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Machine Learning Approaches in Forecasting Biodiversity Disclosures 

 

Abstract 

The growing ecological and financial risks associated with biodiversity loss underscore the 

need for transparent corporate reporting. This study applies machine learning to examine 

firm-specific, industry-related, and macroeconomic factors influencing biodiversity 

disclosures. Analyzing a comprehensive dataset of U.S. firms from 1994 to 2022, we assess 

the predictive performance of TreeNet® (gradient boosting), Random Forest®, and CART® 

models. Our results indicate that TreeNet® achieves the highest accuracy, outperforming 

traditional approaches. Among the key predictors, accounting-related variables—such as 

asset tangibility, industry competition, and firm size—demonstrate the strongest predictive 

power, while governance and market factors exhibit moderate influence. The findings 

highlight the variability of biodiversity disclosures across industries and emphasize the 

potential of machine learning in sustainability research. By leveraging data-driven insights, 

this study provides valuable guidance for policymakers, investors, and corporate leaders in 

improving biodiversity accountability. 

Key words: Biodiversity; machine learning; disclosure; environmental risk; 

sustainability  

 

 

 

 

 

1. Introduction 

Biodiversity, encompassing the diversity of life across species, ecosystems, and genetic 

resources, is fundamental to ecological stability and human survival (The Guardian, 2018; 
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United Nations [UN], 2023; United Nations Foundation, 2023; World Wildlife Fund [WWF], 

2024a). It underpins critical ecosystem services such as pollination, water purification, and 

climate regulation, all of which are crucial for global economy (Sherman, 2024). However, 

biodiversity is declining at an unprecedented rate due to human activities such as deforestation, 

habitat destruction, and pollution (Ceballos, Ehrlich, & Dirzo, 2017; World Wildlife Fund 

[WWF], 2024b). The World Wildlife Fund [WWF] (2022) indicates a staggering 69% 

reduction in global wildlife populations since 1970, raising economic concerns and prompting 

businesses to recognize their role in biodiversity loss (Blanco-Zaitegi, Álvarez Etxeberria, & 

Moneva, 2022). Consequently, there is growing demand for corporate biodiversity risk 

disclosures to enhance transparency and accountability (Ernst & Young [EY], 2022; Price 

Waterhouse Coopers [PwC], 2024). 

In this study, we employ state-of-the-art machine learning techniques to identify the 

factors driving corporate biodiversity risk disclosure. The contemporary literature highlights 

machine learning as a powerful tool for processing large datasets, identifying patterns, and 

making predictive inferences (Mullainathan & Spiess, 2017; Krupa & Minutti-Meza, 2022; 

Frost, Jones, & Yu, 2023; Kaya, Reichmann, & Reichmann, 2024). Compared to traditional 

regression methods, machine learning offers superior out-of-sample prediction and reveals 

complex variable interactions and nonlinear relationships (Jones et al., 2023). Despite its 

potential, the application of machine learning in biodiversity research remains underexplored.1 

In this study, we aim to address this critical gap in the literature by employing machine learning 

model to provide deeper insights into the interplay between governance structures, regulatory 

environments, stakeholder pressures, and firm characteristics in shaping biodiversity reporting 

practices. 

 
1 Extant biodiversity literature relies on traditional statistical methods (e.g., Haque & Jones, 2020; Krause, Droste, 

& Matzdorf, 2021; Carvajal, Nadeem, & Zaman, 2022; Hambali & Adhariani, 2024; Orazalin, Ntim, & Malagila, 

2024; Orazalin, Ntim, & Kalimilo Malagila, 2025). 
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This study is motivated by two key factors. First, biodiversity disclosures are crucial 

for assessing firms’ ecological impacts and environmental accountability (Ernst & Young [EY], 

2022; Price Waterhouse Coopers [PwC], 2024), yet current reporting remains limited, 

inconsistent, and incomplete (Boiral, 2016; Krause et al., 2021). Only 5% of earnings calls and 

3.8% of 10-K filings address biodiversity risks (Garel, Romec, Sautner, & Wagner, 2024; 

Giglio, Kuchler, Stroebel, & Zeng, 2023). Unlike climate risks, which are quantified through 

standardized metrics like carbon emissions, biodiversity encompasses diverse dimensions, 

including land use, species richness, and ecosystem functionality (Hoepner et al., 2023; 

Schimanski et al., 2023). While emerging frameworks such as the Taskforce on Nature-related 

Financial Disclosures (TNFD) and Iceberg Data Lab’s Corporate Biodiversity Footprint (CBF) 

seek to standardize reporting, challenges persist, including slow adoption, data limitations, and 

regulatory gaps (Trinh, 2023). 

Second, biodiversity loss poses substantial financial risks, with the World Economic 

Forum [WEF] (2020) identifying it as one of the top five threats to global economic stability, 

as an estimated $44 trillion of global GDP depends on nature and its services. Firms with high 

biodiversity impacts often face higher costs of equity and limited access to capital due to 

heightened regulatory scrutiny and reputational risks (Hoepner et al., 2023; Liu et al., 2024). 

However, existing ESG frameworks inadequately capture these risks (Xin, Grant, Groom, & 

Zhang, 2023). The Kunming Declaration and Montreal Agreement highlight biodiversity’s 

growing relevance in investment strategies (Giglio, Kuchler, Stroebel, & Zeng, 2023; Flammer, 

Giroux, & Heal, 2025). This underscores the need to understand the drivers of corporate 

biodiversity disclosures. We argue that machine learning models can enhance biodiversity risk 

disclosure prediction, improving transparency and supporting data-driven sustainability 

governance. By providing a scalable and systematic approach to assessing disclosures, machine 

learning aids investors, regulators, and policymakers in evaluating corporate biodiversity risks.  
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Using a large dataset of U.S. firm-year observations from 1994 to 2022, we assess the 

predictive performance of machine learning models in forecasting biodiversity risk disclosure. 

We employ TreeNet® (gradient boosting), Random Forest®, and CART® models. Consistent 

with Giglio et al. (2023), we define biodiversity risk disclosure as an indicator variable that 

takes a value of one if a firm’s 10-K statement includes at least two sentences about biodiversity 

risk. Following prior studies (e.g., Haque & Jones, 2020; Krause et al., 2021; Carvajal et al., 

2022; Hambali & Adhariani, 2024; Orazalin et al., 2024; Orazalin et al., 2025), we employ 

more than 80 variables, including firm-level financial characteristics, stock market factors, 

corporate governance, environmental performance, and industry factors, as predictors of firm-

level biodiversity disclosure. In addition to out-of-sample testing, we use marginal effects and 

partial dependence plots (PDPs) to reveal predictor strength, direction, and possible nonlinear 

relationships. 

We find that the cross-sectional out-of-sample predictive performance of the TreeNet® 

gradient boosting model (GBM) consistently outperforms alternative approaches, achieving 

the highest ROC value (0.9266) and the lowest misclassification rates (2.84%). This strong 

predictive performance is particularly evident in the consumer durables, energy, telephone and 

television transmission, utility and other industries, as reflected in their AUC scores exceeding 

0.9171. When examining the predictive performance across different variable dimensions, we 

find that the accounting dimension outperforms others in terms of predictive accuracy. Our 

analysis of the relative variable importance (RVI) suggests that asset tangibility (PPE) is the 

most critical variable, followed closely by industry competitiveness (Herfindahl index), 

number of employees and Total Assets. Notably, we observe an overall non-liner impact of 

these variables in predicting biodiversity disclosure. These results remain robust in longitudinal 

analysis and across alternative sample periods. Further robustness checks, including stability 

tests with varying model parameters and cross-validation methods, confirm these findings. 
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Overall, our study highlights the significance of integrating advanced machine learning 

techniques with a comprehensive dataset to provide valuable insights for biodiversity 

disclosure and strategic decision-making.  

