after controlling for liquidity and highlight that limits of 

arbitrage cannot fully explain the pricing of idiosyncratic volatility. In the options market, limits 

of arbitrage fail to fully explain the relation between idiosyncratic volatility and delta-hedged 

option returns (Cao & Han, 2013). Therefore, limits of arbitrage account for only part of the 

idiosyncratic volatility effect, and there must be a further mechanism that drives the idiosyncratic 

volatility-asset returns relation. Our results suggest that it is long-run idiosyncratic volatility, not 

idiosyncratic volatility in its entirety, that is explained by the limits of arbitrage. The remaining 

effect, manifested by the short-run component’s effect, should be explained by a different 

mechanism. We discuss our findings around this new mechanism in the next section.  

3.4 Explanation for the influence of short-run idiosyncratic volatility 

After showing the factor that explains the effect of long-run idiosyncratic volatility, we 

continue to examine what explains the relation between short-run idiosyncratic volatility and delta-

hedged option returns. Todorov (2009) shows that after the occurrence of underlying stock price 

jumps, investors become more willing to pay for protection against jumps by increasing the 

variance risk premium. Similarly, Tian and Wu (2023) show that jumps in the recent month can 

predict option returns. According to Gârleanu et al. (2009), underlying stock jumps represent an 

unhedgeable risk for which market makers require higher option prices. These studies highlight 

the roles of underlying stock jumps in option pricing. Further, the literature suggests that the effect 

of jumps is transient. For instance, Eraker et al. (2003) argue for the transient impact of jumps on 

stock returns; Andersen et al. (2007) demonstrate jump occurrence as a non-persistent predictor of 
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future volatility. Therefore, we conjecture that stock jumps can explain the relation between short-

run idiosyncratic volatility and option returns. 

[Insert Table 4 about here.] 

Following Bali et al. (2023), we measure historical underlying stock jumps as the excess 

kurtosis (kur) of daily stock return in the month before the options portfolio formation date. Panel 

A of Table 4 shows that jumps are significantly and negatively related to delta-hedged option 

returns. This result is consistent with Todorov (2009) and Gârleanu et al. (2009) in that the 

occurrence of stock jumps induces higher option prices and hence lower subsequent option returns. 

Importantly, the result shows that after controlling for stock jumps, the relation between short-run 

idiosyncratic volatility and delta-hedged option returns becomes insignificant. This means that 

underlying stock jumps fully explain the effect of short-run idiosyncratic volatility: high short-run 

idiosyncratic volatility stocks tend to experience recent jumps due to which investors are willing 

to pay higher option prices and market makers demand higher option prices. Besides, we find that 

stock return skewness cannot explain the short-run idiosyncratic volatility’s influence and the 

result is shown in Table 12. 

We further investigate the cause of stock jumps. Literature suggests that corporate news 

arrivals can lead to stock jumps (Kapadia & Zekhnini, 2019) and temporary increases in volatility 

(Bushee & Noe, 2000). Following Kapadia and Zekhnini (2019) and Edmans et al. (2018), we 

extract firm news events from Capital IQ’s Key Developments database to construct fnews which 

is the number of news events in the month before the option portfolio formation date, and fnewsdi 

which is the number of discretionary news events. We also construct the unusual discretionary 

news release, fnewsdiu, which is the number of discretionary news events in a month in excess of 

its trailing 4-month average (Bali et al., 2018). The results in panel B of Table 4 show that all the 
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three measures of news arrivals, fnews, fnewsdi and fnewsdiu, are significantly related to stock 

jumps. And the results in panel C of Table 4 show that these measures of news arrivals are also 

positively related to short-run idiosyncratic volatility. Thus, our results suggest that price jumps 

resulting from corporate news releases can manifest in the relation between short-run idiosyncratic 

volatility in option returns. 

To rule out the conjecture that news arrivals are related to the relation between long-run 

idiosyncratic volatility in option returns, we show in panel D of Table 4 that the three measures of 

news arrivals do not result in increases in limits of arbitrage – the economic mechanism behind 

long-run idiosyncratic volatility. Particularly, the three columns of panel D show that firm stocks 

become more liquid as the number of news events increases. Thus, it is unlikely that firm news 

arrivals can drive the relation between long-run idiosyncratic volatility in option returns. 

3.5 The influence of option transaction costs 

Transaction costs heavily reduce the profitability of option strategies (Chen et al., 2024; 

Heston et al., 2023; Vasquez & Xiao, 2024). O'Donovan and Yu (2024) show that after accounting 

for a reasonable level of transaction cost, the option strategy based on idiosyncratic volatility 

becomes unprofitable. However, by restricting the trading to low-cost options, investors can 

substantially improve the option trading profitability (Chen et al., 2024; Heston et al., 2023; 

Vasquez & Xiao, 2024). In this section, we examine whether trading low-cost options allows for 

significantly profitable option strategies based on long-run and short-run idiosyncratic volatilities. 

[Insert Table 5 about here.] 

First, we study how the pricing effects of idiosyncratic volatility and its long-run and short-

run components differ in subsamples of high-cost and low-cost options. Following Chen et al. 

(2024) and Heston et al. (2023), we identify a low-cost subsample by restricting to options whose 
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bid-ask spread is below the 25th percentile in each month. In panel A of Table 5, the Fama-MacBeth 

regression results in columns (1) and (3) show that the relation between idiosyncratic volatility 

and option returns is weakened for low-cost options, suggesting that idiosyncratic volatility 

premium becomes less pronounced in option liquidity. The results in columns (2) and (4) show 

that the effect of long-run idiosyncratic volatility is significant only in the high-cost subsample. 

Driven by limits of arbitrage, the effect of long-run idiosyncratic volatility should be more 

pronounced when transaction costs are higher and weakened when transaction costs are lower. 

This explains the results in columns (2) and (4). In contrast, the effect of short-run idiosyncratic 

volatility is highly significant in both high-cost and low-cost subsamples, consistent with our 

finding that the short-run effect is not driven by limits of arbitrage.  

Panel B of Table 5 confirms the results in panel A with portfolio sorting analysis. The return 

spread between top and bottom quintiles based on sorting idiosyncratic volatility or each of the 

two components is highly significant in the high-cost subsample. In the low-cost subsample, the 

short-run idiosyncratic volatility yields a significant return spread with the same magnitude as in 

the high-cost subsample (0.62% per month). This highlights that the effect of short-run 

idiosyncratic volatility is not driven by option transaction costs. Meanwhile, the effects of 

idiosyncratic volatility and the long-run component weaken and disappear, respectively, for low-

cost options. 

Panel C of Table 5 examines the profitability after transaction costs for the option strategies 

based on idiosyncratic volatility and its components. Following O'Donovan and Yu (2024) and 

Heston et al. (2023), we consider a reasonable level of transaction cost by assuming the effective 

option bid–ask spread to quoted spread ratio to be 20%. We then report the equal-weighted returns 

to the strategies that buy options in the bottom quintile and sell options in the top quintiles sorted 
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on idiosyncratic volatility or each of its components. The returns after transaction costs are 

reported for the full sample and subsamples of high-cost and low-cost options. We find that in the 

full sample or high-cost subsample, no strategies can be profitable after transaction costs. This is 

consistent with numerous studies documenting that option trading tends to be unprofitable when 

transaction costs are relatively high (Cao & Han, 2013; Chen et al., 2024; Heston et al., 2023; 

Vasquez & Xiao, 2024).4  In the low-cost subsample, only the strategy based on short-run 

idiosyncratic volatility can generate significant profit (0.46% per month, t-stat = 3.42). The low-

cost strategy based on the long-run component cannot yield significant profit before transaction 

cost (as shown in panel B), hence no profit after transaction cost. In terms of idiosyncratic 

volatility, its low-cost trading strategy is not profitable after considering transaction costs. 

Given that limits of arbitrage are responsible for a substantial part of the idiosyncratic 

volatility effect through the long-run component, our finding highlights the importance of 

considering short-run idiosyncratic volatility in forming a profitable option trading strategy. We 

show that the trading strategy based on short-run idiosyncratic volatility remains profitable after a 

reasonable level of transaction costs.  

3.6 Full explanation of the relation between idiosyncratic volatility and option returns 

As idiosyncratic volatility is decomposed into two components and the pricing of the two 

components is explained by the two channels, limits of arbitrage and stock jumps, it is likely that 

 

 

 

4 Cao and Han (2013) advise that “only market participants who face relatively low transaction costs can take 

advantage of our option strategy profitably”. 
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the combination of those two channels can fully explain the well-established relationship between 

idiosyncratic volatility and delta-hedged option returns. Table 6 assesses this conjecture.  

[Insert Table 6 about here.] 

In particular, we simultaneously control for limits of arbitrage and stock jumps. Limits of 

arbitrage are proxied by the Amihud illiquidity.5 Stock jumps are captured by the excess kurtosis 

of daily stock return in a month. In column (1), when both channels are controlled for, the 

relationship between idiosyncratic volatility and delta-hedged option returns becomes 

insignificant. In columns (2) and (3), when only one channel is controlled for, the negative 

relationship between idiosyncratic volatility and delta-hedged option returns remains statistically 

significant. Thus, it is the combination of the two channels, not each standalone channel, that fully 

explains the pricing of idiosyncratic volatility. This finding finalizes the unfinished quest of Cao 

and Han (2013) to uncover the economic mechanisms driving the effect of idiosyncratic volatility 

in option pricing, as they show about 40% of the effect is due to limits of arbitrage. We, using the 

decomposition of idiosyncratic volatility into long-run and short-run components, discover the two 

underlying channels for the pricing of the two components, and these channels in turn fully explain 

the relation between idiosyncratic volatility and delta-hedged option returns.  

