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Abstract 

Skewness, the third moment of the return distribution, has been demonstrated to be 

an effective factor in explaining individual asset expected returns, along with mean and 

variance. In this study, we propose a semi-coskewness model to predict future cross-

sectional return variations in the US stock market. Inspired by Bollerslev, Patton, and 

Quaedvlieg’s (2022) realised semibeta model, the semi-coskewness model decomposes 

the coskewness into four components based on the signs of individual stock returns and 

market returns. This four-component decomposition allows us to examine the 

relationship between coskewness and asset return under various market conditions. Our 

empirical evidence demonstrates the consistent predictive power of the semi-

coskewness model. Furthermore, the findings of our study indicate that investors 

demonstrate an asymmetric response to coskewness subject to market conditions, 

thereby aligning with the behavioural finance theories. 
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1 Introduction 

The Capital Asset Pricing Model (CAPM) is based on the assumption that rational 

investors make investment decisions under mean-variance optimisation, indicating that 

investors seek to minimise variance, irrespective of its direction (Lintner, 1965; Sharpe, 

1964). Alternative studies, including Roy’s safety-first criterion (1952) and 

Markowitz’s mean-semivariance theory (1959), demonstrate that investors exhibit an 

asymmetric response to upside and downside variance. These studies constitute the 

foundation of subsequent research in the field of downside risk. Beyond capturing 

investors’ asymmetric risk preference effectively, the mean-semivariance framework 

also effectually models non-normal asset returns. 

The competing theories on mean-variance and mean-semivariance provide 

divergent responses to the question: How do investors respond to the risk they face in 

making a particular investment? Inspired by the recent studies on downside risk and the 

importance of higher moments measurements in addressing this issue, we propose and 

test a semi-coskewness model, which is a four-component decomposition of 

coskewness. We provide empirical evidence on the predictive power of individual asset 

semi-coskewnesses with respect to its future cross-sectional returns. Furthermore, 

comparisons are made between coskewness and downside and upside coskewness (a 

two-component decomposition) in the US stock market. The empirical results obtained 

reveal that investors exhibit asymmetric responses to coskewness, subject to market 

conditions, which cannot be explained by classical financial theory.  

Coskewness, otherwise known as systematic skewness, has proven to be an 
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effective risk factor for explaining the cross-sectional asset return variation, and it also 

serves as a supplementary factor to the beta in the CAPM, thereby forming a three-

moment CAPM (Dittmar, 2002; Harvey and Siddique, 2000; Kraus and Litzenberger, 

1976). Harvey and Siddique (2000) state: “We define coskewness as the component of 

an asset’s skewness related to the market portfolio’s skewness”. The underlying formula 

is similar to the CAPM beta measurement, with the substitution of 𝑟𝑚 (market return) 

for 𝑟𝑚
2   (squared market return) in the numerator of the equation2 . In essence, the 

coskewness measures how an individual asset reacts to extreme market movements, as 

the squared market return amplifies the market movement. The direction of market 

movement, whether it be an upside or downside trend, is irrelevant to the calculation of 

coskewness, as the squared market return will shroud the information in the direction 

of market movement. However, extant downside risk studies already suggest that 

investors exhibit asymmetric response to the direction of variance. Consequently, 

investors may also exhibit asymmetric response to the direction of coskewness. 

An asset exhibiting positive coskewness will result in the asset portfolio becoming 

more right skewed. Consequently, the portfolio is deemed to be less risky and requiring 

lower return, making the asset favourable to the investor, regardless of the market return 

being positive or negative. The expected utility theory provides an explanation for 

investors’ preference to the right skewed asset, as investors are rational and their 

decisions should maximise their utility, and irrelevant to market conditions. However, 

 
2 There are other methods of measuring coskewness, but we choose to follow Ang, Chen, and Xing 

(2006) and Bollerslev, Patton, and Quaedvlieg (2022). The construction is similar to the CAPM beta and 

more suitable for our study. CAPM beta can be seen as a measurement of how an individual asset 

contributes to the variance of the market portfolio, whereas coskewness measures how an individual asset 

contributes to the skewness of the market portfolio. 
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subsequent prospect theory (Kahneman and Tversky, 1979) and disposition effect 

(Shefrin and Statman, 1985) both suggest that investors’ cognitive biases affect their 

own decision making. As suggested by prospect theory, investors place greater weight 

on losses than on gains when making decisions. This suggests that assets with positive 

skewness are more attractive to investors in downward markets than in up ward markets, 

due to the loss aversion. 

Nevertheless, there is little empirical evidence regarding the divergent treatment of 

coskewness in upside and downside markets. To shed more light, this study aims to 

utilise the two-component and four-component coskewness decomposition models to 

fill the research gap. The concept of two-component and four-component coskewness 

decomposition is derived from corresponding downside risk studies that further 

decompose the CAPM beta. The two-component coskewness decomposition is similar 

to the downside and upside beta decomposition by Ang, Chen, and Xing (henceforth 

ACX) (2006), while the four-component decomposition is similar to the realised 

semibeta decomposition by Bollerslev, Patton, and Quaedvlieg (henceforth BPQ) 

(2022). 

The two-component method decomposes the coskewness into two components: the 

downside coskewness (CskN) and upside coskewness (CskP), depending on the sign of 

the market return. Specifically, CskN measures how an individual asset co-moves with 

the extreme market when the market return is negative, and CskP measures when the 

market returns are positive. The decomposition allows the information about market 

movement directions to be included in the coskewness measurements, which will assist 
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in examining whether an investor’s decision making is influenced by the market 

movements. 

Similarly, the CAPM beta can be decomposed into downside and upside betas, 

where the downside beta measures the downside risk. In the downside beta study 

conducted by ACX (2006), the authors provide empirical evidence that US investors 

receive a downside risk premium in the US stock market. However, subsequent studies 

have provided mixed results regarding the existence of such a downside risk premium 

in both US and international stock markets (Lettau, Maggiori, and Weber, 2014; Atilgan, 

Demirtas, and Gunaydin, 2020; Levi and Welch, 2021). With respect to the downside 

and upside coskewness, Galagedera and Brooks (2007) test the downside coskewness 

model in emerging markets and suggest that it outperforms the downside beta model. 

However, the performance of their model in the US market is still left unexplored. 

The four-component decomposition of coskewness further extends the two-

component decomposition so that is depends concurrently on the signs of both 

individual assets and market return. Allowing information about both individual asset 

and market movement will assist us in further examining investors’ reactions to 

coskewness under various scenarios. For example, the CskN could be further 

decomposed into two semi-coskewness—CskPN and CskNN, with the former 

capturing the association when the individual asset exhibits a positive return while the 

market return is negative, and the latter capturing association when both the individual 

asset and the market are negative returns. A similar logic underpins the decomposition 

of CskP into semi-coskewness CskPP and CskNP.  



6 

 

BPQ (2022) in their study of realised semibeta model, show that finer four-

component CAPM beta decomposition provides additional information to that provided 

by the two-component decomposition measurement. The authors demonstrate that a 

focus on the sign of market returns only, as in the downside beta model, fails to provide 

a complete picture of return information. Consequently, investors should focus on the 

signs of individual stock returns and market returns simultaneously. The results prove 

that, in comparison with the two-component decomposition of the CAPM beta 

(downside and upside betas), the four-component decomposition reveals more 

information that could be used to explain the risk–return relationship in the US stock 

market. 

In the empirical results presented by BPQ (2022), the coskewness factor still 

reports a significant coefficient when the four semibetas are included, suggesting that 

return information is not fully captured by the sophisticated semibeta model. The risk 

premiums for coskewness and downside risk come from different sources (Li, Li, and 

Su, 2024). To express the information conveyed by coskewness, this study tests whether 

the two- and four-component decompositions that have succeeded in decomposing 

CAPM beta will reveal investors’ asymmetric reactions to coskewness. We test the 

predictive power of downside and upside coskewness models and the semi-coskewness 

model, in the US stock market. 

To the best of our knowledge, this study is the first one to propose and examine the 

semi-coskewness model in the US stock market. The study makes several contributions, 

which are outlined below. Firstly, it fills the research gap in the extant asset pricing 
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literature by extending the higher return moments and downside risk studies. Secondly, 

it provides empirical evidence that investors have asymmetric responses to coskewness 

subject to the market movements. Thirdly, the results demonstrate that compared to 

other well-known risk factors, the semi-coskewness measurements have the advantage 

of using the basic return information but still achieve robust cross-sectional predictive 

power. Finally, while the present study is pioneering in the US stock markets, there is 

considerable potential for its application to international multi-asset-class markets. 

The remainder of the study is structured as follows. Section 2 provides a brief 

review of related skewness studies. Section 3 provides a detailed description of the US 

stock market data from the LSEG DataStream used in the study. Section 4 provides a 

detailed methodology for constructing various coskewness models and their 

independent variables. Section 5 presents the Fama-MacBeth regression results for the 

baseline regression and robustness tests. Section 6 concludes the study. 

 

2 A Brief review of related studies 

Asset skewness captures the asymmetry in the distribution of returns. Investors 

naturally prefer positive or right-skewed assets because they have a higher probability 

of positive payoffs. On the other hand, investors demand higher compensation to bear  

negative or left-skewed assets, as they are perceived to be riskier. Similar to the 

idiosyncratic risk and the systematic risk conveyed by asset, the skewness of individual 

assets can also be divided into two parts: idiosyncratic skewness and systematic 

skewness (or coskewness) (Conrad, Dittmar, and Ghysels, 2013; Langlois, 2020). The 
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idiosyncratic part measures the skewness of individual asset returns that cannot be 

diversified. 

In contrast with the idiosyncratic skewness, the systematic part of the skewness of 

individual assets measures the joint distribution of individual and market portfolio 

returns (Patton, 2004). The systematic skewness serves as the overarching basis for the 

three-moment CAPM. In addition, the three-moment CAPM relaxes the oversimplified 

assumptions that return follows a normal distribution and that the representative 

investor has a quadratic utility function. Smith (2007) further notes that a non-

increasing absolute risk aversion assumption is more appropriate for the three-moment 

CAPM. 