Our study makes several significant contributions. First, our study is among the first to 

apply advanced machine learning techniques to biodiversity disclosures, expanding the use of 

artificial intelligence in sustainability accounting. While prior research relies on traditional 

statistical models (e.g., logistic regression, fixed effects) to assess corporate disclosure 

practices (Haque & Jones, 2020; Krause et al., 2021), we leverage machine learning to uncover 

complex, non-linear relationships between firm-level and industry-level factors and 

biodiversity disclosures. We show that machine learning models, particularly GBM, 

outperform traditional methods in identifying key determinants of biodiversity disclosures. By 

integrating machine learning with a comprehensive dataset, our study advances environmental 

accountability research and lays the foundation for AI-driven sustainability assessments. 

Second, we contribute to the growing literature on biodiversity disclosures. While prior 

research suggests corporate governance, stakeholder pressures, and regulatory frameworks as 

key drivers (e.g., Hassan, Roberts, & Atkins, 2020; Carvajal et al., 2022; Ali, García-Sánchez, 

Aibar-Guzmán, & Rehman, 2024; Treepongkaruna, 2024; Orazalin et al., 2025), few studies 

systematically compare their relative significance. Using RVI metrics from machine learning 

models, we find that asset tangibility, industry competitiveness, and firm size are primary 

determinants of biodiversity disclosures, while market factors and corporate governance 

mechanisms also play a role.  These findings underscore the importance of external monitoring 

in fostering corporate transparency, reinforcing prior work on the role of regulators, media, and 

NGOs in promoting accountability and disclosure practices (Boiral, 2016; Haque & Jones, 

2020). 
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Third, we extend emerging machine learning literature in accounting and finance by 

demonstrating the superior predictive performance of GBM in biodiversity disclosure. This 

builds on studies showcasing machine learning’s effectiveness in predicting financial distress 

(Jones, 2017), detecting fraud (Bao, Ke, Li, Yu, & Zhang, 2020; Lokanan & Sharma, 2025), 

forecasting stock returns and profitability (Avramov et al., 2023; Leippold et al., 2022; Jones 

et al., 2023), and assessing environmental, social and governance (ESG) performance (Zhu & 

Rahman, 2025). Our finding of non-linear relationships in biodiversity disclosure prediction 

aligns with extend studies highlighting the importance of capturing complex and non-linear 

patterns in financial data (Jones, 2017). Moreover, our longitudinal validation supports the 

reliability of machine learning models over time in financial applications, addressing concerns 

about temporal stability (Giglio et al., 2021). 

Our findings have important policy and managerial implications. For policymakers, the 

superior predictive performance of machine learning models underscores the potential for AI-

driven regulatory monitoring and enforcement in biodiversity disclosures. Regulators can 

leverage these models to identify firms with inadequate disclosure practices and design targeted 

interventions to enhance transparency. For managers, our results highlight the critical role of 

firm characteristics—such as asset tangibility, industry competitiveness, and corporate 

governance—in shaping biodiversity disclosure outcomes. Firms seeking to improve their 

sustainability reporting should prioritize governance mechanisms that enhance external 

monitoring and stakeholder engagement. Additionally, as machine learning reveals complex, 

non-linear relationships in disclosure practices, companies can integrate AI-driven analytics 

into their sustainability strategies to anticipate regulatory expectations and strengthen 

environmental accountability. 

2. Theoretical background and literature review 

2.1. Theoretical background 

https://scholar.google.com.au/citations?user=hYGPtU8AAAAJ&hl=en&oi=sra
https://scholar.google.com.au/citations?user=-Ta9boQAAAAJ&hl=en&oi=sra
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Corporate biodiversity disclosure is shaped by multiple theoretical perspectives that provide 

complementary insights into how firms manage biodiversity disclosures to align with 

stakeholder expectations, build trust, and mitigate environmental risks. We draw on legitimacy 

theory, signalling theory, and stakeholder theory to explore the determinants of biodiversity 

disclosure. 

The legitimacy theory of biodiversity disclosure posits that firms voluntarily disclose 

their biodiversity impact to maintain a “social license to operate,” and align with societal 

expectations for transparency (Dowling & Pfeffer, 1975; Haque & Jones, 2020). These 

disclosures are particularly crucial in high-impact industries such as energy, mining, and 

agriculture, where they help mitigate external pressures and enhance corporate reputations 

(Haque & Jones, 2020). Robust biodiversity reporting enhances corporate legitimacy by 

demonstrating genuine environmental efforts (Jones, 2003), while vague or unverifiable 

disclosures undermine accountability and stakeholder trust (Clarkson, Li, Richardson, & 

Vasvari, 2008). Comprehensive disclosures further align firms with global conservation efforts, 

reinforcing legitimacy among stakeholders and regulators. 

The signalling theory suggests that firms voluntarily disclose biodiversity-related 

information to signal superior environmental performance to stakeholders (Spence, 1973). 

Firms with strong biodiversity performance use these disclosures to differentiate themselves 

from peers, demonstrating accountability and proactive risk management (Brooks & Schopohl, 

2021). Transparent and detailed reporting reduces information asymmetry, enhances 

reputation, and provides competitive advantages, such as access to green financing and stronger 

stakeholder relationships (Braam et al., 2016). Nonetheless, firms with weak biodiversity 

performance may limit transparency to obscure shortcomings, exacerbating information 

asymmetry. The board plays a critical role in ensuring the credibility of biodiversity 
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disclosures, overseeing sustainability commitments, and preventing greenwashing (Haque & 

Jones, 2020; Hambali & Adhariani, 2024; Orazalin et al., 2025).  

The stakeholder theory posits that firms disclose biodiversity-related information to 

address the diverse demands of stakeholders, including regulators, NGOs, investors, and local 

communities (Freeman, 2010; Ali et al., 2024). Recognizing the growing emphasis on 

environmental sustainability, companies use biodiversity disclosures to foster trust and 

demonstrate accountability. Stakeholder pressure encourages firms to integrate biodiversity 

considerations into their reporting frameworks, enhancing transparency and aligning with 

global environmental goals. Consequently, firms with strong biodiversity performance are 

more likely to voluntarily disclose their initiatives to meet stakeholder expectations and sustain 

collaborative relationships (Gerged et al., 2024).  

 

2.2. Biodiversity literature and determinants 

With the growing importance of biodiversity conservation, a growing body of literature 

examines the factors driving variations in biodiversity disclosure. As with other areas of 

sustainability reporting, biodiversity disclosures vary significantly across firms and industries, 

reflecting differences in organizational capabilities and priorities, stakeholder pressures, and 

regulatory environments (Giglio et al., 2023). In this study we employ a comprehensive set of 

features influencing biodiversity disclosure practices. 

While selecting biodiversity disclosure predictors, we include key determinants from 

prior literature and other plausible factors, even if they remain explicitly underexplored. This 

broad approach is warranted by two considerations. First, no clear theoretical or empirical 

consensus exists on the relative importance of specific determinants, as firm-level 

characteristics and external factors influencing biodiversity disclosure are often highly 
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correlated. However, prior research and corporate reporting practices suggest that some factors 

are more influential. Given the ability of GBM to unravel signals from correlated predictors, 

this study examines how well the model can differentiate among them. Second, incorporating 

a comprehensive set of predictors allows the model to explore a wide feature space and identify 

the most influential factors. The findings contribute to the theoretical discourse on biodiversity 

disclosure drivers and deepen our understanding of corporate sustainability reporting 

mechanisms. 