 

 

 

5 Limits of arbitrage proxies are usually highly correlated with investment friction proxies, e.g., asset size, (Lam 

and Wei 2011) and idiosyncratic volatility can be explained by growth options (Cao et al. 2008); hence, we now focus 

only on the measure of limits of arbitrage that reflects the price impact, i.e., Amihud illiquidity.  
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3.7 Up and down markets 

Economic downturns substantially increase uncertainty in the financial markets, dampen 

investor sentiment, and influence investors’ attention allocation (Garcia, 2013; Kacperczyk et al., 

2016; Maslar et al., 2021). In Table 7, we rerun the baseline regression with the subsamples of 

options written in up markets and down markets separately.  

[Insert Table 7 about here.]  

According to Cooper et al. (2004), down (up) markets are defined as periods when the past 

12-month holding-period return of the value-weighted CRSP index is negative (non-negative).6 

Columns (1) to (3) of Table 7 refer to the up-market subsample. The results in the up-market 

subsample are no different from the results in the full sample. Particularly, both the long-run and 

short-run components of idiosyncratic volatility are negatively related to option returns, and the 

limits of arbitrage and stock jumps, respectively, fully explain the effects of long-run and short-

run components. The results in the up-market subsample, hence, serve as a robustness check for 

our key findings. Columns (4) to (6) of Table 7 are for the down-market subsample. The result in 

column (4) shows that in down markets, the long-run idiosyncratic volatility is not significantly 

related to option returns, but the effect of short-run idiosyncratic volatility is significant. In column 

 

 

 

6 Cooper et al. (2004) also have alternative definitions of up and down markets based on the 36-month holding-

period return (non-negative vs negative). Such definitions result in fewer observations of down markets. Hence, we 

choose the definitions based on the 12-month holding-period return to alleviate the observation imbalance between 

up-market and down-market subsamples. In our final dataset, about 23% of observations are options written in down 

markets. 
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(5), when we control for limits of arbitrage captured by Amihud illiquidity, the effect of short-run 

idiosyncratic volatility remains significant. In column (6), when we control for stock jumps, the 

effect of short-run idiosyncratic volatility disappears. Thus, the result confirms that stock jumps 

fully explain the pricing of short-run idiosyncratic volatility in down markets. Our results indicate 

that, in down markets, investors place more emphasis on short-run idiosyncratic volatility than on 

long-run idiosyncratic volatility when pricing delta-hedged options. Our results are hence 

consistent with Eraker et al. (2003), who show evidence that, in market stress, stock return jumps 

play a greater role than diffusive stochastic volatility (the component that tends to be persistent) in 

explaining crash movements, and use this evidence to argue that jumps should command larger 

premia than the diffusive volatility in market stress to compensate for the risk that cannot be fully 

hedged away. Our results are also in line with Garcia (2013), who argues that the influence of news 

on asset prices is more pronounced in downturns, given the positive association between news 

arrivals and short-run idiosyncratic volatility we demonstrate in Section 3.4. Nagar et al. (2019) 

find that in high macroeconomic uncertainty periods, firms increase discretionary disclosure to 

mitigate information asymmetry and uncertainty about firm value; this is consistent with our 

results on short-run idiosyncratic volatility being the dominant component of idiosyncratic 

volatility in down markets.  

Our results highlight the importance of considering the short-run component of idiosyncratic 

volatility in the options market, since the short-run component, unlike the long-run component, 

matter in both up and down markets.  

3.8 Demand-based option pricing 

The economic explanations uncovered in the previous sections can find their support in the 

demand-based option pricing theory (Gârleanu et al., 2009). This theory provides the valuation 
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framework to determine the expensiveness of options based on demand and supply considerations 

when market makers are unable to perfectly hedge their option exposure. In our study, high costs 

to arbitrage between options and stocks represent difficulty for market makers to hedge their option 

positions and rebalance their hedging. Also, stock jumps are a source of unhedgeable risk faced 

by market makers. So, both limits of arbitrage and stock jumps are hindrances to options supply 

from market makers. Further, stocks with high limits-of-arbitrage characteristics and heavy tails 

can attract speculation from gamblers (Kumar, 2009). If the end-user demands for options on 

stocks with high limits of arbitrage and jumps are high, the equilibrium prices for such options 

should be high to be consistent with the demand-based option pricing theory. In Table 8, we follow 

the empirical work of Golez and Goyenko (2022) to compute end-user net option demand from 

the Chicago Board of Options Exchange (CBOE) database (data available from 2005). Internet 

Appendix Table IA1 provides details of the option demand variable construction. The results in 

columns (1) to (3) of Table 8 show that option demand by end users is higher for options written 

on stocks with higher illiquidity, and higher excess kurtosis. In other words, limits of arbitrage and 

stock jumps are associated with higher end-user option demand. Based on the prediction of the 

demand-based option pricing theory, it follows that higher limits of arbitrage and jumps are related 

to higher option prices and lower subsequent option returns. 

[Insert Table 8 about here.] 

We also examine the end-user option demand in up and down markets. Columns (4) and (5) 

of Table 8 are for the up-market and down-market subsamples, respectively. The result in the up-

market subsample (column (4)) is similar to that in the full sample (column (3)): end-user option 

demand increases in both limits of arbitrage and stock jumps. This explains why both limits of 

arbitrage and stock jumps have strong predictive power on option returns in the full sample as well 
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as in the up-market subsample. However, in down markets, the influence of limits of arbitrage on 

option demand becomes insignificant while that of jumps remains significant (column (5)). In 

downturns, investors are prone to a phenomenon called flight-to-liquidity, i.e., adjusting portfolios 

toward liquid assets (Beber et al., 2009). Investor preference for liquid securities in downturns 

explains the insignificant relation between end-user option demand and stock illiquidity. 

Specifically, higher (lower) demands for liquid (illiquid) stocks induce increased demands for 

options written on liquid stocks relative to options written on illiquid stocks. This preference in 

down markets offsets the positive relation between option demand and underlying stock illiquidity 

found in the full sample, making the relation insignificant in the down-market subsample. On the 

other hand, the significant relation between jumps and option demand in down markets is 

consistent with the idea of Todorov (2009) that options market investors’ sensitivity to recent 

jumps reflects their risk aversion and the finding that investors’ risk aversion tends to be 

heightened in downturns (Guiso et al., 2018). Our result that only jumps are related to option 

demand in down markets, albeit with lower significance compared with full sample results, is 

aligned with our finding in Table 7 that only short-run idiosyncratic volatility is significantly 

related to option returns in down markets. Hence, the demand-based option pricing theory 

illuminates why the influence of long-run and short-run idiosyncratic volatility on option returns 

varies over time.  

3.9 Decomposition of economic mechanisms 

Herskovic et al. (2016) show that firm-level idiosyncratic volatility follows a commonality 

structure, which means that it comoves with the aggregate common idiosyncratic volatility. 

Moreover, the two economic mechanisms underlying idiosyncratic volatility, limits of arbitrage 

and stock jumps, also have a commonality structure (Bégin et al., 2020; Chordia et al., 2000). 
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Thus, we further decompose each mechanism to understand the source of its explanation power, 

following the approach of Herskovic et al. (2016):  

𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖,𝑡 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖 + 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑖 × 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑡 + 𝜀𝑖,𝑡  (5) 

where 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖,𝑡 is the uncovered economic mechanism of each idiosyncratic volatility 

component (i.e., limits of arbitrage or stock jumps) for firm i in month t; 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑡 is the 

equal-weighted market average of each mechanism in each month. We conduct the regression for 

each mechanism of each firm and term the estimated intercept the mechanism intercept, the 

estimated 𝑙𝑜𝑎𝑑𝑖𝑛𝑔̂
𝑖 × 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡 the common component of the mechanism and the estimated 

residuals the residual component of the mechanism. 

Take stock illiquidity as an example. Firm-level illiquidity is decomposed into the intercept, 

which is the constant component of illiquidity, the common illiquidity component, which is the 

part of illiquidity comoving with the market average, and the residual illiquidity component, which 

is the part of illiquidity unrelated to the market average. The decomposition of jumps is conducted 

in the same manner. Similar to Yan (2011) who studies whether systematic jump or idiosyncratic 

jump is the dominant force that explains the jump risk-stock returns relation, we investigate 

whether the systematic or idiosyncratic component of each economic mechanism plays the 

dominant role in explaining the option return predictability of the two idiosyncratic volatility 

components. 

[Insert Table 9 about here.] 

In Table 9, we examine the roles of the illiquidity and jumps components in explaining the 

long-run and short-run idiosyncratic volatility effects. In column (1), when we control for the 

illiquidity intercept and the common illiquidity component, the relation between long-run 

idiosyncratic volatility and option returns becomes insignificant (in untabulated tests, each of 
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the illiquidity intercept and common illiquidity component is not sufficient to explain the effect of 

long-run idiosyncratic volatility). In column (2), when we control for the illiquidity intercept and 

the residual illiquidity component, that relation remains highly significant. Controlling for those 

illiquidity components does not affect the coefficient of short-run idiosyncratic volatility in these 

two columns. In column (3), the jumps intercept and the common jumps component are not 

significantly related to option returns and cannot explain any of the idiosyncratic volatility 

components. In column (4), when we control for the jumps intercept and the residual jumps 

component, the residual jumps component is significantly related to option returns, and fully 

explains the effect of short-run idiosyncratic volatility (the coefficient of the jumps intercept is still 

insignificant). Controlling for jumps’ components in columns (3) and (4) does not affect the 

coefficient of the long-run idiosyncratic volatility. Thus, we conclude on the one hand that the 

explaining power of illiquidity for the effect of long-run idiosyncratic volatility arises from the 

constant illiquidity component and the illiquidity component comoving with the market average 

(i.e., systematic illiquidity); and on the other hand, that the explaining power of jumps for the effect 

of short-run idiosyncratic volatility arises from firm idiosyncratic jumps component, rather than 

the systematic jumps. Our results are consistent with the stock market study of Liu (2022) that the 

return predictability of long-run idiosyncratic volatility is strongly correlated with systematic risk 

factors, while the return predictability of short-run idiosyncratic volatility lacks correlations with 

those systematic risk factors.   

[Insert Table 10 about here.] 