Early literature on skewness suggests that the idiosyncratic skewness of an asset 

can be fully diversified, thus, should not be rewarded. However, subsequent studies 

have shown that under diversification exists, and that idiosyncratic skewness can 

explain cross-sectional return variation (Barberis and Huang, 2008; Boyer, Mitton, and 

Vorkink, 2010; Conrad, Dittmar, and Ghysels, 2013; Langlois, 2020). The systematic 

skewness (or coskewness) measures how an individual asset contributes to the 

skewness of the market portfolio when added to the portfolio, should be rewarded. The 

greater the coskewness, the greater the increase in the skewness of individual assets to 

the portfolio as a whole, indicating lower risk and should be rewarded with a lower 

return (Harvey and Siddique, 2000; Yang, Zhou, and Wang, 2010). 

In addition to the risk-based explanation of skewness, several studies also explain 

skewness on the basis of behavioural finance. Barberis and Huang (2008) argue that the 
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preference for skewness is related to the investor’s gambling nature and misperceptions 

about the probability of future payoffs. Hur and Singh (2017) suggest that the role of 

skewness in asset pricing can be attributed to investor attention, prospect theory, and 

mental accounting. 

International evidence also supports the ability of skewness to explain cross-

sectional return variation across stock markets (Dong, Dai et al., 2022; Dong, Kot et al., 

2022). In addition, Galagedera and Brooks’ (2007) study downside coskewness models 

around 27 emerging stock markets. Coskewness is also studied on other asset classes, 

including bonds, mutual funds and futures markets (Back, Crane, and Crotty, 2018; 

Chiang, 2016; Christie-David and Chaudhry, 2001; Moreno and Rodríguez, 2009; Yang, 

Zhou, and Wang, 2010).  

Although the existing coskewness literature has covered many areas, the majority 

of studies still consider coskewness as a whole rather than as decomposed parts of the 

whole. Inspired by the downside risk studies, our study explores a revised asset pricing 

model that incorporates decomposed coskewness. 

 

3 Data 

We focus on the US stock market, which is the world’s leading financial market. 

To avoid survivorship bias, the sample includes stock data of the constituent stocks that 

are listed and delisted. They are retrieved from both the NYSE and NASDAQ from the 

LSEG DataStream between 1 January 1980 and 30 April 20243. 

 
3 A variety of data types are retrieved, but there are missing variables for the whole sample period. 
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We use the S&P 500 index as a proxy for the value-weighted market portfolio, and 

the risk-free rate is proxied by the US 10-year bond yield. The data include the total 

return index, closing price, trading volume, daily and monthly market capitalisation and 

market-to-book value. Following the extant literature, we first remove all stocks in a 

given month if the monthly stock prices are less than $5 in order to single out these 

thinly traded, illiquid stocks, as these stock prices may largely deviate from their 

intrinsic value (BPQ, 2022; Dittmar, 2002). Second, we follow Ince and Porter (2006) 

and Karolyi, Lee, and van Dijk (2012) to address any potential issues associated with 

data in DataStream. Firstly, we remove the total return index on a given day if its value 

is less than 0.1. Secondly, we treat the day as a non-trading day if more than 90% of the 

stocks on the exchange report a return of 0. After detailed screening, our sample 

contains 9,728 individual stocks with 1,012,017 monthly observations. March 1980 has 

the smallest observation with 194 firms, while March 2022 has the largest with 3,184 

firms. 

 

4 Methodology 

Kraus and Litzenberger (1976) and Harvey and Siddique (2000) show that 

coskewness, when combined with the CAPM beta, negatively predicts future cross-

sectional stock returns. Their results suggest that the usefulness of coskewness to 

further explain variations in cross-sectional returns. Our coskewness estimations align 

with those of ACX (2006) and BPQ (2022), which is conceptually similar to Harvey 

 

Consequently, the sample is restricted to the period between 1 January 1980 and 30 April 2024. 
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and Siddique’s (2000) conditional coskewness measurement. 

The realised variance framework directly measures the underlying moments and 

has the advantage of taking the variance as observed. We estimate the conditional 

coskewness of individual stocks on an overlapping 12-month basis. The current 

month’s coskewness is calculated from the daily realised returns of individual stocks 

and market portfolios over the past 12 months. It is imperative to note that a minimum 

of 125 valid daily stock and market returns over the 12-month period is required for the 

estimation process to be conducted. Since the coskewness estimate is directly related to 

the tail distribution of the market portfolio, we deliberately choose the 12-month 

window. The existing literature suggests different estimation intervals ranging from 

daily to 60 months (ACX, 2006; Amaya et al., 2015; Dong, Kot et al., 2022). The high-

frequency interval measurement captures the time-varying nature of coskewness, but at 

the cost of fewer observations of the tail market portfolio distribution. Conversely, the 

low-frequency measure tends to sacrifice the time-varying nature of coskewness. The 

choice of a 12-month interval strikes a balance between capturing the time-varying 

nature of coskewness and sufficient tail observations, and has also been used in the 

downside beta and semibeta estimations in prior studies (ACX, 2006; BPQ, 2022).  

The coskewness measure is as follows: 

𝐶𝑠𝑘𝑖,𝑡 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑−�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑−�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

     (1) 

where 𝐶𝑠𝑘𝑖,𝑡  denotes the coskewness for individual stock 𝑖  in month 𝑡 , 𝑟𝑖,𝑡−𝑗,𝑑 

denotes the daily log return (measured as the difference between the natural logarithm 
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of two consecutive daily total return index values) of stock 𝑖 on the 𝑑𝑡ℎ trading day 

of month 𝑡 − 𝑗; 𝑡 − 𝑗 denotes the 12 months rolling window starting from the 𝑡 − 11 

month; 𝑁𝑖,𝑡 denotes the number of trading days in the past 12 months for stock 𝑖 in 

month 𝑡; 𝐷𝑖,𝑡−𝑗 denotes the number of trading days of stock 𝑖 in month 𝑡 − 𝑗; and 

𝑟𝑚,𝑡−𝑗,𝑑 denotes the daily log market return on the 𝑑𝑡ℎ trading day of month 𝑡 − 𝑗. 

�̅�𝑖,𝑡−𝑗 and �̅�𝑚,𝑡−𝑗 denote the month 𝑡 − 𝑗 average return on the individual stock and 

market, respectively.  

In addition, we also estimate the realised CAPM beta following BPQ (2022) as 

follows: 

𝛽𝑖,𝑡 =
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑𝑟𝑚,𝑡−𝑗,𝑑)

𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

∑ ∑ 𝑟𝑚,𝑡−𝑗,𝑑
2

𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

                    (2) 

where 𝛽𝑖,𝑡 denotes the realised CAPM beta for individual stock 𝑖 in month 𝑡. 

Inspired by ACX’s (2006) downside beta model, the two-component 

decomposition method decomposes the coskewness into downside and upside 

coskewness. The downside and upside coskewness factors are defined as follows: 

𝐶𝑠𝑘𝑖,𝑡
𝑁 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑

− −�̅�𝑚,𝑡−𝑗)
2𝐷𝑖,𝑡−𝑗

𝑑=1
11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑

− −�̅�𝑚,𝑡−𝑗)
2𝐷𝑖,𝑡−𝑗

𝑑=1
11
𝑗=0

  

𝐶𝑠𝑘𝑖,𝑡
𝑃 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑

+ −�̅�𝑚,𝑡−𝑗)
2𝐷𝑖,𝑡−𝑗

𝑑=1
11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑

+ −�̅�𝑚,𝑡−𝑗)
2𝐷𝑖,𝑡−𝑗

𝑑=1
11
𝑗=0

      (3) 

where 𝑟𝑖,𝑡−𝑗,𝑑
+    max ( 𝑟𝑖,𝑡−𝑗,𝑑, 0 ) and 𝑟𝑖,𝑡−𝑗,𝑑

−     min ( 𝑟𝑖,𝑡−𝑗,𝑑, 0 ), 𝑟𝑚,𝑡−𝑗,𝑑
+    max 

(𝑟𝑚,𝑡−𝑗,𝑑, 0) and 𝑟𝑚,𝑡−𝑗,𝑑
−    min (𝑟𝑚,𝑡−𝑗,𝑑, 0). 

In spirit of BPQ’s (2022) realised semibeta model, we propose a semi-coskewness 

model that decomposes the coskewness into four components. The semi-coskewness 



13 

 

model is defined as follows: 

𝐶𝑠𝑘𝑖,𝑡
𝑃𝑃 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑

+ −�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑
+ −�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑−�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

  

𝐶𝑠𝑘𝑖,𝑡
𝑃𝑁 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑

+ −�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑
− −�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑−�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

  

𝐶𝑠𝑘𝑖,𝑡
𝑁𝑃 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑

− −�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑
+ −�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑−�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

  

𝐶𝑠𝑘𝑖,𝑡
𝑁𝑁 =

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑

− −�̅�𝑖,𝑡−𝑗)(𝑟𝑚,𝑡−𝑗,𝑑
− −�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

√
1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑖,𝑡−𝑗,𝑑−�̅�𝑖,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

1

𝑁𝑖,𝑡
∑ ∑ (𝑟𝑚,𝑡−𝑗,𝑑−�̅�𝑚,𝑡−𝑗)

2𝐷𝑖,𝑡−𝑗
𝑑=1

11
𝑗=0

     (4) 

The semi-coskewness model decomposes the coskewness based on the signs of 

both individual stock and market returns. Hence, 𝐶𝑠𝑘𝑖,𝑡
𝑃𝑃 (𝐶𝑠𝑘𝑖,𝑡

𝑁𝑃) measures a fraction 

of 𝐶𝑠𝑘𝑖,𝑡  conditional on positive (negative) individual stock return with positive 

market return; 𝐶𝑠𝑘𝑖,𝑡
𝑃𝑁 (𝐶𝑠𝑘𝑖,𝑡

𝑁𝑁) measures a fraction of 𝐶𝑠𝑘𝑖,𝑡 conditional on positive 

(negative) individual stock return with negative market return. 

Compared to the semi-coskewness factors, the CskN and CskP factors focus only 

on the sign of market returns but not the sign of individual stock returns. According to 

the factor construction, the semi-coskewness, CskN, and CskP factors should have the 

following relationship4: 

𝐶𝑠𝑘𝑖,𝑡
𝑃𝑃 + 𝐶𝑠𝑘𝑖,𝑡

𝑁𝑃 ≈ 𝐶𝑠𝑘𝑖,𝑡
𝑃  

𝐶𝑠𝑘𝑖,𝑡
𝑃𝑁 + 𝐶𝑠𝑘𝑖,𝑡

𝑁𝑁 ≈ 𝐶𝑠𝑘𝑖,𝑡
𝑁                       (5) 

 
4  Although the denominators of CskPP and CskNP are identical (equation 4), but they are slightly 

different from CskP (equation 3). Therefore, the sum between CskPP and CskNP is only approximately 

equal to CskP. A similar relationship exists between CskPN, CskNN, and CskN.   
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Harvey and Siddique (2000) demonstrate that the coskewness of assets has a 

negative relationship with their returns. If the rational investor expectations are valid, 

all the two-component and four-component coskewness measurements should exhibit 

negative relationships with their returns. Conversely, when considering the behavioural 

finance theory, the negative relationship might not always hold when investors trading 

in rising or falling stock markets. Keep other things unchanged, an asset with positive 

coskewness in a portfolio would reduce the risk of the portfolio by increasing the 

portfolio’s right skewness, regardless of the market situation.  