2.2.1. Accounting dimension (ACCT) 

Extant literature suggests that accounting and financial factors significantly shape 

firms’ biodiversity risk disclosure. Larger and mature firms—measured by total assets, sales, 

employee size and firm age—tend to disclose biodiversity risks due to greater stakeholder 

scrutiny and resource availability (Ali et al., 2024; Garel et al., 2024). Profitable firms, captured 

by return on equity (ROE), return on assets (ROA), profit margin, and industry-adjusted ROA, 

may disclose biodiversity risks to signal financial strength and long-term sustainability 

commitments (Clarkson et al., 2008; Ali et al., 2024). However, financially distressed firms, 

indicated by Altman’s Z-score, may be less transparent due to resource constraints and short-

term financial survival priorities (Beck et al., 2018). Financial leverage also influences 

biodiversity disclosure, as creditors may pressure highly leveraged firms to adopt risk-averse 

strategies (Garel et al., 2024). 

 Investment and operational efficiency also influence biodiversity disclosure. Firms with 

higher capital expenditures (CAPX) and research and development (R&D) intensity may 

disclose more due to long-term strategic focus and regulatory compliance requirements (Qian 

& Chen, 2021; Orazalin et al., 2024). The newness of property, plant, and equipment (PPE) 

can reflect environmental commitment, potentially influencing disclosure practices (Garel et 

al., 2024). Market competition, captured by the Herfindahl Index, can shape disclosure 
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strategies, with firms in concentrated industries engaging in greater transparency to 

differentiate themselves (Benlemlih et al., 2024). Additionally, higher advertising expenses 

(Advertising Exp.), sales growth (Sales Growth), EPS growth and total assets growth may drive 

disclosure as part of brand-building strategies (Huang & Kung, 2010; Garel et al., 2024). 

 Firms with higher cash holdings (Cash), operating cash flow (OCF), and liquidity 

(current ratio) have more financial flexibility to invest in sustainability initiatives and 

disclosures (Benlemlih et al., 2024; Orazalin et al., 2024). Dividend paying firms signal 

stability and commitment to stakeholder, enhancing biodiversity disclosures (Benlemlih et al., 

2024). Conversely, financing constraints, measured by the Kaplan-Zingales (KZ) index, limit 

disclosure due to limited financial resources. Overall, firm-specific financial conditions 

critically influence biodiversity risk disclosure. 

2.2.2 Market-related dimensions (MKT) 

Market-related factors influence firms’ biodiversity risk disclosure practices by shaping 

investor expectations, firm valuation, and corporate transparency. Higher share prices and 

stock returns signal market confidence, incentivizing firms to enhance biodiversity disclosures 

to maintain investor trust (Cormier & Magnan, 1999). Conversely, firms with high stock return 

volatility (RET_SD) face greater scrutiny and may enhance environmental disclosures to 

mitigate risks (Clarkson et al., 2008). Market capitalization (MCap), reflecting firm size and 

prominence, is positively associated with biodiversity risk disclosure due to heightened public 

and regulatory expectations (Cormier et al., 2005; Garel et al., 2024). 

 Capital structure and valuation also influence biodiversity disclosure. Firms raising 

capital may disclosure biodiversity risk to attract investors and lower financing costs (Cormier 

et al., 2005; Clarkson et al., 2011). Similarly, the market-to-book ratio (MTB) and its industry-

adjusted counterpart (Ind. Adj_MTB) signal growth potential, with high-growth firms disclose 
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more biodiversity risks to align with long-term sustainability trends (Haque & Jones, 2020). 

Additionally, firms reliant on capital markets (Capital Mkt. Reliance) may disclose biodiversity 

risks to meet investor demand and secure external financing (Cormier et al., 2005). 

Risk and liquidity considerations shape disclosure practices. Systematic risk (BETA) is 

positively associated with disclosure, as high-risk firms increase transparency to reduce 

information asymmetry (Cormier et al., 2005). Firms with high trading volume, a proxy for 

stock liquidity, may enhance disclosures to sustain investor engagement (Cormier et al., 2005; 

Benlemlih et al., 2024). Overall, financial markets play a critical role in shaping corporate 

biodiversity reporting. 

2.2.3 Corporate governance dimension (GOVERN) 

Corporate governance has considerable impact on corporate biodiversity disclosure. 

Strong governance mechanisms enhance transparency and accountability, compelling firms to 

disclose more environmental information (Haque & Jones, 2020; Ali et al., 2024). Larger 

boards (Board Size) bring diverse expertise and foster biodiversity-related disclosures, while 

independent directors (Board Independence) advocate for responsible environmental practices 

(Haque & Jones, 2020). Gender Diversity enhances corporate sustainability, leading to higher 

biodiversity disclosure (Haque & Jones, 2020). High meeting attendance reflects board 

diligence, reinforcing biodiversity disclosure efforts (Ali et al., 2024). However, CEO Duality 

can reduce disclosure, as powerful CEOs may resist transparency (Haque & Jones, 2020; Lu 

& Wang, 2021). Similarly, CEOs with significant ownership (CEO Ownership) stakes may 

prioritize profitability over sustainability, reducing biodiversity disclosure (Gerged, 2021). 

Ownership structure also influences biodiversity risk disclosure. Institutional investors 

consider environmental risks in investment decisions (Ali et al., 2024), with long-term 

investors (Dedicated Ownership) exerting stronger pressure than short-term investors 
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(Transient Ownership). The effect of blockholder ownership (Blockholder Ownership) 

depends on whether large shareholders perceive biodiversity disclosure as value-enhancing. 

High institutional ownership concentration may create agency conflicts, leading to selective 

disclosures that align with dominant investors rather than broader stakeholders (Cormier et al., 

2005). Analyst coverage prompts firms to either to enhance biodiversity disclosure to mitigate 

reputational risks or limit it to avoid regulatory scrutiny (Ali et al., 2024). 

With respect to other governance mechanisms, firms audited by a Big4 auditor disclose 

more biodiversity information due to greater assurance and credibility (Simnett et al., 2009). 

Strong employee relations and human rights commitments enhance transparency (Mallin et al., 

2013). CEO attributes also matter—CEOs with MBAs or female CEOs demonstrate stronger 

sustainability commitments (Lewis et al., 2014). CEO tenure has a nonlinear effect; 

experienced CEOs may enhance sustainability or resist change (Haque & Jones, 2020), while 

younger CEOs are often more open to sustainability initiatives. Media scrutiny pressures firms 

to disclose biodiversity risks to manage public perception (Clarkson et al., 2011). A newly 

appointed CEO may use enhanced disclosures to establish credibility and signal a strategic shift 

from prior leadership (Lewis et al., 2014). 

2.2.4 Environmental performance dimension (ENVIRON) 

Environmental performance plays a critical role in biodiversity risk disclosure. Firms 

with lower CO₂ emissions and waste generation signal superior environmental responsibility, 

incentivizing greater disclose of their biodiversity impact (Orazalin et al., 2024; Garel et al., 

2024). Similarly, higher environmental performance correlates with greater biodiversity 

disclosure due to stronger stakeholder accountability, while higher environmental concerns 

may either increase disclosure to mitigate reputational risks or reduce disclose due to litigation 

risks (Cho et al., 2006). Additionally, firms that actively recycle waste or engage in waste 
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reduction initiatives are inclined to disclose biodiversity information as part of their broader 

environmental commitment (Orazalin et al., 2024). 

Corporate sustainability structures also influence biodiversity disclosure. The presence 

of a CSR committee or an environmental management team strengthens a firm’s environmental 

governance framework, enhancing transparency in biodiversity reporting (Haque & Jones, 

2020). Firms receiving environmental fines may disclose biodiversity risks to comply with 

regulatory requirements or rebuild stakeholder trust (Brammer and Pavelin, 2008). Similarly, 

firms investing in environmental restoration or sustainability initiatives tend to disclose more 

to highlight their risk mitigation efforts (Brammer & Pavelin, 2006). Furthermore, firms 

receiving CSR awards or making environmental investments may disclose biodiversity risks to 

strengthen their sustainability credentials (Hassan et al, 2020). 