Illiquidity commonality is a research topic that attracts much attention (Acharya & Pedersen, 

2005; Chordia et al., 2000; Karolyi et al., 2012; Lee, 2011), but no prior work explores its link 

with the idiosyncratic volatility commonality discovered by Herskovic et al. (2016). Idiosyncratic 
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volatility is considered an important hindrance to arbitrage activity (Pontiff, 2006; Shleifer & 

Vishny, 1997), and is strongly related to illiquidity (Spiegel & Wang, 2005). Hence, we conjecture 

that illiquidity commonality is related to idiosyncratic volatility commonality. Using the 

specification in equation (5), we decompose idiosyncratic volatility into idiosyncratic volatility 

intercept, common idiosyncratic volatility component, and residual idiosyncratic volatility 

component. Table 10 shows that the common illiquidity component is significantly related to the 

idiosyncratic volatility intercept and the common idiosyncratic volatility component (column (1)), 

while the residual illiquidity component is significantly related to the residual idiosyncratic 

volatility component (column (2)). Further, in column (3), we examine the exposure of firm-level 

variable to the market aggregate variable using 60-month rolling window estimations (Herskovic 

et al., 2016), and document a strong positive relation between the exposure of firm-level 

idiosyncratic volatility to market aggregate idiosyncratic volatility (idiosyncratic volatility beta) 

and the exposure of firm-level illiquidity to market aggregate illiquidity (illiquidity beta). From 

the results in Table 10, we conclude that illiquidity commonality is strongly associated with 

idiosyncratic volatility commonality. Herskovic et al. (2016) argue that household income risk is 

an important driver of idiosyncratic volatility commonality. Our results hence not only bridge the 

two commonalities but also suggest that household income risk may be a potential determinant of 

illiquidity commonality besides various determinants documented in the prior literature. We leave 

this household income risk explanation to future research. 

[Insert Table 11 about here.] 

In the earlier section, we argued that corporate news disclosure manifests in the relation 

between short-run idiosyncratic volatility and option returns through stock jumps. Since it is the 

idiosyncratic jumps rather than the systematic jumps that can explain the influence of short-run 
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idiosyncratic volatility (Table 9), we further show in Table 11 that the idiosyncratic jumps 

component is driven by corporate news releases. In columns (1) to (3), the idiosyncratic jumps 

component is strongly and positively related to firm news disclosure, discretionary disclosure, and 

unusual discretionary disclosure; while in columns (4) to (6), we find that the common jumps 

component is not significantly related to firm news disclosure and discretionary disclosure and 

only has a weak relation with unusual discretionary disclosure. According to Caporin et al. (2017), 

systematic co-jumps are situations when individual stock prices simultaneously jump and such 

systematic co-jumps can be traced to market-wide economic news arrivals. Hence, the firm-level 

news disclosure is unlikely to trigger systematic co-jumps. This explains the lack of significant 

relation between corporate disclosure and the common jumps component in our results. Our results 

on the positive association between corporate disclosure and idiosyncratic jumps are consistent 

with Kapadia and Zekhnini (2019). All in all, we highlight the role of corporate news arrivals in 

explaining the short-run idiosyncratic volatility effect by driving the idiosyncratic jumps. 

3.10 Alternative explanations 

In this section, we examine whether other corporate variables, apart from limits of arbitrage 

and stock jumps, can explain the influence of long-run and short-run idiosyncratic volatility. In 

Table 12, we test whether the relations between two idiosyncratic volatility components and delta-

hedged option returns remain statistically significant after controlling for past stock return 

characteristics and mispricing variables. Recent month stock return is an explanation for the 

pricing of idiosyncratic volatility in the stock market (Huang et al., 2009); mispricing related to 

lottery preferences is also a potential explanation (Hou & Loh, 2016). In column (1), we control 

for stock return in the previous month, rev, and the cumulative stock return from the prior second 

through 12th month, mom. Controlling for these variables does not materially affect the statistical 
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significance and magnitude of the coefficients of the two idiosyncratic volatility components. We 

also find in an untabulated test that the salience theory measure (Cosemans & Frehen, 2021) cannot 

explain the effects of idiosyncratic volatility components. In column (2), we control for the 

volatility risk premium, which is the realized stock return standard deviation in each month minus 

the volatility implied from stock options. Goyal and Saretto (2009) find that volatility risk premium 

(historical-implied volatility differential) is significantly and positively related to delta-hedged 

option returns. We find consistent results, and after controlling for the volatility risk premium, the 

effects of two idiosyncratic volatility components remain highly significant. In column (3), we 

control for option implied risk-neutral skewness which is extracted from the OTM call and put 

options using the method of Bakshi et al. (2003).7  We find that option-implied skewness is 

negatively related to option returns, being consistent with investors’ preference for positive 

skewness, and that the effects of long-run and short-run idiosyncratic volatility remain significant. 

In column (4), we include the variable max5, which is the average of the five highest daily stock 

returns in the last month. According to Byun and Kim (2016), max daily return captures the 

gambling characteristic of a stock, and options buyers are willing to pay a higher premium for 

 

 

 

7  The computation of implied skewness requires several options available for a firm at a time. Such data 

availability is more likely to be found in large firms than in small firms. Similar to Cao and Han (2013), we find that 

the computed implied skewness data is available for about half of the sample and concentrated in large firms. Since 

firm size can explain the effect of long-run idiosyncratic volatility, the implied skewness measure used in our study is 

firm-size adjusted, i.e., the residuals from the cross-sectional regressions of implied skewness on firm size, where 

regressions are conducted in each month. 
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options written on stocks with higher gambling characteristics. We find that after controlling for 

max5, the effects of long-run and short-run idiosyncratic volatility hold, and the coefficient of 

max5 is insignificant.8 This means that the max daily return cannot explain the effects of the two 

idiosyncratic volatility components. In column (5), we control for the skewness of daily stock 

returns in the last month, a measure of jumps that captures the asymmetry of the two tails of the 

distribution (Amaya et al., 2015). Unlike stock excess kurtosis, the stock skewness control variable 

does not affect the coefficient of the idiosyncratic volatility components and is not significantly 

related to option returns. Thus, from the results in Table 12, we conclude that the negative 

relationships between two idiosyncratic volatility components and delta-hedged option returns are 

robust when controlling for the abovementioned past stock return characteristics and mispricing 

variables.  

[Insert Table 12 about here.] 

[Insert Table 13 about here.] 

Another potential explanation for the relation between idiosyncratic volatility components 

and option returns is firms’ growth options because firms’ growth options can explain the trend in 

idiosyncratic volatility (Cao et al., 2008) and is one of the explanations for the pricing of 

idiosyncratic volatility in stock returns (Barinov & Chabakauri, 2023). We therefore control for 

 

 

 

8 In the study of Byun and Kim (2016), the negative relation between max daily return and option returns is 

robust after controlling for idiosyncratic volatility. However, they measure option returns without delta-hedging. In 

our unreported results using raw option returns as dependent variable, the effect of max5 remains significantly negative 

when the two idiosyncratic volatility components are included as independent variables. 
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growth options proxies in our regressions to examine whether our results are driven by growth 

options. The typical proxies for growth options in literature are market-to-book ratio, Tobin’s Q 

ratio, and research and development expenses scaled by assets (Albuquerque, 2014; Cao et al., 

2008). The results in Table 13 show that except for the R&D ratio being negatively related to delta-

hedge option returns, market-to-book, and Tobin’s Q ratios are not significantly related to option 

returns, and that growth options proxies do not explain the effect of either long-run or short-run 

idiosyncratic volatility. The coefficients of long-run and short-run idiosyncratic volatility remain 

significantly negative with relatively similar magnitude (comparable with those coefficients in 

Table 2) after the inclusion of growth options control variables. Given the short lifespans of 

options, the growth potential of a firm may not be an important consideration for financial 

intermediaries when writing options on the firm’s equity, hence the insignificance of growth 

options proxies in prediction of option returns and the inability of these proxies to explain the long-

run and short-run idiosyncratic volatility option premiums.  

In the Internet Appendix Table IA2, we consider a comprehensive set of corporate variables 

documented in Zhan et al. (2022). These variables have been shown to have cross-section option 

return predictability. We examine whether these variables can explain the relation between long-

run/short-run idiosyncratic volatility and option returns. These control variables include cash flow 

variance computed as the variance of the cash flow to market capitalization ratio over the 60-month 

window, cash-to-assets ratio, earnings forecast dispersion which is the standard deviation divided 

by absolute value of the mean of annual EPS forecasts, one-year and five-year new equity issues 

in number of shares, profit margin which is earnings before interest and tax divided by revenues, 

profitability which is income before extraordinary items divided by book equity, total external 

financing which is net share issuance minus cash dividends plus net debt issuance, scaled by total 
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assets, and z-score defined by the formula initiated by Dichev (1998). The results in Table IA2 

show that after controlling for these variables, the relations between long-run and short-run 

idiosyncratic volatilities and option returns remain significant. Therefore, the long-run/short-run 

idiosyncratic volatility-option return relation cannot be explained by the corporate variables 

documented in Zhan et al. (2022). In untabulated tests, we control for standardized unexpected 

earnings as in Jiang et al. (2009) to examine the explaining power of earnings shocks in the pricing 

of idiosyncratic volatility components. We find that the effects of the two components remain 

significant after the inclusion of this control variable. 

In short, our results show that corporate and behavioral characteristics other than the limits 

of arbitrage and jumps are unlikely to play significant roles in explaining the relations between 

long-run and short-run idiosyncratic volatilities and option returns. 

3.11 Insights for the stock market and the puzzle around Merton (1987) 

The study of Liu (2022) on the stock market shows that long-run idiosyncratic volatility is 

negatively related to future stock returns and short-run idiosyncratic volatility is positively related 

to future stock returns. In this section, we examine whether limits of arbitrage and stock jumps can 

explain the influence of the two idiosyncratic volatility components on stock returns. In Table 14, 

we confirm the negative (positive) relation between long-run (short-run) idiosyncratic volatility 

and next month’s stock returns (column (1)) and then find that stock jumps can fully explain the 

positive relation between short-run idiosyncratic volatility and stock returns (column (3)). The 

stock jumps measured by excess kurtosis of daily stock returns are positively related to future stock 

returns, being consistent with Kapadia and Zekhnini (2019), who show that higher idiosyncratic 

jump risk is compensated with higher future stock returns, and Amaya et al. (2015), who show that 
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realized kurtosis positively predicts stock returns. Our result emphasizes the role of jumps in 

explaining the pricing effect of short-run idiosyncratic volatility.  