The main independent variables in this study are coskewness, downside and upside 

coskewness, as well as semi-coskewnesses. In addition, we introduce some mainstream 

cross-sectional factors in the existing literature to serve as the control variables. The 

size factor (SIZE) is constructed following Fama and French (1993); we use the month-

end logarithm of individual stock market capitalisation. Following Fama and French 

(1992), we use the end-of-month Market-to-Book ratio divided by one to measure the 

Book-to-Market (BM). Momentum (MOM) and Reversal (REV) are constructed 

following Jegadeesh and Titman (1993) and Jegadeesh (1990), respectively. The 

momentum factor is measured by the compounded return between the past 12 months 

and the past 2 months, while the past month’s return measures the reversal factor. The 

idiosyncratic volatility (IVOL) factor is constructed according to Ang et al. (2006), as 

follows: 

𝑟𝑖,𝑡,𝑑 − 𝑟𝑡
𝑓

= α𝑖 + 𝛽𝑖(𝑟𝑚,𝑡 − 𝑟𝑡
𝑓

) + 𝛽𝑖
𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖

𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝜖𝑖,𝑡    (6) 
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where 𝑟𝑡
𝑓
 denotes the risk-free rate at time 𝑡, and 𝑆𝑀𝐵 and 𝐻𝑀𝐿 denote the size 

and value factors are taken from Ken French’s website 5 . Monthly idiosyncratic 

volatility is measured as the standard deviation of the current month’s daily residuals. 

The realised variance (RV) factor is constructed following Andersen et al. (2001) and 

is calculated as the sum of the squares of the current month’s daily returns. The 

illiquidity factor (ILLIQ) follows Amihud (2002): 

𝐼𝐿𝐿𝐼𝑄𝑖,𝑡 =
1

𝑚
∑ (

𝑟𝑖,𝑡

𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡∗𝑝𝑟𝑖𝑐𝑒𝑖,𝑡
)

𝐷𝑖,𝑡

𝑑=1                  (7) 

where 𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 denotes the daily trading volume for individual stock 𝑖 in month 𝑡; 

𝑝𝑟𝑖𝑐𝑒𝑖,𝑡 denotes the daily trading volume for individual stock 𝑖 in month 𝑡; and 𝑚 

denotes the number of trading days in a month. The illiquidity factor is calculated based 

on the previous month’s daily data. 

 

5 Empirical results 

5.1 Summary statistics 

Panels A and B of Table 1 show the monthly summary statistics and the correlation 

matrix of the variables calculated on the basis of the constituent stocks in the NYSE 

and NASDAQ. The screened sample covers the period between January 1980 and April 

2024. Specifically, following BPQ (2022) to address price discreteness, we remove 

stocks in a given month if their monthly stock prices are less than $5. Furthermore, to 

mitigate the impact of outliers, we winsorise the main independent variables, setting 

the boundaries at 1% and 99% each month, following ACX (2006). The dependent 

 
5 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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variable is the monthly realised log return 𝑟𝑖. The main independent variables are Beta 

(realised CAPM beta), Csk (coskewness), CskN (downside coskewness), CskP (upside 

coskewness), CskPP, CskPN, CskNP and CskNN (four semi-coskewnesses). All 

variables reported in the table are time-series averaged and then cross-sectional, we 

report the mean, standard deviation, median, minimum, maximum, skewness and 

kurtosis. The average number of monthly observations is 1,903. 

[Table 1 inserted here] 

Panel A of Table 1 shows that the mean of monthly individual stock returns (𝑟𝑖) is 

0.002, while the standard deviation is 0.114, and slightly skewed to the left. The realised 

CAPM beta (Beta) has a mean of 0.84, with a minimum of -0.429 and a maximum of 

2.881. It is important to note that winsorisation can cause the mean of the realised 

CAPM beta to deviate from 1. The coskewness (Csk) has a mean of -0.164 with a 

standard deviation of 0.159. Nevertheless, it is symmetric as the skewness is equal to 0. 

The downside coskewness is the most volatile among all the main independent 

variables, with a standard deviation of 0.522, along with an upside coskewness of 0.460. 

In terms of the four semi-coskewnesses, the group of individual stock and market 

returns with consistent signs (CskPP and CskNN) shows a similar pattern to the group 

with reversed signs (CskPN and CskNP), and similar patterns are also observed in 

studies by BPQ (2022) and Li, Li, and Su (2024). 

Panel B of Table 1 presents the correlation matrix between different variables. The 

dependent variable 𝑟𝑖  exhibits a low magnitude of correlation with all independent 

variables, with a highest correlation of -0.025 with the realised CAPM beta. The 
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realised CAPM beta demonstrates a low correlation (-0.090) with the coskewness, 

suggesting that the coskewness conveys different information from that the realised 

CAPM beta captures (Harvey and Siddique, 2000). More interestingly, the realised 

CAPM beta has moderate correlations (around 0.5) with any of the coskewness 

measures, including downside, upside and semi-coskewnesses. Based on the equations 

construction, the information captured by CskP (CskN) should be approximately equal 

to CskPP plus CskNP (CskNN plus CskPN), and the correlation values support this 

relationship. CskP shows a high correlation of 0.946 with CskPP; and CskN shows a 

correlation of 0.944 with CskNN. In comparison, the correlations within the four semi-

coskewnesses are at a moderate level of around 0.5-0.6 in absolute value, possibly 

indicating that the semi-coskewness captures different information. 

[Figure 1 inserted here] 

As demonstrated in Figure 1, the number of firms in each month of the screened 

sample period exhibits a remarkable increase, from 229 firms in January 1980 to 2,690 

in April 2024. The number of firms fluctuates, but gradually increases over time. The 

minimum observations of 194 occur in March 1980, compared with the maximum of 

3,184 firms in March 2022. There are some declines in the number of firm observations 

over the sample period. The declines are predominantly associated with well-known 

financial crises, such as the dotcom boom (2000), the global financial crisis (2008), and 

COVID-19 (2022). 

 

5.2 Fama–MacBeth Regression  
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Following the existing cross-sectional asset pricing studies (ACX, 2006; BPQ, 

2022; Fama and MacBeth, 1973), we use the conventional Fama-MacBeth ordinary 

least squares regressions to examine if different coskewness models can predict future 

stock returns cross-sectionally in the US stock market.  

The Fama-MacBeth regression is with a two-stage process. In the first stage, we 

run the conventional cross-sectional regression in each month 𝑡. This results in 𝑇 − 1 

(where 𝑇  is the total number of months) number of λs . The baseline predictive 

regression equations are constructed as follows: 

𝑟𝑖,𝑡+1 = 𝜆0,𝑡+1 + 𝜆𝑡+1𝛽𝑖,𝑡 + 𝜆𝑡+1
𝑃𝑃 𝐶𝑠𝑘𝑖,𝑡

𝑃𝑃 + 𝜆𝑡+1
𝑃𝑁 𝐶𝑠𝑘𝑖,𝑡

𝑃𝑁 + 𝜆𝑡+1
𝑁𝑃 𝐶𝑠𝑘𝑖,𝑡

𝑁𝑃 +

                 𝜆𝑡+1
𝑁𝑁 𝐶𝑠𝑘𝑖,𝑡

𝑁𝑁 + 𝜖𝑖,𝑡+1                                   (8) 

where 𝑟𝑖,𝑡+1 denotes the monthly individual stock log returns for stock 𝑖 in month 

𝑡 + 1 and serves as the dependent variable; 𝜆0,𝑡+1 denotes the intercept in month 𝑡 +

1; 𝜆𝑡+1 denotes the coefficient estimate for realised CAPM beta for stock 𝑖 in month 

𝑡 + 1 ; 𝜆𝑡+1
𝑃𝑃  , 𝜆𝑡+1

𝑃𝑁  , 𝜆𝑡+1
𝑁𝑃  , and 𝜆𝑡+1

𝑁𝑁   denote the coefficients for four semi-

coskewnesses; and 𝜖𝑖,𝑡+1  denotes the residual errors. In addition to the baseline 

equations, we use the additional control variables such as SIZE, BM, MOM, REV, RV, 

IVOL and ILLIQ. The addition of control variables help to test whether they subsume 

the explanatory power of the main independent variables. 

In the second step, we take the time series average of λ over the 𝑇 − 1 months 

in the sample. We report the Newey-West t-statistic values with 10 lags in the following 

tables, following BPQ (2022), to account for the heteroskedasticity and autocorrelation 

issue, as we use the overlapping measurement of different coskewness models. 
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[Table 2 inserted here] 

Table 2 presents the baseline Fama–MacBeth regression results for the constituent 

stocks in the NYSE and NASDAQ between January 1980 and April 2024. Following 

Kraus and Litzenberger (1976) and Harvey and Siddique (2000), we consider 

coskewness as a complementary risk factor to the CAPM beta, as opposed to relying 

on coskewness alone. Column (1) of Table 2 shows that the realised CAPM beta cross-

sectionally predicts negative returns in the following month in the US stock market at 

the 1% significance level. This result persists across all 8 columns.  

This intriguing negative result contradicts what classical finance theory suggests, 

as the results imply that investors who hold riskier assets (higher betas) are not 

rewarded with higher returns. Indeed, the phenomenon in which stocks with lower 

CAPM betas tend to have higher returns than stocks with higher betas is well-known in 

the literature as the low beta anomaly (Haugen and Heins, 1975). This low beta anomaly, 

which has been observed in both developed and developing countries, is persistent over 

time (Blitz and van Vliet, 2007; Blitz, Pang, and van Vliet, 2013; Fama and French, 

1992). The negative coefficient for CAPM beta is a special condition for the low beta 

anomaly. Han, Li, and Li (2020) find that a downward sloping SML in the Chinese 

market, our results confirm the existence of the low beta anomaly in the US stock 

market.  