Firms with greater climate exposure may disclose biodiversity risks as part of their 

broader climate strategy (Sautner et al., 2023). Higher climate change sentiment, reflecting 

greater awareness and concern about climate-related issues, prompts firms to increase 

transparency regarding biodiversity risks. Additionally, firms reporting reduction in 

biodiversity impact and land use impact tend to disclose more biodiversity information to signal 

a proactive environmental stewardship (Clarkson et al., 2008). 

2.2.5. Other dimension (others) 

Other firm- and industry-level characteristics also affect biodiversity risk disclosure. Sectoral 

differences in environmental exposure and regulatory pressures shape disclosure practices. 

High-impact industries (e.g., energy, materials) face greater scrutiny and disclose more about 

biodiversity, whereas service sectors generally disclose less (Giglio et al., 2023; Garel et al., 

2024). Technology firms (HITECH), despite having less direct environmental impacts, may 

disclose biodiversity risks to maintain legitimacy and investor confidence. Multinational 
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operations (Foreign Operation) also drive disclosure as these firms navigate diverse regulatory 

frameworks and stakeholder expectations (Benlemlih et al., 2024). Finally, while economic 

crises (Crisis) can constrain voluntary reporting resources, they simultaneously intensify 

market demands for biodiversity transparency. 

2.3. Machine learning method in accounting and finance 

Machine learning has become increasingly important in accounting and finance due to 

its ability to analyze complex datasets, enhance predictive accuracy, and support evidenced-

based decision-making (Krupa & Minutti-Meza, 2022). Unlike traditional models – such as 

linear regression and logistic models—that require strict assumptions and prior variable 

selection, machine learning methods can process large-scale, heterogeneous data and identify 

nonlinear relationships without succumbing to overfitting (Geertsema & Lu, 2023). 

Importantly, machine learning model autonomously identify the most pertinent predictors and 

model their interactions, uncovering insights that may remain undetected when using 

conventional techniques (Jones, 2017).  

Advanced machine learning methods, such as gradient boosting machine (GBM) and 

random forests, leverage ensemble learning to integrate multiple models, thereby reducing 

error margins and enhancing predictive reliability. Furthermore, these approaches help mitigate 

the risk of p-hacking—a common issue in traditional statistical research—by prioritizing 

predictive performance over exclusive reliance on statistical significance (Ohlson, 2022). This 

methodological shift not only improves reproducibility but also bolsters the overall credibility 

of research findings. 

Contemporary research in accounting and finance has increasingly employed machine 

learning models to predict various financial and accounting outcomes. For example, Bao et al. 

(2019) demonstrate that machine learning models, specifically RUSBoost, outperform 
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conventional techniques such as logistic regression and support vector machines in detecting 

accounting fraud. Similarly, Bertomeu et al. (2020a) find that GBM is effectively identify 

accounting misstatements when financial, audit, and market data were integrated. Ding et al. 

(2020) show that machine learning yields more accurate estimates of insurance loss reserves 

than those reported by managers, facilitating the detection of both unintentional errors and 

deliberate misreporting. Extending this line of research, Jiang et al. (2024) use machine 

learning to forecast stock price crash risks in China’s stock market, attaining superior accuracy 

compared to conventional methods. Furthermore, Jones et al. (2023) demonstrate that machine 

learning can reveal complex relationships among profitability indicators using the DuPont 

decomposition model, while Jones (2017) finds that gradient boosting outperforms logistic 

regression in predicting corporate bankruptcies. Building on this growing body of literature, in 

this study we employ machine learning to predict biodiversity risk disclosure. 

 

3. Research methods 

3.1. Data and sample 

We construct our sample by integrating data from multiple sources: financial information from 

Compustat, stock price and return data from the Center for Research in Security Prices (CRSP), 

stock ownership data from Thomson Reuters Institutional Holdings (13F) database, executive-

level information from Execucomp, board-level data from Institutional Shareholder Services 

(ISS) and BoardEx, and environmental, social, and governance (ESG) data from MSCI and 

Refinitiv ESG. We exclude financial firms (SIC codes 6000–6999). All continuous variables 

are winsorized at the 1st and 99th percentiles to mitigate the impact of extreme outliers. The 

final sample consists of 14,948 US firm-year observations covering the period from 1994 to 

2022. 
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3.2. Measurement 

We quantify firm-level biodiversity risk disclosure through a novel 10K-biodiversity-count 

score, derived from a rigorous textual analysis of corporate 10-K filings. Leveraging a 

sophisticated methodology developed by Giglio et al. (2023), our approach employs a 

specialized biodiversity dictionary with meticulously refined taxonomic terms to 

systematically identify and extract biodiversity-related sentences. The analysis is implemented 

via the Seekinf platform’s (https://www.seekinf.com/) advanced natural language processing 

capabilities, which implement targeted regular expression searches to precisely locate and 

extract sentences referencing biodiversity risk. 

 We ensure methodological rigor through a multi-stage filtering process that eliminates 

contextually irrelevant mentions. The comprehensive biodiversity vocabulary and specific 

terminological criteria are exhaustively documented in Appendix OA.1. This innovative metric 

serves as a nuanced proxy for corporate biodiversity awareness, capturing the depth and 

complexity of firms’ engagement with and reporting on biodiversity-related risks. For our 

analysis, following Giglio et al. (2023), we classify biodiversity risk disclosure as a binary 

variable equal to one if the 10-K statement contains at least two sentences addressing 

biodiversity, and 0 otherwise. 

3.3. Prediction model  

In this study, we use three tree-based machine learning models for analysis: 

classification and regression trees (CART) (Breiman et al., 1984), random forests (Breiman, 

2001), and gradient boosting machines (GBM) (Friedman, 2001). All these models share a tree-

based foundation but differ in construction, complexity, and predictive performance.  

CART: CART is a fundamental decision tree model that recursively splits data based 

on significant variables to predict outcomes. CART is simple and interpretable but prone to 

https://www.seekinf.com/
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overfitting with complex datasets. Nonetheless, it serves as a baseline model for evaluating the 

incremental power of other advanced ensemble models discussed below.  

Random Forests: Random forests extend CART by constructing multiple decision trees 

using random subsets of data and features (“bagging”) (Breiman, 2001). Predictions are 

aggregated through majority voting for classification or averaging for regression. This 

ensemble approach reduces overfitting and provides variable importance scores, which are 

useful for feature selection.  

GBM: Gradient boosting machines, a more sophisticated ensemble approach, construct 

trees sequentially, with each tree learning from the errors of the previous one to minimize a 

specified loss function (Friedman, 2001). This iterative process captures non-linear patterns 

and complex interactions effectively. Although computationally intensive, GBM provides 

superior performance, making it popular for predictive modeling (Hastie et al., 2009; Jones et 

al., 2023).  

We compare these models based on their prediction accuracy and error rates. We use 

TreeNet® for GBM, Salford Predictive Modeler version of Random Forest®, and CART® for 

evaluating their predictive accuracy (Minitab, 2024)2. 

 

 

4. Findings 

4.1. Summary statistics 

We present the mean level of biodiversity risk disclosures and the distribution of firms during 

the sample period in Table 1. Starting at a modest 0.032 in 1994, the mean values remain 

 
2 We use the term GBM and TreeNet® interchangeably throughout this paper.  
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relatively low through the 1990s, fluctuating between 0.014 and 0.033. This period likely 

reflects limited corporate focus on biodiversity risks, as environmental issues had not yet 

gained significant traction in the business or regulatory landscapes. From the early 2000s, there 

is a gradual increase in the mean, with a more pronounced rise observed in the latter half of the 

2000s. The mean levels rise steadily through the 2010s, reaching their highest point at 0.100 in 

2017. This peak suggests that during this period, companies intensified their efforts to disclose 

biodiversity-related risks, potentially driven by stronger regulations, investor demand, and 

public scrutiny. Interestingly, after the peak in 2017, the mean levels plateau and slightly 

decline, fluctuating between 0.076 and 0.095 through 2022.  Overall, the increase in mean 

biodiversity risk disclosure levels over time reflects a growing recognition of the importance 

of biodiversity in corporate risk management.   