[Insert Table 14 about here.] 

In terms of limits of arbitrage, we find that the coefficient of illiquidity measure is 

insignificant (column (2)). The result is consistent with the literature that the influence of 

illiquidity on stock returns is often dominated and eliminated by the inclusion of idiosyncratic 

volatility as an explanatory variable (Han & Lesmond, 2011; Huang et al., 2009; Spiegel & Wang, 

2005). The inability of limits of arbitrage to explain the pricing of long-run idiosyncratic volatility 

in stock returns may be because stock prices – unlike option prices that reflect mainly the 

compensation for volatility – contain risk premia for various factors that do not stem from volatility 

(Stein, 1989). For example, firm growth options increase idiosyncratic volatility (Cao et al., 2008) 

while inducing low stock returns compared with returns of value counterparts (Fama & French, 

1992); therefore, an explanation based on growth options can be feasible in the stock market 

(Bhamra & Shim, 2017) but not in the options market. We indeed rule out this explanation in the 

options market (Table 13).   

The theory of Merton (1987) predicts a positive relation between idiosyncratic volatility and 

stock returns, but empirical studies provide limited support for the theory. Our results suggest that 

the theoretical prediction of Merton (1987) is supported when the idiosyncratic volatility’s 

influence is mainly through its short-run component and indeed the short-run component captures 

the truly idiosyncratic part. According to the results from our decomposition of economic channels, 

the long-run component captures the intercept (time-invariant) and the common component 

(systematic variation) in illiquidity and is not truly idiosyncratic. The Merton (1987) theory will 

hold well if we measure the idiosyncratic volatility only by its short-run component. To reconcile 
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the theory of Merton (1987) and the empirical findings on the pricing of idiosyncratic volatility in 

stock returns, our study suggests focusing on corporate news and idiosyncratic jumps which result 

in the transient effect that cannot be explained either by time-invariant or systematic variation of 

the idiosyncratic volatility. 

3.12 Further analysis 

Andersen et al. (2007) demonstrate that the persistent component of volatility positively 

predicts future volatility, while the transient component of volatility negatively predicts future 

volatility. As future volatility prediction is important in determining option prices, separating the 

persistent and transient components is necessary for understanding the influence of idiosyncratic 

volatility on option returns. In the Internet Appendix Table IA3, consistent with Andersen et al. 

(2007), we show that long-run (short-run) idiosyncratic volatility is positively (negatively) related 

to next month's total volatility and that separating the two idiosyncratic volatility components 

improves next month's volatility prediction (adjusted R-squared increases from 30% in column (1) 

to 38% in column (4)). These results are in line with the volatility mean-reversion literature which 

posits that the future volatility tends to be closer to the long-run average historical volatility than 

to the current volatility (Goyal & Saretto, 2009). Hence, we highlight the value of decomposing 

idiosyncratic volatility into long-run and short-run components when studying the cross-section of 

option returns. 

Cao and Han (2013) show that the relation between idiosyncratic volatility and option returns 

is significant across different holding horizons. In Table IA4, we also examine that relation using 

an alternative holding period of delta-hedged option portfolios. At the beginning of each month, 

instead of selecting options that mature on the option expiration day of the next month (third 

Friday), we use options that mature in the same month (on the third Friday of the same month) to 
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compute delta-hedged option returns, making the average maturity drop to about 17 days 

(compared with about one and a half month as in the main analysis). The advantage of this holding 

period alternative (over other holding strategies such as liquidating the one-and-a-half-month-

maturity option portfolios after holding for one month) is that it avoids the calendar effect 

documented in Cao et al. (2021). In particular, Cao et al. (2021) show that on the third weekend in 

a month, stock prices are strongly affected by selling pressure due to option expiration. Our 

strategy avoids holding the option portfolios beyond this third-week threshold. With the new 

holding horizon, we recompute delta-hedged option returns and report regression results of this 

new dependent variable. In Table IA4, we show that when each of the two channels, limits of 

arbitrage and stock jumps, is controlled, the relation between idiosyncratic volatility and option 

returns is weakened but still significant; and when both channels are controlled, the relation 

disappears. Thus, our results using different portfolio holding horizons confirm that the 

combination of limits of arbitrage and stock jumps still fully explains the relation between 

idiosyncratic volatility and option returns. 

In the main tests, we focus on the delta-hedged call option returns. In Table IA5, we 

investigate the delta-hedged put option returns. We show that controlling for each of the two 

channels, limits of arbitrage and stock jumps, makes the effect of idiosyncratic volatility weakened 

but still significant, and controlling for both makes the effect become insignificant. Consistent with 

our call option results, the two channels together also explain the relation between idiosyncratic 

volatility and put option returns. 

In Internet Appendix Table IA6, we revisit the option return spreads based on portfolio sorting 

as discussed in Table 2 panel B. In particular, we examine whether these return spreads remain 

significant after controlling for the Fama and French (2015) five common equity factors and the 
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VIX index. We follow Cao and Han (2013); Goyal and Saretto (2009) to regress the monthly return 

spreads on idiosyncratic volatility or idiosyncratic volatility components on the monthly common 

equity factors and the change in the average monthly VIX index. The results show that the option 

trading strategies based on sorting idiosyncratic volatility or idiosyncratic volatility components 

yield significant alphas after controlling for five Fama and French (2015) common equity factors 

and the VIX index, and these market-wide control variables play little role in explaining the returns 

of the abovementioned option trading strategies. 

4 Conclusion 

In this study, we decompose idiosyncratic volatility into long-run and short-run components 

and find that both components are negatively related to option returns in the sample from 1996 to 

2021. We then conduct comprehensive tests to explore the mechanisms behind these negative 

effects and find different explanations for each effect. First, the long-run idiosyncratic volatility 

negatively predicts option returns because stocks with high idiosyncratic volatility over a long 

horizon are difficult to arbitrage, and financial intermediaries require a high premium to write 

options on such stocks. The high option prices associated with high limits of arbitrage are justified 

by the demand-based option pricing theory, which posits that market markers charge higher 

premiums for writing options that are in high demand and difficult to hedge. Second, the short-run 

idiosyncratic volatility negatively predicts option returns because the short-run idiosyncratic 

volatility reflects the jumps in the underlying stock prices resulting from corporate news 

disclosure. The jumps induce investors to pay higher option premiums because underlying stock 

jumps represent a source of unhedgeable risk, for which market makers also demand 

compensation. Putting together, the limits of arbitrage and stock jumps fully explain the effect of 
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idiosyncratic volatility on option returns. Apart from these two mechanisms, other stock and 

behavioural characteristics (e.g., skewness preference) seem unable to explain our findings. 

The findings on the pricing of the two idiosyncratic volatility components and their economic 

mechanisms have important implications for option traders, especially when transaction costs are 

documented to eliminate the profitability of most option trading strategies (O'Donovan & Yu, 

2024). We show that, unlike the long-run component, the short-run component can be used to 

create an option strategy that remains profitable after reasonable transaction costs. Moreover, we 

show that the short-run idiosyncratic volatility is the dominant component that influences option 

returns in down markets.  

Bringing our results into the stock market, the stock jumps can fully explain the relation 

between short-run idiosyncratic volatility and stock returns and help researchers reconcile the 

Merton (1987) theory and empirical findings.  
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Figure 1 Histogram of autoregressive parameters of firms’ long-run and short-run idiosyncratic volatilities 

This figure illustrates the distribution of the autoregressive parameters of the long-run and short-run idiosyncratic volatility 

components. 
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Table 1. Summary statistics 

This table provides summary statistics on mean, standard deviation, 5th, 25th, 50th, 75th, 95th 

percentiles of our main variables, including delta-hedged option returns, dret, delta, delta, 
idiosyncratic volatility, ivol, long-run, ivollr, and short-run, ivolsr, components of idiosyncratic 

volatility, systematic volatility, sysvol, , firm size, size, stock price, price, Amihud illiquidity 

measure, illiq, stock realized jumps, kur, the number of firm news events, fnews, volatility risk 
premium, vrp. Panel A refers to the full sample. Panel B and C refer to the subsamples of small 

and large firms whose market capitalization is below and above, respectively, the median in the 
full sample. 