The existing studies on the low beta anomaly offer several possible explanations 

of the above phenomenon. On the one hand, many studies conjecture that in certain 

market, the security market line (SML) deviates from what it should be. Black (1972) 
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suggests that the SML tends to be flatter when faced with leverage constraints. Naive 

individuals and sophisticated institutional investors are likely to face leverage 

constraints due to either their inability or legal requirements (Frazzini and Pedersen, 

2014). Another explanation, related to the agency effect, is that the performance of 

portfolio managers is usually measured against specific benchmarks. Managers are 

willing to pay more for high beta stocks than low beta stock in order to compete with 

the benchmark, thereby reducing stock returns (Blitz, 2014).  

On the other hand, many studies claim that the low beta anomaly can be explained 

by behavioural finance theories, as investors are not as rational as the simplistic 

assumptions underlying the CAPM suggest. Bali et al. (2017) propose that lottery stock-

seeking investors drive up the price of high beta stocks, thereby lowering their returns.  

Column (2) of Table 2 reports that coskewness has a negatively predictive ability 

for stock returns in the subsequent month cross-sectionally, which is similar to the 

finding of Harvey and Siddique (2000). Columns (3) to (5) focus on testing the 

predictive power of downside and upside coskewnesses together and with additional 

control variables. Similarly, columns (6) to (8) focus on the semi-coskewness model. 

The downside coskewness reports persistently negative coefficients through columns 

(3) to (5), while upside coskewness shows positive coefficients. For the control 

variables, BM, MOM and ILLIQ have positive coefficients, while RV and IVOL have 

negative coefficients at the 1% significant level. The coefficient estimate for 

momentum (MOM) is consistent with the finding that the predictive power of 

coskewness can be related to momentum (Harvey and Siddique, 2000). 
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Focusing on the semi-coskewness model, CskPP consistently reports positive 

coefficients, while CskPN and CskNN consistently report negative coefficients, all at 

the 1% significant level. CskP is roughly a combination of CskPP and CskNP; since the 

coefficient estimate of CskNP is insignificant, the predictive power of CskP is rooted 

in CskPP. For CskN, it is roughly CskPN plus CskNN, and both semi-coskewnesses 

have negative coefficients. The Fama–MacBeth regression results of downside and 

upside coskewness and semi-coskewness are consistent. The negative coefficient for 

coskewness is consistent with the negative coefficient that has been observed in 

downside coskewness, as well as CskPN and CskNN from semi-coskewness.  

The signs of the coefficients of downside and upside coskewness and semi-

coskewness are consistent. In addition, the empirical evidence tend to support the 

behaviour finance theories over the classical ones, as evidenced by the different signs 

of the coefficients for different coskewness factors. The finding of a positive coefficient 

associated with upside coskewness and the negative coefficient associated downside 

coskewness, suggesting that investors respond differently to asset coskewness. The 

semi-coskewness model reveals that the positive coefficient from upside coskewness 

mainly comes from CskPP (when both individual stock and the market portfolio exhibit 

positive returns). A number of behavioural explanations exist for the abnormal positive 

relationship observed between CskPP and returns. One such explanation could be that 

investors sell winner stock too early, as suggested by the disposition effect, which has 

the effect of depressing the asset price and thus increasing its return.  

In addition, the control variables in columns (6) to (8) show similar results to those 
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in columns (3) to (5). The average R2 gradually increases as more variables are added 

to the regression, which also indicates that the semi-coskewness model has a higher 

explanatory power. 

Although the correlations between the four semi-coskewnesses are only moderate, 

to check whether these correlations would affect our Fama–MacBeth regression results, 

we test each semi-coskewness with additional control variables similar to columns (6) 

to (8) in Table 2. The results are reported in Appendix Table A1, which shows that all 

four semi-coskewnesses have significant coefficients at the 1% level, indicating that 

the baseline results in Table 2 are robust. 

 

5.3 Hypothesis testing 

The Fama–MacBeth regression results show that the predictive power of the 

downside and upside coskewness models and the semi-coskewness model are fairly 

close. Recall also that CskP and CskPP have a correlation of 0.946 and CskN and 

CskNN have a correlation of 0.944, both close to 1. A critical question is, whether the 

information conveyed by the three coskewness models, i.e., the coskewness, downside 

and upside, and semi-coskewness models is the same or not. Therefore, we propose two 

hypotheses to answer the above question. 

The first hypothesis tests whether the information captured by the coskewness is 

the same as that captured by the semi-coskewness model. Our null hypothesis is 

constructed as follows: 

𝐻0
𝐶𝑠𝑘: λ𝑁𝑁 = λ𝑃𝑁 = λ𝑃𝑃 = λ𝑁𝑃                   (9) 
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if we cannot reject 𝐻0
𝐶𝑠𝑘 , which means the λ s are the same for all the semi-

coskewnesses, then the realised semi-coskewness can be reduced to the form of the 

coskewness. As a result, the semi-coskewness model does not convey any additional 

information to that of the coskewness, and we can rely on the coskewness model. 

The second hypothesis compares the upside and downside coskewness models 

with the semi-coskewness model. The second hypothesis is formulated as follows:  

𝐻0
𝐴𝐶𝑋: λ𝑁𝑁 = λ𝑃𝑁 ∩ λ𝑃𝑃 = λ𝑁𝑃                  (10) 

the second hypothesis is derived from the equations that 𝐶𝑠𝑘𝑃 ≈ 𝐶𝑠𝑘𝑃𝑃 + 𝐶𝑠𝑘𝑁𝑃 

and 𝐶𝑠𝑘𝑁 ≈ 𝐶𝑠𝑘𝑁𝑁 + 𝐶𝑠𝑘𝑃𝑁 . Assuming that 𝐻0
𝐴𝐶𝑋  holds, the semi-coskewness 

model carries the same information as the upside and downside coskewness models, 

and can be reduced to the upside and downside coskewness models, and there is no 

need for the more complicated semi-coskewness model.   

    [Table 3 inserted here] 

Table 3 reports the Chi-square test results for the two hypotheses mentioned above. 

We can reject the null hypothesis 𝐻0
𝐶𝑠𝑘 at the 1% level with 3 degrees of freedom, and 

to a lesser extent, reject 𝐻0
𝐴𝐶𝑋 at the 5% level with 2 degrees of freedom. The rejection 

of both hypotheses indicates that although the correlations between the aforementioned 

coskewness factors are high, the information conveyed by them is different, and the 

semi-coskewness model captures the additional information. 

 

5.4 Robustness tests 

To confirm that the baseline results are not merely one occurrence in a specific 
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sample, we provide a set of comprehensive robustness tests in this section. The 

robustness tests include dividing the full sample into subsamples based on different 

market values and time periods. 

[Table 4 inserted here] 

Table 4 shows the subsample analysis based on monthly market value cut-off points. 

Following the SMB factor constructed by Fama and French (1993), we include the top 

30% of stocks sorted by market value each month as large-cap stocks, which are 

investable stocks with high liquidity. Meanwhile, the other subsample includes the large 

cap (top 30%) and mid cap (mid 40%) stocks, thus excluding the small cap (bottom 

30%) stocks that may have low liquidity concern. 

Columns (1) to (6) of Table 4 report the Fama–MacBeth regression results for the 

top 30% (4,635 firms with 438,716 monthly observations) and 70% (8,740 firms with 

880,600 monthly observations) subsamples for the downside and upside coskewness 

models, while columns (7) to (12) report the results for the semi-coskewness model. 

Both the downside and upside coskewness factors report similar regression results to 

the baseline results. For the semi-coskewness model, CskNP also reports insignificant 

results similar to the baseline. As a result, the subsample analysis constructed on the 

basis of market value does not alter the baseline results. 

Instead of dividing the stocks into three broad tiers of large-mid-small-cap, we also 

look at the top ranking stocks on a monthly basis, based on their market capitalisation. 

These stocks tend to be associated with the best-known companies and are attractive to 

large institutional investors. They are also valuable to fund managers as these stocks 
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meet investment covenant requirements and can be included in portfolios. 

[Table 5 inserted here] 

Table 5 shows the regression results for the top 500 (1,606 firms with 162,838 

monthly observations) and top 1,000 (3,337 firms with 322,274 monthly observations) 

stocks, which have been ranked according to their individual market capitalisation on 

the US stock market on a monthly basis. The ranking is based on the sample in our 

study. Therefore, it may differ from the ranking in the real world. However, our choice 

solves the problem that certain stocks may not be available in our sample and it can 

provide more consistent monthly ranking measures. The layout of Table 5 is identical 

to that of Table 4, but we observe different results compared to those found in Table 4 

and the baseline results. For the downside and upside coskewness models in columns 

(1) to (6), the coefficients of CskN are only significant at the 10% level in columns (3) 

and (6), while the coefficients of CskP are intact. BM, MOM and RV are still significant 

compared to the baseline results, while IVOL and ILLIQ are not. A possible explanation 

for the change in ILLIQ coefficients may be that top-ranking firms naturally have 

sufficient liquidity. 

The regression results for the semi-coskewness model also differ from the baseline 

result. CskNN does not show consistent significant coefficients. In comparison, CskPP 

and CskPN retain their predictive power. Given that CskN reports significant levels of 

10% in columns (3) and (6) and the high correlation between CskN and CskNN, it is 

not surprising that CskNN also reports insignificant coefficients in both the top 500 and 

top 1,000 ranking subsamples. However, the regression results in Table 4 for the top 
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30% do not show similar results, suggesting that these large companies may have 

different characteristics from the rest of the companies. 

In addition to dividing the sample by market capitalisation, we also divide the 

sample by different time periods to ensure that the baseline results do not suffer from 

the time-specific problem. 

[Table 6 inserted here] 

Table 6 presents the Fama–MacBeth regression results for two types of subsample 

division by time period. Columns (1) to (8) of Table 6 divide the sample into two 

subsample periods with cut-off point in year 2000, each period about 20 years long. 

This allows us to see how different business cycles would affect the predictive power 

of the three coskewness models. Equally importantly, in columns (9) to (12), we divide 

the sample into pre-Covid and during-Covid periods and set February 2020 as the Covid 

breakthrough point. The Covid pandemic arguably had the most catastrophic impact 

globally, and the aftermath still affects us in many ways. 

The downside coskewness model delivers consistent results compared to the 

baseline results, but the upside coskewness model fails in the 1980-1999 period. The 

coefficients of the control variables differ from the baseline results, with BM and ILLIQ 

showing relatively stable predictive power over two periods. For the semi-coskewness 

model, CskPP and CskNN show relatively consistent results compared to the other two. 