The number of firms in the sample exhibits interesting temporal variations, starting with 

1,553 firms in 1994. The frequency of observations is highest during the late 1990s and early 

2000s, with a gradual decline in later years. However, the consistent mean increases despite 

this decline suggest a stronger focus on biodiversity risk reporting in corporate disclosures 

among the remaining sample. The total mean disclosure across all years is 0.047, based on 

133,618 observations. 

[Table 1] 

Table 2 reports the mean level of biodiversity risk disclosure across the Fama-French 

twelve industry classifications. We observe the highest mean disclosure levels in the energy 

(0.252) and utilities (0.233) sectors, indicating that firms in these industries are more proactive 

in disclosing biodiversity risks, likely due to the direct environmental impact of their 

operations. In contrast, consistent with prior studies (Skouloudis et al., 2019), the 

telecommunications and business equipment sectors show minimal engagement, with mean 

disclosure levels of 0.003 and 0.008, respectively, suggesting lower prioritization of 
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biodiversity concerns. The frequency distribution indicates that the business equipment sector 

has the highest number of firms (28,542), whereas consumer durables (2,845) have fewer firms. 

This highlights how biodiversity risk disclosure practices vary not only in intensity but also in 

the representation of firms across different industries. 

[Table 2] 

4.2. Cross-sectional predictive performance of various machine learning models 

Table 3 presents the results evaluating the cross-sectional predictive performance of different 

machine learning models for biodiversity risk disclosure3. We observe that TreeNet® 

demonstrates superior performance across all metrics, emerging as the most suitable model in 

predicting biodiversity risk disclosure in both the in-sample (training) and out-of-sample 

(testing) data. It achieves exceptional ROC scores of 0.9990 (training) and 0.9266 (testing), 

compared to lower ROC scores for Random Forest® (0.9095 training, 0.9241 testing) and 

CART® (0.8293 training, 0.8218 testing).  In terms of average log-likelihood, TreeNet® also 

achieved the best performance with values of 0.0241 (training) and 0.0936 (testing), far 

superior to Random Forest® and CART®. Finally, TreeNet® shows the lowest 

misclassification rates, 0.0047 (training) and 0.0284 (testing), in contrast to higher rates for 

Random Forest® (0.0366 training, 0.0355 testing) and CART® (0.4291 training, 0.4461 

testing). Overall, these results clearly indicate that ensemble methods, particularly TreeNet®, 

are more effective than simpler decision tree approaches for predicting biodiversity risk 

disclosure, with TreeNet® demonstrating the most promising combination of accuracy, 

stability, and predictive power. Therefore, in our subsequent analyses, we focus on the 

TreeNet® model. 

 
3 The cross-sectional sample is constructed using a standard random allocation method, with 80% of the 

observations assigned to the training sample and the remaining 20% allocated to the test sample. 
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[Table 3] 

4.3. Out of sample predictive performance across industries 

We present the cross-sectional out-of-sample predictive performance of the TreeNet® 

(gradient boosting) model for biodiversity risk disclosure across industries in Table 4. The 

model demonstrates strong overall predictive performance for biodiversity risk disclosure 

across different industries, with particularly robust results in consumer durables (FF2), energy 

(FF4), telephone and television transmission (FF7), utility (FF8) and other industries (FF12) 

as evidenced by their high AUC scores (0.9753, 0.9362, 0.9929, 0.9478, and 0.9171 

respectively). The superior performance in these sectors can be attributed to their more 

standardized and regulated environmental reporting practices, especially in the energy and 

utility sectors where biodiversity impacts are well-documented and closely monitored (Giglio 

et al., 2023).  

However, the model shows relatively weaker performance in business equipment (FF6) 

and healthcare (FF10) sectors, with lower AUC scores of 0.7819 and 0.8275 respectively. This 

reduced predictive power may be explained by the more diverse and less standardized nature 

of biodiversity risk reporting in these industries, as they typically have less direct 

environmental impacts compared to extractive or manufacturing industries (Skouloudis et al., 

2019).   

[Table 4] 

 

4.4. Out of sample predictive performance across feature dimensions 

Table 5 demonstrates the predictive performance of the TreeNet® (gradient boosting) model 

in forecasting biodiversity risk disclosure using five - dimensions: accounting (ACCT), market 

(MKT), governance (GOVERN), environmental (ENVIRON), and other (OTHERS) 
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dimensions. The ACCT features outperform other dimensions in terms of predictive accuracy 

with an AUC of 0.9018 and a low misclassification rate of 0.0324. This suggests that 

accounting-related metrics contribute significantly to accurate biodiversity risk predictions, 

likely due to their quantifiable and structured nature, which aligns well with machine learning 

model capabilities. This is followed by the OTHERS, GOVERN and MKT dimensions with an 

AUC of 0.8286, 0.7964 and 0.7884. The relatively higher predictive performance in GOVERN 

dimension may be driven by the formalized nature of corporate governance reporting 

requirements. 

The model shows relatively moderate performance ENVIRON dimension, with AUC 

values of 0.6535. These lower performance metrics likely stem from the complex, evolving 

and often qualitative nature of environmental features that present challenges in data 

standardization and model training. Studies such as Li et al. (2021) emphasize that machine 

learning models generally perform better when handling structured, numerical data as opposed 

to unstructured, nuanced environmental data. Nevertheless, the overall predictive performance 

remains robust across all dimensions, with consistently low misclassification rates (below 5%) 

and strong lift values. Taken together, our results suggest that machine learning approaches can 

effectively predict biodiversity risk disclosures, though their effectiveness varies based on the 

standardization and structure of the underlying reporting frameworks in each dimension. 

[Table 5] 

 

4.5. Relative variable of importance   

Table 6 presents the Relative Variable Importance (RVI) scores for the biodiversity risk 

prediction model, derived using the TreeNet® model with all predictor variables outlined in 

Appendix A. The RVI scores, ranging from 0 to 100, quantify the contribution of each variable 
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to the model’s predictive accuracy, with a score of 100 representing the most influential 

predictor and all other variables scaled relative to it. Variables with a score of 0 are excluded 

due to their lack of significant contribution to the prediction. 

The results consistently identify financial metrics as the most significant predictors of 

biodiversity risk. The asset tangibility (PPE) emerges as the most critical variable, achieving a 

RVI score of 100, followed closely by industry competitiveness (Herfindahl index) (96.1), 

Employees (65.7) and Total Assets (61.2). Other notable predictors include Shareholders 

Number, PPE Newness, and BVPS, all with RVI scores above 50, indicating their substantial 

contribution to the model’s predictive power. 

These findings are strongly supported by existing literature, which emphasizes the 

influence of financial metrics on biodiversity risk. For instance, Garel et al. (2024) and Xin et 

al. (2023) demonstrate that firms with higher levels of property, plant, and equipment (PPE) 

contribute more to biodiversity degradation. Similarly, research suggests that the Herfindahl 

index, a measure of market concentration, often reduces competitive pressure, potentially 

weakening firms’ incentives to adopt sustainable practices and thereby increasing biodiversity 

risk (Benlemlih et al., 2024). Additionally, the number of employees and total assets, proxies 

for firm size, play a critical role. Larger firms may exert a greater spatial impact, heightening 

biodiversity risk, or they may possess greater resources, leading to a more pronounced 

environmental disclosure (Ali et al., 2024; Benlemlih et al., 2024; Garel et al., 2024). 