Panel A Full sample 

 Mean SD Q5 Q25 Median Q75 Q95 

dret -0.003 0.141 -0.169 -0.072 -0.021 0.039 0.230 

delta 0.527 0.112 0.332 0.460 0.531 0.598 0.703 

log(ivol) -4.109 0.624 -5.083 -4.549 -4.132 -3.694 -3.056 

ivollr -4.108 0.560 -4.992 -4.507 -4.126 -3.727 -3.162 

ivolsr -0.001 0.171 -0.258 -0.110 -0.010 0.097 0.291 

log(size) 7.874 1.535 5.546 6.756 7.747 8.900 10.716 

price 44.850 67.057 7.350 17.500 31.030 52.250 117.490 

log(illiq) -20.867 1.899 -23.961 -22.189 -20.861 -19.562 -17.736 

kur 0.446 2.084 -1.211 -0.754 -0.225 0.753 4.798 

fnews 3.462 4.143 0.000 0.000 3.000 5.000 10.000 

sysvol 0.016 0.012 0.004 0.008 0.013 0.019 0.037 

vrp 0.063 0.253 -0.185 -0.048 0.025 0.126 0.440 

Panel B Small firm sample 

 Mean SD Q5 Q25 Median Q75 Q95 

dret -0.007 0.163 -0.198 -0.091 -0.028 0.046 0.260 

delta 0.532 0.116 0.333 0.455 0.537 0.614 0.712 

log(ivol) -3.900 0.575 -4.809 -4.294 -3.915 -3.521 -2.943 

ivollr -3.898 0.499 -4.696 -4.241 -3.909 -3.563 -3.068 

ivolsr -0.002 0.177 -0.269 -0.116 -0.011 0.101 0.304 

log(size) 6.634 0.775 5.185 6.132 6.756 7.265 7.650 

price 25.317 17.945 5.470 13.090 20.900 33.090 58.410 

log(illiq) -19.542 1.249 -21.334 -20.442 -19.681 -18.78 -17.258 

kur 0.589 2.225 -1.194 -0.716 -0.151 0.934 5.396 

fnews 2.662 2.708 0.000 0.000 2.000 4.000 8.000 

sysvol 0.018 0.013 0.005 0.010 0.014 0.022 0.040 

vrp 0.069 0.305 -0.236 -0.069 0.027 0.156 0.512 
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Panel C Large firm sample 

 Mean SD Q5 Q25 Median Q75 Q95 

dret 0.000 0.105 -0.121 -0.055 -0.016 0.032 0.177 

delta 0.520 0.107 0.329 0.463 0.525 0.580 0.689 

log(ivol) -4.371 0.565 -5.224 -4.767 -4.406 -4.013 -3.389 

ivollr -4.370 0.499 -5.122 -4.723 -4.402 -4.054 -3.497 

ivolsr -0.001 0.164 -0.248 -0.106 -0.009 0.094 0.279 

log(size) 9.114 1.019 7.849 8.259 8.900 9.779 11.343 

price 67.525 88.421 15.700 31.490 48.600 75.080 173.050 

log(illiq) -22.357 1.267 -24.583 -23.174 -22.266 -21.463 -20.451 

kur 0.306 1.943 -1.229 -0.792 -0.299 0.583 4.229 

fnews 4.635 5.118 0.000 1.000 4.000 6.000 13.000 

sysvol 0.013 0.010 0.004 0.007 0.011 0.016 0.032 

vrp 0.054 0.169 -0.119 -0.033 0.023 0.099 0.333 
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Table 2. Long-run and short-run idiosyncratic volatility components and option returns 

In this table, Panel A reports results of Fama–MacBeth regressions of delta-hedged option returns, 

dret, on long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, ivol, 
controlling for systematic volatility, sysvol. Panel B reports the average delta-hedged option 

returns of portfolios obtained by sorting stocks into five quintile groups based on ivol, ivollr, or 

ivolsr, and the equal-weighted average return spreads between high and low volatility groups. 
Panel C repeats the regressions in Panel A except that the two components of idiosyncratic 

volatility are replaced by their respective 12-month lags, ivollr12 and ivolsr12, or 24-month lags, 
ivollr24 and ivolsr24. To adjust for serial correlation, robust Newey and West (1987) t-statistics 

with a lag of 6 months are reported in parentheses. ***, **, * indicate statistical significance at 

1%, 5% and 10% levels, respectively. 

Panel A. Two idiosyncratic volatility components and option returns 

 dret 

 (1) (2) (3) (4) 

Intercept 
-0.027*** 

(-4.43) 

-0.026*** 

(-3.45) 

0.001 

(0.24) 

-0.025*** 

(-3.06) 

log(ivol) 
-0.006*** 

(-4.95)    

ivollr  
-0.006*** 

(-3.63)  

-0.005*** 

(-3.10) 

ivolsr  
 

-0.012*** 
(-5.67) 

-0.010*** 
(-3.66) 

sysvol 
-0.058 
(-0.79) 

-0.072 
(-1.03) 

-0.254*** 
(-2.73) 

-0.048 
(-0.69) 

Avg Adj R2 0.0131 0.0141 0.0110 0.0150 

Panel B. Portfolio sorting analysis 

 dret  

 (1) - Low (2) (3) (4) (5)- High (5) - (1) (t-value) 

ivol -0.0000 -0.0014   -0.0011 -0.0025 -0.0094 -0.0094***(-3.95) 

ivollr -0.0002 -0.0012 -0.0018 -0.0023 -0.0090 -0.0088***(-3.46) 

ivolsr -0.0009 -0.0009 -0.0022 -0.0031 -0.0073 -0.0064***( -7.43) 
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Panel C. Lagged idiosyncratic volatility components and option returns 

 dret 

 (1) (2) 

Intercept 
-0.016** 

(-2.22) 

-0.021*** 

(-2.73) 

ivollr12 
-0.004** 
(-2.31)  

ivolsr12 
0.010*** 

(5.29)  

ivollr24  
-0.005*** 

(-2.90) 

ivolsr24  
0.007*** 

(2.99) 

sysvol 
-0.195** 

(-2.47) 

-0.168** 

(-1.99) 

Avg Adj R2 0.0149 0.0150 
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Table 3. What explains the effect of long-run idiosyncratic volatility  

In this table, Panel A reports results of Fama–MacBeth regressions of delta-hedged option returns, 

dret, on long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, controlling 
for systematic volatility, sysvol, firm size, size, stock price, price, Amihud illiquidity measure, 

illiq. Panel B examines the roles of illiquidity shock, illiqu, and average past illiquidity, illiqm, in 

explaining the effect of long-run idiosyncratic volatility. To adjust for serial correlation, robust 
Newey and West (1987) t-statistics with a lag of 6 months are reported in parentheses. ***, **, * 

indicate statistical significance at 1%, 5% and 10% levels, respectively. 

Panel A. Limits of arbitrage explanation 

 dret 

 (1) (2) (3) 

Intercept 
-0.030*** 

(-3.79) 

-0.010 

(-1.17) 

-0.058*** 

(-5.71) 

ivollr 
-0.003 

(-1.47) 

0.000 

(0.08) 

-0.001 

(-0.38) 

ivolsr 
-0.013*** 

(-4.40) 
-0.013*** 

(-4.70) 
-0.012*** 

(-4.58) 

sysvol 
-0.051 
(-0.71) 

-0.124* 
(-1.76) 

-0.070 
(-0.99) 

log(size) 
0.002*** 

(4.35) 
 

 

price  
0.000*** 

(4.76)  

log(illiq)   
-0.003*** 

(-5.90) 

Avg Adj R2 0.0180 0.0201 0.0186 

Panel B. Average past illiquidity and illiquidity shock  

 dret 

 (1) (2) (3) (4) 

Intercept 
-0.001 

(-0.30) 

-0.002 

(-0.77) 

-0.011 

(-1.41) 

-0.020** 

(-2.49) 

ivollr  
 

-0.002 

(-1.47) 

-0.004** 

(-2.52) 

ivolsr  
 

-0.010*** 

(-4.02) 

-0.009*** 

(-3.51) 

sysvol  
 

-0.043 
(-0.53) 

-0.032 
(-0.40) 

illiqm 
-0.459*** 

(-6.48)  
-0.412*** 

(-5.36)  

illiqu  
-0.075 

(-1.20)  

-0.071 

(-1.26) 
Avg Adj R2 0.0035 0.0024 0.0184 0.0178 
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Table 4. What explains the effect of short-run idiosyncratic volatility 

In this table, Panel A reports results of Fama–MacBeth regressions of delta-hedged option returns, 

dret, on long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, controlling 
for systematic volatility, sysvol, realized jumps measured by excess kurtosis of daily stock returns 

in the last month, kur. Regressions results in Panel B show the positive relation between realized 

jumps in a month, kur, and the number of news events in that month: fnews, fnewsdi, and fnewsdiu 
referring to all corporate news events, discretionary disclosure events and unusual discretionary 

disclosure events, respectively. Panel C shows the positive relation between short-run idiosyncratic 
volatility and the number of firm news events. Comparing with the effect of news arrival on limits 

of arbitrage, Panel D shows the negative relation between illiquidity, illiq, and the number of news 

events. To adjust for serial correlation, robust Newey and West (1987) t-statistics with a lag of 6 
months are reported in parentheses. ***, **, * indicate statistical significance at 1%, 5% and 10% 

levels, respectively. 

Panel A. Stock jumps explanation 

 dret 

 (1) 

Intercept 
-0.021*** 

(-2.60) 

ivollr 
-0.005*** 

(-2.60) 

ivolsr 
-0.004 
(-1.59) 

sysvol 
-0.039 
(-0.55) 

kur 
-0.001*** 

(-4.91) 
Avg Adj R2 0.0158 

Panel B. Firm news events and realized jumps 

 kur 

 (1) (2) (3) 

Intercept 
0.304*** 
(12.44) 

0.343*** 
(13.09) 

0.415*** 
(11.99) 

fnews 
0.030*** 

(4.28)  
 

fnewsdi 
 

0.023*** 

(3.40) 
 

fnewsdiu 
 

 
0.086*** 

(14.20) 
Avg Adj R2 0.0045 0.0026 0.0106 
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Panel C. Firm news events and short-run idiosyncratic volatility 

 ivolsr 

 (1) (2) (3) 

Intercept 
-0.018*** 

(-5.75) 

-0.013*** 

(-4.52) 

-0.001 

(-0.30) 

fnews 
0.005*** 
(17.14)  

 

fnewsdi 
 

0.004*** 
(14.95) 

 

fnewsdiu 
 

 
0.010*** 

(16.35) 
Avg Adj R2 0.0140 0.0085 0.0261 

Panel D. Firm news events and illiquidity: a comparison 

 log(illiq) 

 (1) (2) (3) 

Intercept 
-20.234*** 
(-289.63) 

-20.252*** 
(-276.90) 

-20.862*** 
(-147.04) 

fnews 
-0.237*** 
(-11.56)  

 

fnewsdi  
-0.249*** 

(-12.05) 
 

fnewsdiu   
-0.010** 

(-2.04) 
Avg Adj R2 0.1150 0.1217 0.0111 
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Table 5. The influence of option transaction costs 

This table studies the pricing effects of idiosyncratic volatility and its two components in either 

the high-cost subsample, the low-cost subsample or the full sample. The low-cost (high-cost) 
subsample consists of options with option bid-ask spread below (above) the 25th percentile in each 

month. Panel A reports results of Fama–MacBeth regressions of delta-hedged option returns, dret, 

on long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, ivol, controlling 
for systematic volatility, sysvol, for each subsample. Panel B reports the equal-weighted average 

option return differentials based on sorting ivol, ivollr, or ivolsr, into quintiles for each subsample. 
Both panels A and B rely on option prices calculated as the option bid-ask midpoint price. Panel 

C reports the returns after transaction cost of the option strategies that buy the bottom quintile and 

sell the top quintile of options sorted on ivol, ivollr, or ivolsr. To account for transaction costs, we 
follow prior literature to assume the ratio of effective option bid–ask spread to quoted spread to be 

20%. Robust Newey and West (1987) t-statistics with a lag of 6 months are reported in parentheses. 
***, **, * indicate statistical significance at 1%, 5% and 10% levels, respectively. 