It is interesting to note that CskPP still shows consistent coefficients, although CskP 

does not. The significant control variables between columns (5) to (8) are BM and 

ILLIQ, which is similar to columns (1) to (4). The coefficients of MOM report a 
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significant level of 10% after 2000, which can explain the momentum crash that 

happened during the 2008 global financial crisis.  

For the pre-covid and during-covid periods reported in columns (9) to (12), the pre-

covid results are identical to those of the baseline. Conversely, the results for the during-

covid period are different, primarily because the during-covid subsample contains only 

a small fraction of observations, given that we use a 12-month overlapping estimation 

of factors. 

[Table 7 inserted here] 

We then test the predictive power of three coskewness models during economic 

recessions, as shown in Table 7. During a recession, the stock market typically 

experiences a flight-to-liquidity phenomenon, which causes the stock price to be 

depressed relative to normal market conditions. Examining relevant coskewness 

models in such distressed situations would greatly enhance the understanding of such 

models. Following the National Bureau of Economic Research’s (NBER) definition of 

recessions, we include all the recessions that occurred in the US over the entire sample 

period, which gives us a different perspective in testing the predictive power. 

The upside coskewness factor delivers persistently positive coefficients, except in 

column (3) at the 5% significance level, but remarkably outperforms the downside 

coskewness factor. Columns (7) to (12) of Table 7 further explain that the predictive 

power of the upside coskewness model is rooted in the CskPP and not in the CskNP. In 

contrast, the downside coskewness factor performs well only in the non-recession 

subsample (columns (4) to (6)) and can be explained by CskPN and CskNN. The only 
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significant control variable is BM, which is reported in all columns. The results for the 

non-recession period are similar to the baseline results. 

Compared to the results in Tables 4 and 5, which focus on the market capitalisation 

split, the regression results based on different periods in Tables 6 and 7 are more 

unstable, suggesting that the conditional coskewness may have a time-varying nature. 

However, we observe a persistent predictive power for CskPP. 

The baseline results focus on the use of coskewness measures in month 𝑡  to 

predict cross-sectional returns in month 𝑡 + 1. In addition, the long-term predictive 

power is also crucial, as it provides insights into long-term returns. 

[Table 8 inserted here] 

Panels A and B of Table 8 present the predictive regression results for the future 3, 

6, 9 and 12 months based on the downside and upside coskewness and semi-coskewness 

models, respectively. CskN and CskP produce consistent results in all columns of Panel 

A of Table 8, similar to the baseline result. In comparison, the semi-coskewness model 

also reports robust results similar to those of the baseline. Furthermore, we observe a 

slight increase in the average R2 as the forecast period extends into the future. This 

finding suggests that all the coskewness models possess stable long-term predictability. 

 

6 Conclusion 

The present study investigates the predictive power of the proposed semi-

coskewness model based on NYSE and NASDAQ constituent stocks in the US market. 

Our semi-coskewness model is inspired by Bollerslev, Patton, and Quaedvlieg’s (2022) 
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seminal realised semibeta model. The semi-coskewness model decomposes the 

information conveyed by coskewness into four components, based on the signs of 

individual stock and market returns.  

The regression results and extensive robustness tests demonstrate that CskPP 

persistently and positively predicts future cross-sectional stock returns, and 

conventional asset pricing studies risk factors do not subsume the predictive power. To 

a lesser extent, CskPN predicts future stock returns positively and CskNN predicts 

future returns negatively. Conversely, CskNP did not pass the robustness tests. 

In addition to the semi-coskewness model, the present study also investigates the 

downside and upside coskewness models. The downside and upside coskewness 

models also show generally persistent results, with a few exceptions in the subsample 

analysis. However, hypothesis testing strongly rejects that the information conveyed by 

the semi-coskewness model is similar to that conveyed by the downside and upside 

coskewness models. 

Our study provides a unique angle to understand the risk–return relationship in the 

US stock market through a semi-coskewness model. This understanding can be 

extended to the international stock markets and other asset classes. More importantly, 

the empirical evidence indicates that investors exhibit an asymmetrical response to 

coskewness conditional on market movement directions, which is consistent with the 

behavioural finance theories. Future studies may explore the underlying reasons for this 

discrepancy. 
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Tables and Figures: 

Table 1 Summary statistics and correlations 
Panel A reports the monthly summary statistics including individual stock returns and main independent 

variables. All the independent variables are calculated based on the daily total return index from LSEG 

DataStream from 1/1/1980 to 30/4/2024. We derive independent variables from overlapping 12-month 

periods using daily frequency data. In addition, all the figures shown in the table are cross-sectional 

averaged and then time series averaged. The average number of monthly observations for all variables is 

1,903. 

 

Panel A: Summary statistics 

Variable Mean Std Dev Median Min Max Skewness Kurtosis 

𝒓𝒊 0.002  0.114  0.005  -0.963  0.699  -0.674  12.758  

Beta 0.840  0.464  0.791  -0.429  2.881  0.595  0.733  

Csk -0.164  0.159  -0.162  -0.577  0.255  0.000  -0.364  

CskP 0.835  0.460  0.850  -0.382  1.916  -0.061  -0.410  

CskN -1.178  0.522  -1.202  -2.342  0.272  0.196  -0.380  

CskPP 0.366  0.122  0.364  0.081  0.676  0.118  -0.403  

CskPN 0.072  0.043  0.062  0.012  0.277  1.444  3.713  

CskNP -0.083  0.046  -0.073  -0.269  -0.014  -1.063  1.367  

CskNN -0.517  0.175  -0.515  -0.949  -0.102  -0.009  -0.429  

 

 

Panel B: Correlations 
Panel B reports correlations of monthly individual stock returns with the main independent variables. 

Moreover, all the figures shown in the table are cross-sectional averaged and then time series averaged. 

 

 𝒓𝒊 Beta Csk CskP CskN CskPP CskPN CskNP CskNN 

𝒓𝒊 1 -0.025 -0.009 0.014 -0.016 0.017 -0.008 0.009 -0.016 

Beta  1 -0.090 0.571 -0.589 0.515 -0.537 0.527 -0.544 

Csk   1 0.177 0.415 0.214 0.247 0.128 0.454 

CskP    1 -0.713 0.946 -0.560 0.793 -0.710 

CskN     1 -0.704 0.744 -0.569 0.944 

CskPP      1 -0.534 0.599 -0.664 

CskPN       1 -0.501 0.559 

CskNP        1 -0.555 

CskNN         1 
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Figure 1 

The line chart illustrates the number of firms in the screened US stock market (NYSE and NASDAQ) in each month. The sample starts from 

January 1980 to April 2024, with 9,728 firms and 1,012,017 monthly observations. March 1980 has the smallest number of observations with 194 

firms, while March 2022 has the largest with 3,184 firms. 
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Table 2 Baseline Fama–MacBeth multivariate OLS regression 
This table reports the results of the Fama–MacBeth multivariate OLS regression. The dependent variables are the monthly log returns of individual stock, calculated from the 

daily total return index at month 𝑡 + 1. The independent variables are measured monthly and winsorised at 1% and 99% at month t. All the data are taken from the LSEG 
DataStream databases for the sample period from 1/1/1980 to 31/4/2024. The sample contains 1,012,017 monthly observations and 9,728 stocks. We use the Newey–West t-

statistic with 10-lags and report the t-statistic value in the parentheses below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Beta -0.0067*** 
(-2.81) 

-0.0079*** 
(-3.31) 

-0.0162*** 
(-4.51) 

-0.0156*** 
(-4.63) 

-0.0074*** 
(-2.59) 

-0.0165*** 
(-4.53) 

-0.0159*** 
(-4.66) 

-0.0075*** 
(-2.60) 

Csk  -0.0072* 
(-1.71) 

      

CskN   -0.0085*** 
(-5.90) 

-0.0080*** 
(-6.90) 

-0.0051*** 
(-5.11) 

   

CskP   0.0087*** 
(4.26) 

0.0084*** 
(4.45) 

0.0047*** 
(2.99) 

   

CskPP      0.0293*** 
(5.22) 

0.0281*** 
(5.52) 

0.0164*** 
(3.91) 

CskPN      -0.0384*** 
(-4.95) 

-0.0386*** 
(-4.96) 

-0.0268*** 
(-3.65) 

CskNP      0.0268*** 
(2.73) 

0.0214** 
(2.39) 

0.0115 
(1.40) 

CskNN      -0.0183*** 
(-3.91) 

-0.0175*** 
(-4.70) 

-0.0106*** 
(-3.24) 

SIZE    0.0005 
(1.43) 

0.0014** 
(2.39) 

 0.0006 
(1.47) 

0.0014** 
(2.52) 

BM    0.0079*** 
(8.12) 

0.0072*** 
(8.09) 

 0.0079*** 
(8.20) 

0.0073*** 
(8.15) 

MOM    0.0070*** 
(5.40) 

0.0065*** 
(5.15) 

 0.0070*** 
(5.41) 

0.0065*** 
(5.15) 

REV     -0.0024 
(-0.84) 

  -0.0026 
(-0.87) 

RV     -0.1221*** 
(-2.80) 

  -0.1196*** 
(-2.76) 

IVOL     -0.2155*** 
(-3.76) 

  -0.2128*** 
(-3.69) 

ILLIQ     0.0011*** 
(3.25) 

  0.0012*** 
(3.36) 

Alpha 0.0076*** 
(4.06) 

0.0061*** 
(3.10) 

0.0005 
(0.18) 

-0.0091** 
(-2.42) 

-0.0003 
(-0.10) 

0.0032 
(1.07) 

-0.0069* 
(-1.74) 

0.0010 
(0.31) 

Avg. R2 3.12% 3.49% 4.83% 6.48% 7.65% 4.98% 6.62% 7.76% 
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Table 3 Hypothesis testing 
This table reports the results of hypothesis testing. The Chi-square statistics, 𝑝-value, and degrees of 
freedom are reported in the table. 