These results underscore the intricate interplay between a firm’s financial 

characteristics and its biodiversity risk profile. Financial metrics not only serve as indicators 

of a firm’s operational health but also provide critical insights into its broader environmental 

impact, including biodiversity risks.  

[Table 6] 
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4.6. Comparison with logit  

We compare gradient boosting and logit models using top 20 variables derived by RVI from 

the GBM model (see Table 6). Both models are re-run with these variables for a fair 

comparison. As shown in table 7, GBM outperforms the logit model with higher ROC (Area 

Under Curve) score (0.9970 for training and 0.9085 for testing) compared to the logit model 

(0.8436 for training and 0.8290 for testing). GBM also achieves lower misclassification error 

rates (0.0079 for training and 0.0304 for testing) than the logit model (0.0615 for both training 

and testing). Additionally, GBM shows lower average loglikelihood and higher lift, indicating 

superior predictive performance. 

[Table 7] 

 We assess the stability of both models. The logit model exhibits parameter estimation 

issues (see Table 8), with a few variables having large coefficients while most contribute 

minimally, reflecting limited explanatory power. Furthermore, many top variables in the logit 

model, such as Herfindahl Index, PPE Newness, BVPS, are statistically insignificant, likely 

due to multicollinearity, which reduces the model’s effectiveness. In contrast, GBM effectively 

addresses multicollinearity and heteroscedasticity, as evidenced by more evenly distributed 

RVIs across variables and its ability to extract meaningful signals from correlated inputs. 

Furthermore, its marginal effects (discussed in the next section) align with expected variable-

outcome relationships, enhancing both interpretability and practical relevance. 

[Table 8] 

4.7. Marginal effects  

Partial Dependency Plots (PDPs) provide crucial insights when exploring complex 

relationships between predictor variables and outcomes. While traditional models, such as logit 
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regression, offer interpretability, they often fail to capture non-linear patterns in complex 

datasets (Jones et al., 2015).  PDPs overcome this limitation by revealing both the direction 

and magnitude of variable effects in machine learning models, allowing researchers to 

understand the relationships even when using “black box” algorithms (Friedman, 2001; Jones, 

2017). In this analysis, we examine the top five influential variables and their relationships 

with biodiversity disclosure. 

 Figure 1 exhibit a positive relationship between asset intensity (PPE) and biodiversity 

disclosure, particularly in the mid-range values (0.2 – 0.8). Firms with higher asset intensity 

face greater environmental scrutiny, driving increased transparency. However, this relationship 

plateaus at very high PPE values (> 0.8), suggesting diminishing returns where additional 

factors may influence disclosure decisions. 

 Figure 2 demonstrates a non-linear relationship between the Herfindahl Index, a 

measure of market concentration, and the likelihood of firm-level biodiversity disclosure. 

Firms in highly competitive markets (very low index values) exhibit a sharp increase in 

disclosure probability, followed by a relatively flat relationship across moderate concentration 

levels (0.1 – 0.8). In highly concentrated markets (> 0.8), disclosure probability decreases 

slightly, indicating reduced transparency incentives when competition is limited. 

 In Figure 3, firm size, measured by the natural log of the number of employees, exhibit 

a U-shaped relationship. Small firms show a higher likelihood of disclosure, which decreases 

as firms grow to medium size. The relationship then flattens, with a slight upward trend 

emerging for very large firms (employee size ≈ 6+). This pattern suggests that while medium-

sized firms may have fewer disclosure incentives, very large organizations face increased 

stakeholder expectations and scrutiny.  
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Figure 4 reveals a non-linear relationship between total assets (log) and biodiversity 

disclosure. Smaller firms (assets < 3) demonstrate minimal disclosure association, followed by 

a significant upward trend for mid-to-large firms (assets 3 – 10). Importantly, the largest firms 

(assets >11) show a sharp decline in disclosure likelihood, potentially reflecting different 

strategic priorities or reporting approaches. 

 Figure 5 presents the PDP showing the relationship between the natural log of the 

number of shareholders (Shareholders Number) and biodiversity disclosure. Firms with fewer 

shareholders (< 2) show lower disclosure rates, while those with moderate shareholder bases 

(2 – 4) demonstrate increased disclosure likelihood, possibly due to stronger governance 

pressures. Beyond this threshold, additional shareholders do not further increase disclosure 

probability, suggesting potential dilution of governance incentives in widely held firms. 

 Finally, the three-dimensional surface plot in Figure 6 exhibits the interaction between 

market concentration (Herfindahl Index) and asset intensity (PPE) on biodiversity disclosure. 

Firms in highly concentrated markets with moderate asset intensity show the highest disclosure 

likelihood. However, this relationship diminishes at very high asset intensity levels, while firms 

in less concentrated markets maintain consistently lower disclosure levels regardless of asset 

intensity. Overall, these findings highlight the complex, non-linear relationships between firm 

characteristics and biodiversity disclosure practices.   

[Figures 1 – 6] 

 

5. Sensitivity analysis 

5.1. Longitudinal analysis  

In the baseline analysis, we used a cross-sectional approach using a traditional random 

allocation of data splits. However, incorporating the time dimension is crucial for predictive 
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modeling, particularly when temporal order may influence patterns or relationships. Literature 

suggests that training on earlier periods and testing on later periods better simulates realistic 

forecasting scenarios, where future outcomes are predicted based on past information (Jones, 

2017).  

In this section, we evaluate the performance of TreeNet®, Random Forest®, and 

CART® models using longitudinal data splits. Instead of random splits, we use data from 1994 

to 2018 for training and 2019 to 2022 for testing to avoid look-ahead bias. The results in Table 

9 show that TreeNet® consistently outperforms Random Forest® and CART® across all 

metrics for both training and testing datasets. Specifically, TreeNet® archives ROC values of 

0.9740 (training) and 0.8969 (testing), outperforming Random Forest® (0.8617 for training 

and 0.8688 for testing) and CART® (0.7816 for training and 0.7885 for testing). Although the 

testing ROC for TreeNet® decreases slightly from 0.9266 (cross-sectional analysis) to 0.8969 

(longitudinal analysis), this decline is expected due to the inherent challenges of temporal 

predictions. Despite this drop, TreeNet® maintains strong predictive power, with a testing ROC 

close to 0.90, significantly outperforming random guessing (0.50). In untabulated results, we 

repeat predictive performance across different industries and feature dimensions and obtain 

qualitatively similar results. Furthermore, our RVI analysis confirm the robustness of our 

conclusions These findings confirm that TreeNet® continues to demonstrate robust 

performance under the more stringent conditions of longitudinal data, further validating its 

reliability and predictive superiority over alternative models. 

[Table 9] 

5.2. Alternative sample period (2002 – 2022) 

We now assess the performance of our main machine learning model using an alternative 

sample period. While tree-based models are generally resilient noise, including missing values, 
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TreeNet® demonstrates superior performance due to its built-in mechanisms for handling 

missing data, ensemble learning approach, regularization to mitigate overfitting, and sequential 

improvements (Freedman, 2010; Jones, 2017). These features enhance its robustness compared 

to traditional machine learning models in noisy data environments. 

Our main analysis covers the period from 1994 to 2022. However, certain data sources, 

such as Refinitiv ESG, provide data only from 2002 onward. To test the robustness of our 

findings, we re-estimate key analyses using the 2002–2022 sample. As shown in Appendix 

OA.2A, TreeNet® consistently outperforms alternative models (for TreeNet® ROC value = 

0.9999 for training and 0.939 for testing), achieving a ROC value of 0.9999 for training and 

0.939 for testing, with predictive metrics aligning with baseline results for the full sample 

(Table 3). 