Panel A. Regressions of option returns in high-cost and low-cost subsamples 

 dret (High-cost options)  dret (Low-cost options) 

 (1) (2)  (3) (4) 

Intercept 
-0.031*** 

(-4.97) 
-0.030*** 

(-3.67)  
-0.009 
(-0.99) 

0.000 
(0.02) 

log(ivol) 
-0.006*** 

(-5.22)   

-0.003* 

(-1.74) 
 

ivollr  
-0.006*** 

(-3.53)   

-0.001 

(-0.47) 

ivolsr  
-0.008*** 

(-3.01)   

-0.015*** 

(-4.32) 

sysvol 
-0.070 
(-0.88) 

-0.055 
(-0.71)  

-0.067 
(-0.63) 

-0.087 
(-0.82) 

Avg Adj R2 0.0121 0.0141  0.0222 0.0249 

Panel B. Portfolio sorting analysis in high-cost and low-cost subsamples 

 dret (High-cost options)  dret (Low-cost options) 

 (1) - Low (5) - High (5) - (1) (t-value)  (1) - Low (5) - High (5) - (1) (t-value) 

ivol -0.0012 -0.0122 -0.0110*** (-4.59)  0.0038 -0.0026 -0.0064** (-2.14) 

ivollr -0.0013 -0.0114 -0.0100*** (-3.78)  0.0037 -0.0011 -0.0048 (-1.45) 
ivolsr -0.0028 -0.0089 -0.0062*** (-6.47)  0.0042 -0.0020 -0.0062*** (-4.54) 

Panel C. Returns to option trading strategies after transaction costs 

 Option strategy returns after transaction costs 

 (1) - Full sample (2) - High-cost subsample (3) - Low-cost subsample 

ivol 0.0025 (1.10) 0.0024 (1.08) 0.0048 (1.62) 
ivollr 0.0017 (0.70) 0.0012 (0.48) 0.0032 (0.97) 

ivolsr -0.0002 (0.00) -0.0020* (-1.78) 0.0046*** (3.42) 
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Table 6. Explanation for the relation between idiosyncratic volatility and option returns  

This table reports results of Fama–MacBeth regressions of delta-hedged option returns, dret, on 

long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, ivol, controlling for 
systematic volatility, sysvol, Amihud illiquidity measure, illiq, and realized jumps, kur. Column 

(1) shows that controlling for both mechanisms, limits of arbitrage and realized jumps, can 

eliminate the pricing of idiosyncratic volatility, while columns (2) and (3) show that controlling 
for only one of the two mechanisms cannot eliminate the pricing of idiosyncratic volatility. To 

adjust for serial correlation, robust Newey and West (1987) t-statistics with a lag of 6 months are 
reported in parentheses. ***, **, * indicate statistical significance at 1%, 5% and 10% levels, 

respectively.   

 dret 

 (1) (2) (3) 

Intercept 
-0.056*** 

(-5.87) 
-0.061*** 

(-6.67) 
-0.021*** 

(-3.12) 

log(ivol) 
-0.001 

(-0.55) 

-0.003** 

(-2.24) 

-0.004*** 

(-3.29) 

sysvol 
-0.058 

(-0.80) 

-0.061 

(-0.83) 

-0.056 

(-0.78) 

log(illiq) 
-0.002*** 

(-5.84) 

-0.002*** 

(-5.50) 
 

kur 
-0.001*** 

(-5.38) 
 

-0.001*** 
(-4.11) 

Avg Adj R2 0.0178 0.0165 0.0142 
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Table 7. Up and down markets  

This table reports results of Fama–MacBeth regressions, for the up-market and down-market 

subsamples, of delta-hedged option returns, dret, on long-run, ivollr, and short-run, ivolsr, 
components of idiosyncratic volatility, controlling for systematic volatility, sysvol, Amihud 

illiquidity measure, illiq, realized jumps, kur. To adjust for serial correlation, robust Newey and 

West (1987) t-statistics are reported in parentheses. ***, **, * indicate statistical significance at 
1%, 5% and 10% levels, respectively.  

 dret (Up market subsample)  dret (Down market subsample) 

 (1) (2) (3)  (4) (5) (6) 

Intercept 
-0.029*** 

(-3.35) 

-0.065*** 

(-5.76) 

-0.026*** 

(-2.87) 
 

-0.011 

(-0.56) 

-0.035 

(-1.53) 

-0.008 

(-0.39) 

ivollr 
-0.007*** 

(-3.32) 

-0.002 

(-0.78) 

-0.006*** 

(-2.84) 
 

-0.001 

(-0.40) 

0.002 

(0.60) 

-0.001 

(-0.21) 

ivolsr 
-0.008*** 

(-2.65) 

-0.011*** 

(-3.37) 

-0.003 

(-0.92) 
 

-0.013** 

(-2.23) 

-0.016*** 

(-2.59) 

-0.008 

(-1.22) 

sysvol 
-0.111 
(-1.45) 

-0.149* 
(-1.93) 

-0.100 
(-1.29) 

 
0.140 
(0.95) 

0.167 
(1.15) 

0.144 
(0.97) 

log(illiq)  
-0.003*** 

(-6.36) 
   

-0.002* 
(-1.95) 

 

kur   
-0.001*** 

(-4.61) 
   

-0.001* 

(-1.90) 
Avg Adj R2 0.0120 0.0153 0.0126  0.0241 0.0283 0.0253 
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Table 8. Option demand analysis 

This table reports the results on Fama–MacBeth regressions of the end-user net option demand, 

demand, calculated as the difference between customer buy volume and sell volume (see appendix 
Table IA1 for variable details), on Amihud illiquidity, illiq, or realized jumps measured by excess 

kurtosis of daily returns in the last month, kur. Results are reported for full sample, up-market 

subsample and down-market subsample. To adjust for serial correlation, robust Newey and West 
(1987) t-statistics are reported in parentheses. ***, **, * indicate statistical significance at 1%, 5% 

and 10% levels, respectively. 

 demand (Full sample)  
demand (Up market 

subsample) 
 

demand (Down 

market subsample) 

 (1) (2) (3)  (4)  (5) 

Intercept 
91.220** 

(2.50) 

-5.450** 

(-2.49) 

83.332** 

(2.30) 
 

95.123** 

(2.05) 
 

42.997 

(0.68) 

log(illiq) 
4.224** 

(2.51) 
 

3.923** 

(2.31) 
 

4.422** 

(2.10) 
 

2.22 

(0.73) 

kur  
1.940*** 

(4.70) 
1.905*** 

(5.40) 
 

1.905*** 
(4.49) 

 
1.905* 
(1.67) 

Avg Adj R2 0.0048 0.0040 0.0089  0.0101  0.0048 
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Table 9. Decomposition of the economic mechanisms into intercept, common and residual 

components 

In this table, each of the two economic mechanisms is decomposed into intercept, common 
component (the component comoving with the market average) and residual component (the 

component unrelated to the market average). The following Fama–MacBeth regressions examine 

the explaining powers of illiquidity intercept, illiqintercept, common illiquidity, illiqcom, residual 
illiquidity, illiqres, stock jumps intercept, kurintercept, common stock jumps, kurcom, residual 

stock jumps, kurres in the relations between long-run, ivollr, and short-run, ivolsr, idiosyncratic 
volatilities and delta-hedged option returns, dret. To adjust for serial correlation, robust Newey 

and West (1987) t-statistics with a lag of 6 months are reported in parentheses. ***, **, * indicate 

statistical significance at 1%, 5% and 10% levels, respectively. 

 dret 

 (1) (2) (3) (4) 

Intercept 
-0.010 

(-1.31) 

-0.024*** 

(-3.00) 

-0.024*** 

(-2.78) 

-0.024*** 

(-2.85) 

ivollr 
-0.002 
(-1.41) 

-0.005*** 
(-3.04) 

-0.005*** 
(-2.91) 

-0.005*** 
(-2.89) 

ivolsr 
-0.011*** 

(-4.36) 
-0.010*** 

(-3.72) 
-0.009*** 

(-3.17) 
-0.004 
(-1.54) 

sysvol 
-0.092 

(-1.32) 

-0.047 

(-0.67) 

-0.046 

(-0.70) 

-0.031 

(-0.46) 

illiqintercept 
-0.435*** 

(-5.87) 

-0.045** 

(-1.97) 
  

illiqcom 
-0.340*** 

(-5.74) 
   

illiqres  
-0.125*** 

(-3.63) 
  

kurintercept   
-0.001 
(-0.34) 

-0.000 
(-0.28) 

kurcom   
0.007 

(0.83) 
 

kurres    
-0.001*** 

(-4.68) 
Avg Adj R2 0.0195 0.0185 0.0195 0.0179 
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Table 10. Common and residual components of illiquidity  