Hypothesis statistic 𝒑-value DF 

𝐻0
𝐶𝑠𝑘: λ𝑁𝑁 = λ𝑃𝑁 = λ𝑃𝑃 = λ𝑁𝑃 41.92 0.00 3 

𝐻0
𝐴𝐶𝑋: λ𝑁𝑁 = λ𝑃𝑁 ∩ λ𝑃𝑃 = λ𝑁𝑃 7.34 0.03 2 
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Table 4 Fama–MacBeth OLS regression with market capitalisation restrictions 

This table reports the results of the multivariate Fama–MacBeth OLS regression based on the different market capitalisation cut-off points. We use the Newey–West t-statistic 

with 10-lags and report the t-statistic value in the parentheses below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 

 Top 30% Top 70% Top 30% Top 70% 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Beta -0.0127*** 

(-3.78) 

-0.0128*** 

(-3.99) 

-0.0076** 

(-2.57) 

-0.0146*** 

(-4.37) 

-0.0141*** 

(-4.45) 

-0.0075*** 

(-2.73) 

-0.0126*** 

(-3.75) 

-0.0128*** 

(-3.95) 

-0.0077*** 

(-2.58) 

-0.0147*** 

(-4.39) 

-0.0143*** 

(-4.50) 

-0.0076*** 

(-2.72) 

CskN -0.0059*** 

(-5.17) 

-0.0056*** 

(-5.04) 

-0.0039*** 

(-3.80) 

-0.0072*** 

(-6.31) 

-0.0071*** 

(-6.54) 

-0.0049*** 

(-5.02) 

      

CskP 0.0071*** 

(3.97) 

0.0071*** 

(4.12) 

0.0053*** 

(3.40) 

0.0075*** 

(4.00) 

0.0073*** 

(4.17) 

0.0047*** 

(3.06) 

      

CskPP       0.0242***  

(4.79) 

0.0248***  

(5.08) 

0.0189***  

(4.29) 

0.0255***  

(4.84) 

0.0250***  

(5.11) 

0.0166***  

(3.98) 

CskPN       -0.0279***  

(-3.73) 

-0.0292***  

(-3.79) 

-0.0231***  

(-2.96) 

-0.0349***  

(-4.73) 

-0.0347***  

(-4.51) 

-0.0244***  

(-3.33) 

CskNP       0.0203*  

(1.89) 

0.0149  

(1.43) 

0.0112  

(1.15) 

0.0223**  

(2.38) 

0.0186**  

(2.13) 

0.0109  

(1.35) 

CskNN       -0.0126***  

(-3.21) 

-0.0120***  

(-3.24) 

-0.0070**  

(-2.02) 

-0.0153***  

(-3.85) 

-0.0158***  

(-4.38) 

-0.0105***  

(-3.25) 

SIZE  0.0000 

(0.05) 

0.0000 

(0.03) 

 0.0003 

(0.86) 

0.0007 

(1.48) 

 0.0001  

(0.17) 

0.0001  

(0.10) 

 0.0003 

(0.87) 

0.0008  

(1.58) 

BM  0.0086*** 

(5.84) 

0.0083*** 

(5.92) 

 0.0101*** 

(8.80) 

0.0095*** 

(8.85) 

 0.0086***  

(5.88) 

0.0083***  

(5.98) 

 0.0101***  

(8.90) 

0.0096***  

(8.95) 

MOM  0.0063*** 

(3.90) 

0.0064*** 

(3.92) 

 0.0062*** 

(4.57) 

0.0059*** 

(4.44) 

 0.0063***  

(3.92) 

0.0063***  

(3.90) 

 0.0062***  

(4.62) 

0.0059***  

(4.47) 

REV   0.0058 

(1.36) 

  -0.0008 

(-0.27) 

  0.0060 

(1.45) 

  -0.0010 

(-0.31) 

RV   -0.1299* 

(-1.92) 

  -0.0888* 

(-1.89) 

  -0.1265*  

(-1.89) 

  -0.0855*  

(-1.84) 

IVOL   -0.0970 

(-1.17) 

  -0.1808*** 

(-3.22) 

  -0.0850  

(-1.03) 

  -0.1781***  

(-3.15) 

ILLIQ   0.0002 

(0.47) 

  0.0007** 

(2.09) 

  0.0002  

(0.40) 

  0.0007**  

(2.19) 

Alpha 0.0029 

(1.42) 

-0.0037 

(-1.08) 

-0.0004 

(-0.13) 

0.0018 

(0.79) 

-0.0076** 

(-2.37) 

-0.0013 

(-0.45) 

0.0046*  

(1.73) 

-0.0030  

(-0.78) 

0.0002  

(0.04) 

0.0041  

(1.44) 

-0.0060  

(-1.59) 

-0.0005  

(-0.14) 

Avg. R2 6.82% 9.44% 10.89% 5.05% 6.98% 8.06% 7.13% 9.70% 11.11% 5.23% 7.13% 8.18% 

Obs. 438,716 880,600 438,716 880,600 

Stocks 4,635 8,740 4,635 8,740 
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Table 5 Fama–MacBeth OLS regression with stock ranking 
This table reports the results of the multivariate Fama–MacBeth OLS regression based on the stock ranking. We use the Newey–West t-statistic with 10-lags and report the t-

statistic value in the parentheses below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 

 Top 500 Top 1000 Top 500 Top 1000 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Beta -0.0087*** 

(-2.64) 

-0.0088*** 

(-2.76) 

-0.0051* 

(-1.69) 

-0.0115*** 

(-3.16) 

-0.0088*** 

(-2.76) 

-0.0051* 

(-1.69) 

-0.0086*** 

(-2.63) 

-0.0088*** 

(-2.78) 

-0.0053* 

(-1.76) 

-0.0113*** 

(-3.12) 

-0.0117*** 

(-3.34) 

-0.0067** 

(-2.13) 

CskN -0.0028** 

(-2.54) 

-0.0029*** 

(-2.73) 

-0.0020* 

(-1.89) 

-0.0052*** 

(-4.32) 

-0.0029*** 

(-2.73) 

-0.0020* 

(-1.89) 

      

CskP 0.0068*** 

(4.28) 

0.0072*** 

(4.40) 

0.0057*** 

(4.19) 

0.0070*** 

(4.33) 

0.0072*** 

(4.40) 

0.0057*** 

(4.19) 

      

CskPP       0.0247*** 

(4.94) 

0.0260*** 

(5.10) 

0.0216*** 

(4.50) 

0.0248*** 

(5.41) 

0.0258*** 

(5.63) 

0.0195*** 

(4.63) 

CskPN       -0.0269*** 

(-2.70) 

-0.0318*** 

(-3.27) 

-0.0296*** 

(-2.96) 

-0.0301*** 

(-3.88) 

-0.0338*** 

(-4.36) 

-0.0295*** 

(-3.67) 

CskNP       0.0108 

(0.82) 

0.0077 

(0.65) 

0.0054 

(0.50) 

0.0167 

(1.56) 

0.0126 

(1.19) 

0.0108 

(1.14) 

CskNN       -0.0026 

(-0.60) 

-0.0022 

(-0.54) 

0.0004 

(0.11) 

-0.0098** 

(-2.47) 

-0.0096** 

(-2.49) 

-0.0041 

(-1.12) 

SIZE  -0.0004 

(-0.96) 

-0.0005 

(-0.69) 

 -0.0004 

(-0.96) 

-0.0005 

(-0.69) 

 -0.0004 

(-0.92) 

-0.0005 

(-0.65) 

 -0.0000 

(-0.06) 

-0.0003 

(-0.43) 

BM  0.0063*** 

(3.70) 

0.0066*** 

(3.90) 

 0.0063*** 

(3.70) 

0.0066*** 

(3.90) 

 0.0063*** 

(3.73) 

0.0066*** 

(3.99) 

 0.0081*** 

(5.07) 

0.0082*** 

(5.29) 

MOM  0.0067*** 

(3.81) 

0.0063*** 

(3.45) 

 0.0067*** 

(3.81) 

0.0063*** 

(3.45) 

 0.0068*** 

(3.92) 

0.0063*** 

(3.52) 

 0.0075*** 

(4.88) 

0.0075*** 

(4.76) 

REV   0.0025 

(0.50) 

  0.0025 

(0.50) 

  0.0030*** 

(3.52) 

  0.0042 

(1.04) 

RV   -0.2893** 

(-2.18) 

  -0.2893** 

(-2.18) 

  -0.2759** 

(-2.08) 

  -0.2254*** 

(-2.61) 

IVOL   0.0919 

(0.78) 

  0.0919 

(0.78) 

  0.0866 

(0.72) 

  -0.0201 

(-0.23) 

ILLIQ   0.0000 

(0.00) 

  0.0000 

(0.00) 

  -0.0000 

(-0.02) 

  -0.0001 

(-0.14) 

Alpha 0.0028 

(1.39) 

0.0004 

(0.09) 

-0.0001 

(-0.03) 

0.0026 

(1.25) 

0.0004 

(0.09) 

-0.0001 

(-0.03) 

0.0047 

(1.49) 

0.0020 

(0.46) 

0.0017 

(0.37) 

0.0043 

(1.47) 

-0.0027 

(-0.64) 

0.0003 

(0.08) 

Avg. R2 8.33% 11.83% 13.95% 7.34% 11.83% 13.95% 8.89% 12.30% 14.34% 7.69% 10.55% 12.19% 

Obs. 162,838 322,274 162,838 322,274 

Stocks 1,606 3,337 1,606 3,337 
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Table 6 Fama–MacBeth OLS regression with time periods 
This table reports the results of the multivariate Fama–MacBeth OLS regression based on the different time periods. We use the Newey–West t-statistic with 10-lags and report 

the t-statistic value in the parentheses below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 
 CskN + CskP Semi-Coskewness CskN + CskP Semi-Coskewness 

 1980-1999 2000-2024 1980-1999 2000-2024 Pre-Covid During-Covid Pre-Covid During-Covid 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Beta -0.0153*** 

(-2.96) 
-0.0049 
(-1.40) 

-0.0170*** 
(-3.29) 

-0.0093** 
(-2.14) 

-0.0150*** 
(-2.87) 

-0.0044 
(-1.26) 

-0.0177*** 
(-3.39) 

-0.0100** 
(-2.25) 

-0.0084*** 
(-2.85) 

0.0024 
(0.26) 

-0.0085*** 
(-2.84) 

0.0023 
(0.26) 

CskN -0.0068***  
(-3.31) 

-0.0044***  
(-2.85) 

-0.0098*** 
(-4.97) 

-0.0056*** 
(-4.38) 

    -0.0049***  
(-4.79) 

-0.0065* 
(-1.69) 

  

CskP 0.0065** 
(2.12) 

0.0041* 
(1.83) 

0.0105*** 
(3.86) 

0.0053** 
(2.37) 

    0.0048*** 
(2.84) 

0.0040 
(0.96) 

  

CskPP     0.0269*** 
(3.41) 