Furthermore, we assess model performance across different dimensions (Appendix 

OA.2B) and find that the results remain consistent with those obtained from the full sample 

(Table 5). For example, the ACCT dimension exhibits a ROC of 0.9043, followed by OTHERS 

(0.8414), GOVERN (0.7879), and MKT (0.7825). Finally, we conduct a RVI analysis for this 

sub-sample (see Appendix OA.3)4. Notably, the ranking and significance of predictors largely 

align with the full sample results (Table 6). These findings confirm the robustness of our main 

conclusion, even in the presence of missing data.  

5.3. Robustness of gradient boosting model  

We now examine the reliability and generalisability of the GBM. By evaluating performance 

under varying conditions, we can confirm the model’s stability and reliability across diverse 

settings. This can strengthen our confidence that the model is just not overly dependent on 

specific hyperparameter values, making it more reliable and applicable to unseen data.  

 
4 For brevity, we only present the top 20 variables. 
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We first run the TreeNet® model with different k-fold cross validations5, followed by 

tests with varying learning rates and subsample fractions6.  As shown in Table 10, the TreeNet® 

model maintains consistently strong performance across the different k-fold cross-validations 

(k=5, k=10, k=15), with ROC value (testing: 0.936–0.938) and low misclassification rates 

(testing: 0.0276–0.0283). These results indicate significant stability and predictive power 

across different validation strategies.  

[Table 10] 

Next, we evaluate different learning rates and subsample fractions. Table 11 shows that 

the TreeNet® model remains robust with learning rates of 0.001, 0.010, 0.100, as well as 

subsample fractions of 0.5 and 0.7. The ROC values (0.862–0.926) and misclassification rates 

(0.028–0.039) consistently support the model’s performance stability under these 

hyperparameters variations. 

[Table 11] 

 

6. Conclusion  

This paper predicts biodiversity risk disclosure using machine learning techniques to examine 

the firm-level, industry-level and macro-economic factors that influence corporate reporting 

on biodiversity risks. It leverages three machine learning models—TreeNet® (gradient 

 
5 K-fold cross-validation is a resampling procedure where the dataset is divided into k equally sized subsets (folds). 

The model is trained on k-1 folds and tested on the remaining fold, then this process it repeated until every fold 

has used as the testing set once. This procedure ensures a more comprehensive evaluation, as the model is tested 

on multiple subsets of the data. 
6 Learning rate is a key hyperparameter in gradient boosting that determines the step size for updating model 

parameters during training. A smaller learning rate often leads to more gradual learning and requires a higher 

number of iterations, while a larger learning rate accelerates learning which increases the risks of “overshooting” 

the optimal predictive scenario. Subsample fraction, on the other hand, represents the proportion of the training 

data used to fit each individual tree, which play an important role in model building by introducing randomness 

as well reducing overfitting, thereby enhances robustness of predictive model. 
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boosting), Random Forest®, and CART®—to uncover patterns in corporate biodiversity 

disclosure using structured financial and governance data as well as unstructured textual 

analysis of corporate reports. This approach is novel in biodiversity disclosure research, which 

has traditionally relied on conventional statistical methods. The study demonstrates the 

superiority of machine learning in capturing complex, nonlinear relationships and identifying 

key disclosure drivers, thereby addressing critical gaps in sustainability accounting research. 

 The findings indicate that biodiversity disclosure has increased over time, particularly 

among firms in resource-intensive industries such as energy and utilities, which exhibit higher 

reporting levels due to regulatory scrutiny and stakeholder pressure. Additionally, the machine 

learning models outperform traditional approaches in predicting disclosure patterns, 

demonstrating strong predictive accuracy across different validation techniques. Accounting 

features emerge as the most influential predictors of biodiversity disclosure, while governance 

and market factors have a moderate impact. Key accounting determinants include asset 

tangibility, the level of industry competition, and firm size. 

 Overall, this study makes significant contributions to the field of biodiversity disclosure 

by illustrating how machine learning can enhance transparency and accountability in corporate 

sustainability reporting. It offers policymakers data-driven insights for designing more 

effective regulatory frameworks and industry-specific guidelines. Moreover, the findings have 

practical implications for investors, regulators, and corporate leaders seeking to evaluate firms' 

biodiversity commitments and mitigate biodiversity-related financial risks. In light of global 

sustainability initiatives, such as the Kunming-Montreal Global Biodiversity Framework, this 

research provides timely insights into improving biodiversity accountability and integrating 

AI-driven analysis into sustainability policymaking. 
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Appendix A. Variable definitions 

Variable Definition and measurement Source 

Accounting   

Total Assets The natural logarithm of the book value of total assets 

at fiscal year end 

Compustat 

Sales The natural logarithm total sales Compustat 

ROE Return on equity measured as earnings before interest 

and tax divided by common shareholders’ equity 

Compustat 

ROA Return on assets measured as earnings before interest 

and tax divided by total assets 

Compustat 

Ind_Adj_ROA Industry (SIC2)-year adjusted ROA Compustat 

Profit Margin Profit margin measured as earnings before interest and 

tax divided by sales 

Compustat 

Leverage Financial leverage measured as Total debt divided by 

total assets 

Compustat 
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Cash Cash holdings divided by total assets Compustat 

CAPX Capital expenditure divided by total assets Compustat 

PPE Newness The ratio of net property, plant, and equipment to gross 

ratio related to property, plant, and equipment 

Compustat 

PPE Net property, plant and equipment divided by total 

assets 

Compustat 

Herfindahl Index Herfindahl Index, a measure of market concentration 

and competition within an industry 

Compustat 

R&D The ratio of a firm's research and development 

expenses to its total assets 

Compustat 

Advertising Exp. The ratio of a firm's advertising expenses to its total 

assets 

Compustat 

Sales Growth The percentage change in a firm's sales revenue Compustat 

EPS Growth The growth in a firms’ earnings per share Compustat 

Total Assets Growth The growth in a firms’ total assets Compustat 

Distress Financial distress, measured using Altman (1968) 

model 

Compustat 

Current Ratio Current assets over current liabilities Compustat 

OCF Operating cashflow over total assets Compustat 

Employees The natural logarithm of the number of employees in a 

firm 

Compustat 

Dividend  A binary variable that indicates whether a firm has paid 

dividends during a given period (1) or not (0) 

Compustat 

Inventory Turnover Cost of goods sold scaled by average inventory level Compustat 

BVPS The natural logarithm of book value per share at the 

end of the year 

Compustat 

Financial Const Financing constraints measured using KZ index 

(Kaplan and Zingales, 1997) 
Compustat 

Firm Age The natural logarithm of firm age Compustat 

   

Market   

Share Price The natural logarithm of a firm’s stock price measured 

at the end of the fiscal year 

Compustat 

Stock Returns The 12-month buy-and-hold stock returns, calculated 

by compounding monthly returns over the fiscal year 

CRSP 

RET_SD The standard deviation of daily stock returns calculated 

over the fiscal year 

CRSP 

MCap The natural logarithm of market capitalization at the 

year end 

Compustat 

Capital Issue   Capital issue, measured as net debt and equity issue in 

year t scaled by total assets 

Compustat 

MTB The market-to-book ratio Compustat 

Ind. Adj_MTB Industry-adjusted market-to-book ratio Compustat 

Capital Mkt. Reliance Capital market reliance is a binary variable equal to 1 

if the firm has issued public securities in the previous 

three years, and 0 otherwise 

Compustat 

BETA The systematic risk of a firm CRSP 

Trading Volume   Trading Volume is calculated as the total annual 

trading volume divided by shares outstanding 

CRSP 

   