This table shows the relations between the two components (common and residual) of illiquidity 

and the components (intercept, common and residual) of idiosyncratic volatility. In particular, this 
table reports the results of Fama–MacBeth regressions of common illiquidity, illiqcom, or residual 

illiquidity, illiqres, on idiosyncratic volatility intercept (ivolintercept), common (ivolcom) and 

residual (ivolres) idiosyncratic volatility. Further, the loading of individual stock illiquidity on the 
aggregate illiquidity, betacilliq, and the loading of firm idiosyncratic volatility on the common 

idiosyncratic volatility, betacivol, are each estimated using the 60-month rolling windows, and a 
positive relation is found between the two loadings. To adjust for serial correlation, robust Newey 

and West (1987) t-statistics with a lag of 6 months are reported in parentheses. ***, **, * indicate 

statistical significance at 1%, 5% and 10% levels, respectively. 

 illiqcom  illiqres  betacilliq  

 (1)  (2)  (3) 

Intercept 
-0.007*** 

(-7.45) 
 

0.000 

(-0.96) 
 

0.494*** 

(9.43) 

ivolintercept 
0.031*** 
(11.88) 

 
0.001 
(1.24) 

  

ivolcom 
0.035*** 
(11.32) 

 
0.001 
(1.47) 

  

ivolres 
0.001 

(1.19) 
 

0.003*** 

(6.89) 
  

betacivol     
0.392*** 

(9.10) 
Avg Adj R2 0.0657  0.0148  0.0112 
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Table 11. Common and residual components of stock jumps  

This table examines how the common, kurcom, and residual, kurres, components of stock jumps 

are related to the arrival of corporate news. In the following Fama–MacBeth regressions, each of 
the stock jumps component is regressed on the number of firm news events, fnews, discretionary 

disclosure events, fnewsdi, and unusual discretionary disclosure events, fnewsdiu. To adjust for 

serial correlation, robust Newey and West (1987) t-statistics with a lag of 6 months are reported in 
parentheses. ***, **, * indicate statistical significance at 1%, 5% and 10% levels, respectively. 

 kurres  kurcom 

 (1) (2) (3)  (4) (5) (6) 

Intercept 
-0.142*** 

(-9.86) 

-0.104*** 

(-9.82) 

-0.002 

(-0.37) 
 

0.390*** 

(9.11) 

0.392*** 

(9.15) 

0.428*** 

(12.80) 

fnews 
0.040*** 

(10.33) 
   

-0.043 

(-1.04) 
  

fnewsdi  
0.034*** 

(9.81) 
   

-0.044 

(-1.04) 
 

fnewsdiu   
0.083*** 
(14.88) 

   
0.003** 
(2.18) 

Avg Adj R2 0.0062 0.0039 0.0104  0.0015 0.0010 0.0036 
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Table 12. Other possible explanations 

This table reports results of Fama–MacBeth regressions of delta-hedged option returns, dret, on 

long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, controlling for 
systematic volatility, sysvol, return in the last month, rev, cumulative stock return from the prior 

second through 12th month, mom, volatility risk premium, vrp, risk-neutral skewness adjusted for 

firm-size, skew, average of the five highest daily stock returns in the last month, max5, skewness 
of daily stock returns in the last month, sskew. To adjust for serial correlation, robust Newey and 

West (1987) t-statistics with a lag of 6 months are reported in parentheses. ***, **, * indicate 
statistical significance at 1%, 5% and 10% levels, respectively. 

 dret 

 (1) (2) (3) (4) (5) 

Intercept 
-0.028*** 

(-3.65) 

-0.017** 

(-2.34) 

-0.021** 

(-2.17) 

-0.019** 

(-2.32) 

-0.025*** 

(-3.24) 

ivollr 
-0.006*** 

(-3.84) 

-0.005*** 

(-3.47) 

-0.005** 

(-2.55) 

-0.004*** 

(-2.64) 

-0.005*** 

(-3.31) 

ivolsr 
-0.008*** 

(-3.41) 
-0.051*** 
(-11.76) 

-0.014*** 
(-3.77) 

-0.009*** 
(-2.80) 

-0.010*** 
(-3.56) 

sysvol 
-0.128* 
(-1.74) 

-0.755*** 
(-8.18) 

0.038 
(0.34) 

0.010 
(0.13) 

-0.047 
(-0.66) 

rev 
0.001 

(0.13) 
    

mom  
0.001 

(0.36) 
    

vrp  
0.061*** 

(14.56) 
   

skew   
-0.001** 
(-2.09) 

  

max5    
-0.063 
(-1.47) 

 

sskew     
0.000 

(0.75) 
Avg Adj R2 0.0223 0.0248 0.0205 0.0168 0.0154 
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Table 13. Growth option explanation 

This table reports results of Fama–MacBeth regressions of delta-hedged option returns, dret, on 

long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, controlling for 
systematic volatility, sysvol, market-to-book ratio, mb, Tobin’s Q ratio, tobinq, R&D expenditure 

scaled by total assets, rd. To adjust for serial correlation, robust Newey and West (1987) t-statistics 

with a lag of 6 months are reported in parentheses. ***, **, * indicate statistical significance at 
1%, 5% and 10% levels, respectively. 

 dret 

 (1) (2) (3) 

Intercept 
-0.035*** 

(-4.61) 

-0.035*** 

(-4.20) 

-0.026*** 

(-2.99) 

ivollr 
-0.008*** 

(-5.18) 

-0.008*** 

(-4.56) 

-0.006*** 

(-3.22) 

ivolsr 
-0.009*** 

(-3.40) 

-0.009*** 

(-3.26) 

-0.013*** 

(-3.37) 

sysvol 
-0.079 
(-1.16) 

-0.060 
(-0.86) 

-0.128* 
(-1.68) 

log(mb) 
0.001 
(0.79)   

tobinq  
0.000 

(0.21)  

rd  
 

-0.089** 

(-2.44) 
Avg Adj R2 0.0208 0.0192 0.0204 
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Table 14. Insights for stock returns  

This table reports results of Fama–MacBeth regressions of stock returns, sret, on long-run, ivollr, 

and short-run, ivolsr, components of idiosyncratic volatility, ivol, controlling for recent month’s 
Amihud illiquidity, illiq, and realized jumps measured by excess kurtosis of daily stock returns in 

the last month, kur.  To adjust for serial correlation, robust Newey and West (1987) t-statistics 

with a lag of 6 months are reported in parentheses. ***, **, * indicate statistical significance at 
1%, 5% and 10% levels, respectively. 

 sret 

 (1) (2) (3) 

Intercept 
-0.026*** 

(-3.23) 

-0.024*** 

(-3.17) 

-0.027*** 

(-3.32) 

ivollr 
-0.007*** 

(-3.66) 

-0.007*** 

(-3.47) 

-0.007*** 

(-3.74) 

ivolsr 
0.004** 

(2.56) 

0.005*** 

(2.59) 

0.002 

(1.53) 

log(illiq)  
0.000 
(0.55)  

kur  
 

0.000*** 
(3.66) 

Avg Adj R2 0.0375 0.0433 0.0394 
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INTERNET APPENDIXES 

Table IA1. Variable definitions 

This table provides definition of the variables used in our study. 

 Definition 

dret Delta-hedged option return is return to a portfolio consisting of a long position of 

one call option (with price C) combined with a short position in delta (Δ) shares of 

underlying equity (with price S) and is calculated as portfolio gain until maturity 

scaled by (∆*S-C) (Cao & Han, 2013). 
ivol Idiosyncratic volatility is measured as the standard deviation of the residuals in the 

regression of daily excess stock return in each month on the three Fama and French 

factors (Liu, 2022). 
ivollr Long-run component of idiosyncratic volatility is estimated by using Kalman filter 

with the specifications in Liu (2022). 
ivolsr Short-run component of idiosyncratic volatility is estimated by using Kalman filter 

with the specifications in Liu (2022). 
sysvol Systematic volatility is calculated as √𝑡𝑣𝑜𝑙2 − 𝑖𝑣𝑜𝑙2, where tvol is the monthly 

total volatility and ivol is the idiosyncratic volatility of stock returns (Cao & Han, 
2013). 

ivollr12 Long-run idiosyncratic volatility estimated 12 months ago. 

ivolsr12 Short-run idiosyncratic volatility estimated 12 months ago. 

ivollr24 Long-run idiosyncratic volatility estimated 24 months ago. 

ivolsr24 Short-run idiosyncratic volatility estimated 24 months ago. 

size Market capitalization is stock price multiplied by number of shares outstanding 

(Cao & Han, 2013). 
price Stock close price (Cao & Han, 2013). 
illiq Amihud illiquidity of each month is calculated as average of the ratio of absolute 

daily return to daily dollar trading volume (Amihud, 2002). 
kur Realized stock jumps measured by the excess kurtosis of daily stock return in the 

last month (Bali et al., 2023). 

fnews Number of corporate news events in a month (Edmans et al., 2018). 

fnewsdi Number of corporate discretionary disclosure events in a month (Edmans et al., 
2018). 

fnewsdiu Unusual discretionary disclosure measured as the number of discretionary 
disclosure events in a month in excess of its trailing 4-month average (Bali et al., 

2018).    

demand End-user net option demand computed from CBOE database. The CBOE database 
reports trading made by two groups, “customers” and “firms”, the former of which 
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are retail investors and institutional investors, while the latter of which often act as 
market makers. Our calculation is based on the “customer” group. There are four 

types of order: buy to open a new long position (OB), buy to close an existing short 
position (CB), sell to open a new short position (OS), and sell to close an existing 

long position (CS); net demand is computed as the difference between buy volumes 

(OB+CB) and sell volumes (OS+CS) for all strike prices on the option portfolio 
formation date. 

rev Stock return in the previous month (Cao & Han, 2013). 

mom Cumulative stock return from the prior second through 12th month (Cao & Han, 
2013). 

vrp Volatility risk premium is computed as standard deviation of realized return in a 

month using daily data minus option implied volatility (Cao & Han, 2013). 
skew Option implied risk-neutral skewness is extracted from OTM call and put options 

using the method of Bakshi et al. (2003). 
max5 Average of the five highest daily stock returns in a month (Zhan et al., 2022). 
mb Market-to-book ratio is computed as the ratio of total assets minus total common 

equity plus market capitalization divided by total assets (Cao et al., 2008). 