0.0172*** 
(2.99) 

0.0313*** 
(4.01) 

0.0157*** 
(2.64) 

  0.0165*** 
(3.72) 

0.0153 
(1.12) 

CskPN     -0.0166 
(-1.35) 

-0.0036 
(-0.32) 

-0.0564*** 
(-6.29) 

-0.0458*** 
(-5.47) 

  -0.0262*** 
(-3.24) 

-0.0318*** 
(-3.21) 

CskNP     0.0102 
(0.73) 

0.0029 
(0.27) 

0.0405*** 
(3.00) 

0.0233** 
(1.99) 

  0.0130 
(1.49) 

-0.0030 
(-0.15) 

CskNN     -0.0170** 
(-2.52) 

-0.0140*** 
(-2.66) 

-0.0194*** 
(-3.00) 

-0.0077** 
(-2.00) 

  -0.0097*** 
(-2.94) 

-0.0186 
(-1.47) 

SIZE  0.0006 
(0.73) 

 0.0020** 
(2.56) 

 0.0006 
(0.84) 

 0.0021*** 
(2.62) 

0.0009*  
(1.74) 

0.0055** 
(2.04) 

0.0010* 
(1.91) 

0.0055** 
(1.99) 

BM  0.0091***  
(5.98) 

 0.0057*** 
(5.97) 

 0.0092*** 
(6.06) 

 0.0057*** 
(6.01) 

0.0069***  
(7.55) 

0.0104*** 
(3.41) 

0.0069*** 
(7.61) 

0.0103*** 
(3.39) 

MOM  0.0115*** 
(6.69) 

 0.0025* 
(1.76) 

 0.0114*** 
(6.61) 

 0.0025* 
(1.79) 

0.0064***  
(4.68) 

0.0080*** 
(2.63) 

0.0064*** 
(4.68) 

0.0079*** 
(2.66) 

REV  0.0008 
(0.16) 

 -0.0051 
(-1.53) 

 0.0004 
(0.08) 

 -0.0050 
(-1.51) 

-0.0035  
(-1.10) 

0.0074 
(1.49) 

-0.0036 
(-1.14) 

0.0075 
(1.46) 

RV  -0.2561*** 
(-2.94) 

 -0.0119 
(-0.71) 

 -0.2506*** 
(-2.88) 

 -0.0120 
(-0.71) 

-0.1368***  
(-2.85) 

0.0168 
(1.11) 

-0.1343*** 
(-2.82) 

0.0189 
(1.29) 

IVOL  -0.0754 
(-0.80) 

 -0.3306*** 
(-5.48) 

 -0.0726 
(-0.77) 

 -0.3281*** 
(-5.37) 

-0.1675*** 
(-2.94) 

-0.6683*** 
(-4.51) 

-0.1636*** 
(-2.86) 

-0.6773*** 
(-4.52) 

ILLIQ  0.0011** 
(2.31) 

 0.0012** 
(2.35) 

 0.0011** 
(2.37) 

 0.0012** 
(2.45) 

0.0010*** 
(3.02) 

0.0023 
(1.28) 

0.0011*** 
(3.15) 

0.0023 
(1.27) 

Alpha 0.0059** 
(1.99) 

0.0035 
(0.81) 

-0.0040 
(-1.10) 

-0.0034 
(-0.78) 

0.0034 
(0.81) 

-0.0015  
(-0.31) 

0.0030 
(0.72) 

0.0031 
(0.70) 

0.0022 
(0.75) 

-0.0239* 
(-1.94) 

0.0036 
(1.14) 

-0.0237* 
(-1.91) 

Avg. R2 4.54% 7.79% 5.06% 7.55% 4.61% 7.83% 5.28% 7.71% 7.47% 9.42% 7.57% 9.59% 
Obs. 251,301 

4,224 
760,716 
8,405 

251,301 
4,224 

760,716 
8,405 

864,848 147,169 864,848 147,169 

Stocks 8,358 4,670 8,358 4,670 
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Table 7 Fama–MacBeth OLS regression with recessions 
This table reports the results of the multivariate Fama–MacBeth OLS regression based on the recession and non-recession periods. We use the Newey–West t-statistic with 10-

lags and report the t-statistic value in the parentheses below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 

 Recessions Non-Recessions Recessions Non-Recessions 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Beta -0.0175* 

(-1.67) 

-0.0192* 

(-1.80) 

-0.0102 

(-1.01) 

-0.0166*** 

(-4.58) 

-0.0159*** 

(-4.63) 

-0.0076*** 

(-2.65) 

-0.0185* 

(-1.72) 

-0.0204* 

(-1.87) 

-0.0111 

(-1.07) 

-0.0169*** 

(-4.61) 

-0.0161*** 

(-4.67) 

-0.0077*** 

(-2.66) 

CskN -0.0042 

(-1.27) 

-0.0075** 

(-2.37) 

-0.0023 

(-0.77) 

-0.0087*** 

(-6.03) 

-0.0081*** 

(-6.90) 

-0.0051*** 

(-5.13) 

      

CskP 0.0108*** 

(2.80) 

0.0118*** 

(3.22) 

0.0074** 

(2.29) 

0.0088*** 

(4.23) 

0.0083*** 

(4.42) 

0.0048*** 

(3.30) 

      

CskPP       0.0401*** 

(2.71) 

0.0416*** 

(3.13) 

0.0276** 

(2.24) 

0.0291***  

(5.13) 

0.0276*** 

(5.43) 

0.0161*** 

(3.86) 

CskPN       -0.0565**  

(-2.08) 

-0.0677**  

(-2.33) 

-0.0456* 

(-1.77) 

-0.0385***  

(-4.98) 

-0.0386*** 

(-4.89) 

-0.0269*** 

(-3.59) 

CskNP       0.0367* 

(1.71) 

0.0360** 

(2.05) 

0.0249 

(1.49) 

0.0291***  

(3.00) 

0.0234*** 

(2.62) 

0.0132 

(1.62) 

CskNN       0.0016  

(0.15) 

-0.0084 

(-0.60) 

0.0044 

(0.51) 

-0.0188***  

(-3.97) 

-0.0176*** 

(-4.65) 

-0.0106*** 

(-3.21) 

SIZE  -0.0008 

(-0.64) 

-0.0036* 

(-1.92) 

 0.0006* 

(1.65) 

0.0015*** 

(2.63) 

 -0.0008 

(-0.60) 

-0.0034* 

(-1.77) 

 0.0006* 

(1.70) 

-0.0016*** 

(2.76) 

BM  0.0043*** 

(3.30) 

0.0035** 

(2.40) 

 0.0080*** 

(8.16) 

0.0073*** 

(8.16) 

 0.0044***  

(3.31) 

0.0036** 

(2.43) 

 0.0080*** 

(8.23) 

0.0073*** 

(8.21) 

MOM  0.0028 

(0.44) 

0.0012 

(0.20) 

 0.0070*** 

(5.32) 

0.0066*** 

(5.12) 

 0.0025  

(0.40) 

0.0010 

(0.16) 

 0.0070*** 

(5.32) 

0.0066*** 

(5.11) 

REV   0.0068 

(0.40) 

  -0.0027 

(-0.93) 

  0.0068 

(0.39) 

  -0.0029 

(-0.97) 

RV   -0.4531* 

(-1.82) 

  -0.1005*** 

(-2.75) 

  -0.4436* 

(-1.80) 

  -0.0983*** 

(-2.69) 

IVOL   0.0264 

(0.12) 

  -0.2321*** 

(-4.18) 

  0.0327 

(0.15) 

  -0.2302*** 

(-4.14) 

ILLIQ   -0.0020* 

(-1.92) 

  0.0012*** 

(3.33) 

  -0.0018**  

(-1.83) 

  0.0012*** 

(3.43) 

Alpha -0.0043 

(-0.47) 

-0.0068 

(-0.55) 

0.0062 

(0.53) 

0.0003 

(0.13) 

-0.0095** 

(-2.54) 

-0.0007 

(-0.23) 

0.0041  

(0.65) 

0.0010 

(0.10) 

0.0125 

(1.31) 

0.0034  

(1.14) 

-0.0071* 

(-1.76) 

0.0009 

(0.28) 

Avg. R2 6.72% 9.03% 10.65% 4.75% 6.36% 7.53% 7.00% 9.22% 10.75% 4.90% 6.40% 7.64% 

Obs. 88,183 923,834 88,183 923,834 

Stocks 6,180 9,727 6,180 9,727 
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Table 8 Fama–MacBeth OLS regression with long-term horizons 

This table reports the results of the multivariate Fama–MacBeth OLS regression based on long-term forecasts. We use the Newey–West t-statistic with 10-lags and report the 

t-statistic value in the parentheses below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 

Panel A 

 3 months 6 months 9 months 12 months 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Beta -0.0465*** 

(-4.69) 

-0.0448*** 

(-4.84) 

-0.0206*** 

(-2.69) 

-0.0895*** 

(-5.18) 

-0.0839*** 

(-5.23) 

-0.0395*** 

(-2.92) 

-0.1313*** 

(-5.54) 

-0.1207*** 

(-5.54) 

-0.0581*** 

(-3.18) 

-0.1710*** 

(-6.15) 

-0.1563*** 

(-6.11) 

-0.0783*** 

(-3.62) 

CskN -0.0210*** 

(-5.55) 

-0.0197*** 

(-6.50) 

-0.0114*** 

(-4.53) 

-0.0402***  

(-6.28) 

-0.0351*** 

(-6.39) 

-0.0213*** 

(-4.57) 

-0.0605*** 

(-7.06) 

-0.0511*** 

(-6.85) 

-0.0313*** 

(-4.99) 

-0.0785*** 

(-7.72) 

-0.0669*** 

(-7.64) 

-0.0425*** 

(-5.76) 

CskP 0.0288*** 

(4.85) 

0.0268*** 

(5.05) 

0.0161*** 

(3.80) 

0.0582*** 

(5.87) 

0.0512*** 

(5.48) 

0.0319*** 

(4.17) 

0.0857*** 

(6.24) 

0.0736*** 

(5.84) 

0.0458*** 

(4.53) 

0.1148*** 

(6.84) 

0.0988*** 

(6.41) 

0.0629*** 

(5.15) 

SIZE  0.0019* 

(1.76) 

0.0067*** 

(4.25) 

 0.0048*** 

(2.63) 

0.0156*** 

(5.65) 

 0.0075*** 

(3.13) 

0.0242*** 

(6.13) 

 0.0092*** 

(3.15) 

0.0304*** 

(5.83) 

BM  0.0212*** 

(7.57) 

0.0198*** 

(7.54) 

 0.0386*** 

(7.31) 

0.0361*** 

(7.32) 

 0.0504*** 

(6.82) 

0.0472*** 

(6.85) 

 0.0584*** 

(6.48) 

0.0544*** 

(6.47) 

MOM  0.0179*** 

(4.97) 

0.0174*** 

(4.88) 

 0.0284*** 

(4.39) 

0.0275*** 

(4.32) 

 0.0310*** 

(3.75) 

0.0307*** 

(3.77) 

 0.0300*** 

(3.29) 

0.0301*** 

(3.38) 

REV   0.0160*** 

(2.90) 

  0.0364*** 

(4.30) 

  0.0618*** 

(5.51) 

  0.0742*** 

(5.68) 

RV   -0.1754** 

(-2.01) 

  -0.2242* 

(-1.71) 

  -0.1428 

(-0.94) 

  -0.0281 

(-0.14) 

IVOL   -0.7614*** 

(-5.38) 

  -1.3919*** 

(-5.37) 

  -2.1053*** 

(-6.40) 

  -2.8109*** 

(-6.94) 

ILLIQ   0.0052*** 

(5.71) 

  0.0111*** 

(6.45) 

  0.0168*** 

(6.64) 

  0.0212*** 

(6.44) 

Alpha 0.0021 

(0.29) 

-0.0257** 

(-2.37) 

-0.0040 

(-0.43) 

0.0016 

(0.12) 

-0.0540*** 

(-2.74) 

-0.0183 

(-1.11) 

-0.0005 

(-0.02) 

-0.0779*** 

(-2.84) 

-0.0285 

(-1.22) 

-0.0037 

(-0.15) 

-0.0955*** 

(-2.73) 

-0.0315 

(-1.02) 

Avg. R2 5.61% 7.75% 9.15% 6.15% 8.59% 10.13% 6.80% 9.25% 10.90% 7.31% 9.66% 11.40% 

Obs. 438,716 880,600 438,716 880,600 

Stocks 4,635 8,740 4,635 8,740 
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Panel B 

 3 months 6 months 9 months 12 months 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Beta -0.0470*** 

(-4.71) 

-0.0453*** 

(-4.86) 

-0.0211*** 

(-2.72) 

-0.0899*** 

(-5.18) 

-0.0844*** 

(-5.23) 

-0.0401*** 

(-2.92) 

-0.1320*** 

(-5.55) 

-0.1212*** 

(-5.53) 

-0.0586*** 

(-3.17) 

-0.1722*** 

(-6.20) 

-0.1570*** 

(-6.13) 

-0.0788*** 

(-3.62) 

CskPP 0.0938***  

(5.63) 

0.0871***  

(5.87) 

0.0521***  

(4.65) 

0.1887***  

(6.54) 

0.1672***  

(6.22) 

0.1039***  

(5.06) 

0.2764***  

(6.65) 

0.2409***  

(6.39) 

0.1494***  

(5.38) 

0.3649***  

(6.91) 

0.3201***  

(6.62) 

0.2021***  

(5.71) 

CskPN -0.0937***  

(-4.51) 

-0.0933***  

(-4.53) 

-0.0626***  

(-3.19) 

-0.1688***  

(-4.91) 

-0.1571***  

(-4.42) 

-0.1118***  

(-3.31) 

-0.2598***  

(-5.73) 

-0.2301***  

(-4.84) 

-0.1642***  

(-3.65) 

-0.3414***  

(-6.62) 

-0.2955***  

(-5.44) 

-0.2171***  

(-4.31) 

CskNP 0.0981***  

(3.48) 

0.0825***  

(3.19) 

0.0552**  

(2.38) 

0.1956***  

(3.93) 

0.1597***  

(3.54) 

0.1130***  

(2.78) 

0.02828***  

(4.09) 

0.2284***  

(3.66) 

0.1603***  

(2.89) 

0.3707***  

(4.49) 

0.3034***  

(4.10) 

0.2155***  

(3.30) 

CskNN -0.0406***  

(-3.51) 

-0.0380***  

(-4.24) 

-0.0194**  

(-2.48) 

-0.0790***  

(-4.06) 

-0.0669***  

(-4.18) 

-0.0336**  

(-2.32) 

-0.1233***  

(-4.81) 

-0.1000***  

(-4.76) 

-0.0520***  

(-2.72) 

-0.1637***  

(-5.48) 

-0.1350***  

(-5.58) 

-0.0749***  

(-3.31) 

SIZE  0.0019*  

(1.82) 

0.0069***  

(4.37) 

 0.0049***  

(2.72) 

0.0158***  

(5.75) 

 0.0077***  

(3.24) 

0.0246***  

(6.27) 

 0.0095*** 

(3.25) 

0.0309***  

(5.97) 

BM  0.0212***  

(7.68) 

0.0199***  

(7.63) 

 0.0386***  

(7.42) 

0.0362***  

(7.40) 

 0.0504***  

(6.94) 

0.0474***  

(6.94) 

 0.0584***  

(6.61) 

0.0546***  

(6.57) 

MOM  0.0179***  

(5.01) 

0.0173***  

(4.90) 

 0.0284***  

(4.43) 

0.0275***  

(4.36) 

 0.0310***  

(3.79) 

0.0307***  

(3.81) 

 0.0298***  

(3.31) 

0.0301***  

(3.40) 

REV   0.0156*** 

(2.81) 

  0.0358*** 

(4.22) 

  0.0612*** 

(5.47) 

  0.0731*** 

(5.65) 

RV   -0.1703* 

(-1.93) 

  -0.2168*  

(-1.67) 

  -0.1317  

(-0.89) 

  -0.0183  

(-0.09) 

IVOL   -0.7536***  

(-5.27) 

  -1.3860***  

(-5.37) 

  -2.1043***  

(-6.45) 

  -2.8086***  

(-7.00) 

ILLIQ   0.0052***  

(5.83) 

  0.0111***  

(6.53) 

  0.0169***  

(6.80) 

  0.0213***  

(6.61) 

Alpha 0.0108  

(1.30) 

-0.0183  

(-1.58) 

0.0019  

(0.19) 

0.0169  

(1.03) 

-0.0415*  

(-1.92) 

-0.0065  

(-0.35) 

0.0220  

(0.89) 

-0.0603*  

(-1.91) 

-0.0119  

(-0.44) 

0.0250  

(0.78) 

-0.0737*  

(-1.83) 

-0.0101  

(-0.28) 

Avg. R2 5.80% 7.92% 9.28% 6.36% 8.77% 10.27% 7.04% 9.44% 11.06% 7.53% 9.84% 11.53% 

Obs. 438,716   438,716 

Stocks 4,635   4,635 
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Online Appendix:  

Table A1 Fama–MacBeth OLS regression with single semi-coskewness 

This table reports the results of the multivariate Fama–MacBeth OLS regression. We use the Newey–West t-statistic with 10-lags and report the t-statistic value in the parentheses 

below the coefficient. *, **, *** represent significance level at 10%, 5%, and 1%, respectively. 

 CskPP  CskPN  CskNP  CskNN  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Beta -0.0127*** 

(-4.03) 

-0.0118*** 

(-3.99) 

-0.0048* 

(-1.94) 

-0.0110*** 

(-3.83) 

-0.0104*** 

(-3.87) 

-0.0037* 

(-1.70) 

-0.0111*** 

(-3.72) 

-0.0100*** 

(-3.59) 

-0.0033 

(-1.42) 

-0.0124*** 

(-4.14) 

-0.0114*** 

(-4.19) 

-0.0043** 

(-1.99) 

CskPP 0.0507*** 

(5.71) 

0.0394***  

(5.78) 

0.0219*** 

(4.29) 

         

CskPN    -0.0904*** 

(-5.67) 

-0.0620*** 

(-5.53) 

-0.0347*** 

(-3.82) 

      

CskNP       0.0923*** 

(5.04) 

0.0559*** 

(4.26) 

0.0268*** 

(2.61) 

   

CskNN          -0.0357*** 

(-4.73) 

-0.0280*** 

(-5.54) 

-0.0149*** 

(-3.89) 

SIZE  0.0013*** 

(3.18) 

0.0017*** 

(2.89) 

 0.0020*** 

(4.27) 

0.0021*** 

(3.23) 

 0.0020*** 

(4.62) 

0.0022*** 

(3.43) 

 0.0014*** 

(3.42) 

0.0019*** 

(3.01) 

BM  0.0081*** 

(8.13) 

0.0073*** 

(8.10) 

 0.0085*** 

(8.15) 

0.0075*** 

(8.13) 

 0.0084*** 

(8.10) 

0.0074*** 

(8.10) 

 0.0083*** 

(8.11) 

0.0074*** 

(8.12) 

MOM  0.0069*** 

(5.29) 

0.0064*** 

(5.06) 

 0.0066*** 

(5.14) 

0.0063*** 

(5.03) 

 0.0065*** 

(5.11) 

0.0062*** 

(4.98) 

 0.0066*** 

(5.10) 

0.0063*** 

(5.00) 

REV   -0.0028 

(-0.95) 

  -0.0031 

(-1.07) 

  -0.0035 

(-1.23) 

  -0.0034 

(-1.20) 

RV   -0.1098** 

(-2.56) 

  -0.1106*** 

(-2.48) 

  -0.1112*** 

(-2.58) 

  -0.1111** 

(-2.52) 

IVOL   -0.2597*** 

(-4.29) 

  -0.2843*** 

(-4.37) 

  -0.2837*** 

(-4.56) 

  -0.2716*** 

(-4.32) 

ILLIQ   0.0012*** 

(3.25) 

  0.0012*** 

(3.23) 

  0.0013*** 

(3.32) 

  0.0012*** 

(3.25) 

Alpha -0.0043 

(-1.33) 

-0.0161*** 

(-3.66) 

-0.0032 

(-0.96) 

0.0176*** 

(7.69) 

-0.0046 

(-1.22) 

0.0039 

(1.21) 

0.0184*** 

(7.00) 

-0.0048 

(-1.35) 

0.0032 

(1.00) 

-0.0033 

(-1.07) 

-0.0163*** 

(-3.72) 

-0.0029 

(-0.90) 

Avg. R2 4.37% 6.21% 7.48% 3.66% 5.89% 7.34% 3.89% 5.99% 7.40% 4.10% 6.07% 7.41% 
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(END) 
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