tobinq Tobin’s Q is computed as the ratio of market capitalization plus preferred stock 
plus current liabilities minus current asset plus long-term debt divided by total 

assets (Cao et al., 2008). 
rd R&D expense scaled by total assets (Albuquerque, 2014). 
cfv Cash flow variance is computed as the variance of the cash flow to market 

capitalization ratio over the 60-month window (Zhan et al., 2022). 

ch Cash-to-assets ratio is calculated as corporate cash holdings divided by total assets 
(Zhan et al., 2022). 

disp Earnings forecast dispersion is the standard deviation divided by absolute value of 
the mean of annual EPS forecasts (Zhan et al., 2022). 

issue1y Number of new shares issued within one year (Zhan et al., 2022). 

issue5y Number of new shares issued within five years (Zhan et al., 2022). 

pm Profit margin is earnings before interest and tax divided by revenues (Zhan et al., 

2022). 
profit Profitability is income before extraordinary items divided by book equity (Zhan et 

al., 2022). 
tef Total external financing is net share issuance minus cash dividends plus net debt 

issuance, scaled by total assets (Zhan et al., 2022). 

zs Z-score is defined by the formula initiated by Dichev (1998). Particularly, Z-score 
equals 1.2*working capital divided by total assets + 1.4*retained earnings divided 

by total assets + 3.3*EBIT divided by total assets + 0.6*market value of equity 
divided by book value of total liabilities + revenues divided by total assets (Zhan 

et al., 2022). 
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Table IA2. Control for firm characteristics in Zhan et al. (2022)  

This table reports results of Fama–MacBeth regressions of delta-hedged option returns, dret, on long-run, ivollr, and short-run, ivolsr, 

components of idiosyncratic volatility, controlling for systematic volatility, sysvol, cash flow variance, cfv, cash-to-assets ratio, ch, 
earnings forecast dispersion, disp, one-year and five-year new share issues, issue1y and issue5y, profit margin, pm, profitability, profit, 

total external financing, tef, z-score, zs. To adjust for serial correlation, robust Newey and West (1987) t-statistics are reported in 

parentheses. ***, **, * indicate statistical significance at 1%, 5% and 10% levels, respectively. 

 dret 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Intercept 
-0.042*** 

(-5.09) 

-0.021*** 

(-2.61) 

-0.019** 

(-2.43) 

-0.027*** 

(-3.22) 

-0.031*** 

(-3.82) 

-0.025*** 

(-3.3) 

0.028*** 

(-3.57) 

-0.035*** 

(-5.00) 

-0.034*** 

(-4.15) 

ivollr 
-0.009*** 

(-5.04) 
-0.005*** 

(-3.21) 
-0.004** 
(-2.42) 

-0.006*** 
(-3.35) 

-0.007*** 
(-4.05) 

-0.005*** 
(-3.38) 

-0.006*** 
(-3.78) 

-0.008*** 
(-5.54) 

-0.007*** 
(-4.39) 

ivolsr 
-0.009*** 

(-3.16) 
-0.011*** 

(-4.48) 
-0.011*** 

(-4.4) 
-0.009*** 

(-3.41) 
-0.008*** 

(-3.15) 
-0.012*** 

(-4.33) 
-0.011*** 

(-3.81) 
-0.011*** 

(-3.69) 
-0.009*** 

(-3.39) 

sysvol 
0.037 

(0.43) 

-0.034 

(-0.47) 

-0.049 

(-0.64) 

-0.037 

(-0.52) 

-0.019 

(-0.24) 

0.005 

(0.06) 

-0.031 

(-0.42) 

-0.012 

(-0.17) 

0.037 

(0.48) 

cfv 
-0.002* 

(-1.95)  
       

ch  
-0.011** 

(-2.21) 
       

disp  
 

-0.001 
(-0.97) 

      

issue1y  
 

 
-0.000*** 

(-3.55) 
     

issue5y  
 

  
-0.000*** 

(-3.08) 
    

pm  
 

   
0.001*** 

(4.98) 
   

profit  
 

    
0.008*** 

(2.76) 
  

tef  
 

     
0.007 
(1.59) 
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zs  
 

      
-0.000 
(-1.4) 

Avg Adj R2 0.0183 0.0201 0.0161 0.0151 0.0158 0.0172 0.0165 0.0183 0.0162 
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Table IA3. Volatility forecast with long-run and short-run idiosyncratic volatility components  

This table reports the results of Fama–MacBeth regressions of next month’s total volatility, 

leadtvol, on long-run, ivollr, and short-run, ivolsr, components of idiosyncratic volatility, ivol, and 
systematic volatility, sysvol. To adjust for serial correlation, robust Newey and West (1987) t-

statistics are reported in parentheses. ***, **, * indicate statistical significance at 1%, 5% and 10% 

levels, respectively. 

 leadtvol 

 (1) (2) (3) (4) 

Intercept 
0.032*** 

(30.4) 

0.083*** 

(25.19) 

0.014*** 

(20.60) 

0.087*** 

(26.21) 

log(ivol) 
0.011*** 
(17.37)    

ivollr  
0.015*** 
(20.33)  

0.016*** 
(21.12) 

ivolsr  
 

-0.008*** 

(-19.11) 

-0.015*** 

(-30.36) 

sysvol 
0.384*** 

(24.44) 

0.273*** 

(16.99) 

0.818*** 

(60.56) 

0.294*** 

(21.25) 
Avg Adj R2 0.3067 0.3591 0.2157 0.3852 
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Table IA4. Alternative portfolio holding period robustness check 

In this table, we use alternative measure of delta-hedged option returns based on portfolios that are 

formed at the beginning of each month and mature on option expiration day of that month (rather 
than of next month). We report the results of Fama–MacBeth regressions of this alternative 

measure of delta-hedged option returns, dret, on idiosyncratic volatility, ivol, controlling for 

systematic volatility, sysvol, Amihud illiquidity measure, illiq, realized stock jumps measured by 
the excess kurtosis of daily stock return in the last month, kur. To adjust for serial correlation, 

robust Newey and West (1987) t-statistics are reported in parentheses. ***, **, * indicate statistical 
significance at 1%, 5% and 10% levels, respectively. 

 dret 

 (1) (2 (3) (4) 

Intercept 
-0.019*** 

(-5.20) 

-0.047*** 

(-7.81) 

-0.013*** 

(-3.17) 

-0.043*** 

(-6.87) 

log(ivol) 
-0.004*** 

(-5.00) 

-0.001* 

(-1.85) 

-0.003*** 

(-2.81) 

0.001 

(0.65) 

sysvol 
0.086 
(1.64) 

0.092* 
(1.71) 

0.078 
(1.54) 

0.088* 
(1.70) 

log(illiq)  
-0.002*** 

(-6.93) 
 

-0.002*** 
(-7.48) 

kur   
-0.001*** 

(-4.76) 

-0.001*** 

(-6.20) 
Avg Adj R2 0.0108 0.0149 0.0123 0.0167 
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Table IA5. Delta-hedged put option returns 

This table reports the results of Fama–MacBeth regressions of delta-hedged put option returns, 

dretp, on idiosyncratic volatility, ivol, controlling for systematic volatility, sysvol, Amihud 
illiquidity measure, illiq, realized stock jumps measured by the excess kurtosis of daily stock return 

in the last month, kur. To adjust for serial correlation, robust Newey and West (1987) t-statistics 

are reported in parentheses. ***, **, * indicate statistical significance at 1%, 5% and 10% levels, 
respectively. 

 dretp 

 (1) (2) (3) (4) 

Intercept 
-0.02*** 

(-3.85) 

-0.045*** 

(-6.13) 

-0.015** 

(-2.57) 

-0.041*** 

(-5.34) 

log(ivol) 
-0.005*** 

(-4.70) 

-0.003** 

(-2.32) 

-0.004*** 

(-3.00) 

-0.001 

(-0.82) 

sysvol 
0.002 

(0.02) 

-0.002 

(-0.03) 

0.003 

(0.04) 

0.000 

(0.01) 

log(illiq)  
-0.002*** 

(-4.66) 
 

-0.002*** 
(-4.94) 

kur   
-0.001*** 

(-4.13) 
-0.001*** 

(-4.95) 

Avg Adj R2 0.0118 0.015 0.0128 0.0161 
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Table IA6. Common risk factors and return spreads based on idiosyncratic volatility components 

This table reports results of time series regressions of return spreads between high and low 

volatility groups sorted by either idiosyncratic volatility, ivol, long-run idiosyncratic volatility, 
ivollr, or short-run idiosyncratic volatility, ivolsr, on the change of VIX index, Δvix, and Fama and 

French (2015) common factors, including market risk premium, mrp, small minus big, smb, high 

minus low, hml, conservative minus aggressive, cma, robust minus weak, rmw, factors. To adjust 
for serial correlation, robust Newey and West (1987) t-statistics are reported in parentheses. ***, 

**, * indicate statistical significance at 1%, 5% and 10% levels, respectively. 

 ivol spread  ivollr spread  ivolsr spread 

 (1)  (2)  (3) 

Alpha 
-0.0088*** 

(-3.49) 
 

-0.0081*** 
(-3.00) 

 
-0.0063*** 

(-6.03) 

mrp 
-0.0006 
(-1.05) 

 
-0.0006 
(-0.87) 

 
-0.0004 
(-0.81) 

smb 
0.0022*** 

(2.77) 
 

0.0025*** 

(2.81) 
 

0.0004 

(1.24) 

hml 
-0.0004 

(-0.30) 
 

-0.0005 

(-0.38) 
 

0.0008 

(1.37) 

cma 
-0.0008 

(-0.75) 
 

-0.0011 

(-0.91) 
 

0.0007 

(1.33) 

rmw 
-0.0015 
(-0.84) 

 
-0.0016 
(-0.75) 

 
-0.0011 
(-1.33) 

Δvix 
0.0008 
(1.46) 

 
0.0011* 
(1.94) 

 
-0.0008 
(-1.55) 

Adj R2 0.0372  0.0449  0.0778 

 

 