Governance   
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Shareholders Number Shareholder Base is measured as the natural logarithm 

of the total number of shareholders 

Execucomp 

Duality Duality is a binary variable equal to 1 if the CEO also 

serves as the Chairman of the Board, and 0 otherwise 

ISS 

Board Size Board Size is measured as the total number of directors 

serving on the board 

ISS 

Board Independence Board Independence is measured as the proportion of 

independent directors on the board relative to total 

board size 

ISS 

Meeting Attendance   A binary variable equal to 1 if the director attended 

more than 75% of board meetings, and 0 otherwise 

ISS 

Gender Diversity   The proportion of male directors on the board BoardEx 

Institutional Ownership   The percentage of a firm's outstanding shares owned by 

institutional investors 

13F 

Inst. Ownership Concentration The Herfindahl-Hirschman Index of institutional 

ownership 

13F 

Analyst Following   The number of financial analysts covering a firm IBES 

CEO MBA A binary variable equal to 1 if the CEO holds a Master 

of Business Administration (MBA) degree and 0 

otherwise 

BoardEx 

 

New CEO    A binary variable equal to 1 if the firm has appointed a 

new CEO within past three years and 0 otherwise 

Execucomp 

Dedicated Ownership   The proportion of shares held by long-term 

institutional investors 

13F 

Transient Ownership The proportion of shares held by short-term 

institutional investors 

13F 

Blockholder Ownership The percentage of a firm's shares owned by large 

shareholders (blockholders) 

13F 

CEO Ownership he percentage of the firm’s shares directly owned by 

the CEO 

Execucomp 

Big4 A binary variable equal to 1 if the firm is audited by 

one of the Big Four accounting firms (Deloitte, EY, 

KPMG, or PwC), and 0 otherwise 

Compustat 

Employee Relations   Employee relations performance score from MSCI MSCI 

Human Rights   Human rights performance score from MSCI 

 

MSCI 

CEO Tenure The natural logarithm of the CEO's tenure Execucomp 

Media Coverage The natural logarithm of one plus the number of news 

published about a firm in year t 

RavenPack 

CEO Age The natural logarithm of the CEO's age Execucomp 

CEO Female A binary variable that equals 1 if the CEO is female 

and 0 otherwise 

Execucomp 

   

Environment   

Total CO2 Emissions   The natural logarithm of a firm's total CO₂ emissions Refinitiv 

ESG 

Total Waste Generation The natural logarithm of a firm's total waste generation Refinitiv 

ESG 
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Environmental Performance   A firm's environmental performance score, as reported 

by MSCI. 

MSCI 

Environmental Concerns   A firm's environmental concerns score, as reported by 

MSCI 

MSCI 

Waste Recycled The natural logarithm of the amount of waste recycled 

by a firm 

Refinitiv 

ESG 

CSR Committee   A dummy variable that equals one if a firm has a CSR 

committee and zero otherwise 

Refinitiv 

ESG 

Environmental Mgt. Team   A dummy variable that equals one if a firm has an 

environmental management team and zero otherwise 

Refinitiv 

ESG 

Environmental Fines The natural logarithm of environmental fines reported 

by the company 

Refinitiv 

ESG 

Environmental Restore A dummy variable that equals one if a firm undertakes 

environmental restoration initiatives and zero 

otherwise. 

Refinitiv 

ESG 

Environmental Investment The natural logarithm of a firm's environmental 

investment 

Refinitiv 

ESG 

Climate Change Exposure   A measure of a firm’s exposure to climate change risk, 

as defined by Sautner et al. (2023) 

Sautner et al. 

(2023) 

Climate Change Risk A measure of a firm’s climate change risk, as defined 

by Sautner et al. (2023) 

Sautner et al. 

(2023) 

Climate Change Sentiment A measure of climate change sentiment, as defined by 

Sautner et al. (2023) 

Sautner et al. 

(2023) 

CSR Award   A dummy variable that equals one if a firm has 

received a CSR award and zero otherwise 

Refinitiv 

ESG 

Biodiversity Impact Reduction   A dummy variable that equals one if a firm reports 

efforts to reduce its biodiversity impact and zero 

otherwise 

Refinitiv 

ESG 

Waste Reduction Initiative   A dummy variable that equals one if a firm implements 

waste reduction initiatives and zero otherwise 

Refinitiv 

ESG 

Environmental Invest. Initiative A dummy variable that equals one if a firm undertakes 

initiatives specifically aimed at environmental 

investment and zero otherwise 

Refinitiv 

ESG 

Land Env. Impact Reduction A dummy variable that equals one if a firm reports on 

initiatives to reduce the environmental impact of land 

it owns, leases, or manages for production activities or 

extractive use, and zero otherwise 

Refinitiv 

ESG 

   

Others   

FF Fama-French 12 industry classifications Compustat 

HITECH A dummy variable that equals one if a firm operates in 

any of the following 3-digit SIC code industries: 372, 

371, 481, 482, 489, 363, 366, 369, 781, 783, 791, 351–

356, 357, 381, 383, 384, 387, and 491, 493, and zero 

otherwise. 

Compustat 

Foreign Operation A dummy variable that equals one if a firm has foreign 

operations and zero otherwise 

Compustat 

Crisis A dummy variable that equals one for the years 2008–

2009 and 2020, representing periods of financial and 

economic crises, and zero otherwise. 
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Figure 1: Partial dependence plot for Property, Plant, and Equipment (PPE) 
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Notes: This partial dependence plot illustrates the relationship between PPE (property, plant, and equipment) and 

the fitted half log odds for biodiversity of the TreeNet® (gradient boosting) model while averaging out the effects 

of all other variables. The x-axis represents PPE, while the y-axis shows the corresponding fitted log odds. 

 

 

Figure 2: Partial dependence plot for Herfindahl Index 

 

 

 

 

 

 

 

 

 

 

 

Notes: This partial dependence plot illustrates the relationship between Herfindahl Index and the fitted half log 

odds for biodiversity of the TreeNet® (gradient boosting) model while averaging out the effects of all other 

variables. The x-axis represents Herfindahl Index, while the y-axis shows the corresponding fitted log odds. 

 

 

Figure 3: Partial dependence plot for Number of Employees 
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Notes: This partial dependence plot illustrates the relationship between number of employees and the fitted half 

log odds for biodiversity of the TreeNet® (gradient boosting) model while averaging out the effects of all other 

variables. The x-axis represents number of employees, while the y-axis shows the corresponding fitted log odds. 

 

 

Figure 4: Partial dependence plot for Total Assets. 

 

 

 

 

 

 

 

 

 

 

 

Notes: This partial dependence plot illustrates the relationship between total assets and the fitted half log odds for 

biodiversity of the TreeNet® (gradient boosting) model while averaging out the effects of all other variables. The 

x-axis represents total assets, while the y-axis shows the corresponding fitted log odds. 

 

 

Figure 5: Partial dependence plot for Number of Shareholders. 
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Notes: This partial dependence plot illustrates the relationship between number of shareholders and the fitted half 

log odds for biodiversity of the TreeNet® (gradient boosting) model while averaging out the effects of all other 

variables. The x-axis represents number of shareholders, while the y-axis shows the corresponding fitted log odds. 

 

 

Figure 6: Surface plot for biodiversity with Property, Plant, and Equipment, and Herfindahl 

Index. 

 

 

 

 

 

 

 

 

 

 

 

Notes: This surface plot shows the three-dimensional relationship between Property, Plant, and Equipment (PPE), 

Herfindahl Index, and the fitted half log odds for biodiversity in the TreeNet® (gradient boosting) model. The x-

axis represents PPE, the y-axis represents the Herfindahl Index, and the z-axis displays the fitted half log odds for 

biodiversity. The plot helps to understand how biodiversity predictions vary based on different levels of PPE and 

Herfindahl Index. Areas with higher elevations on the surface indicate conditions where the model predicts higher 

biodiversity, while lower regions suggest lower predicted values.  

Table 1  

Biodiversity disclosure over the sample period.  

Year Mean Freq.  Year Mean Freq. 

1994 0.032 1,553  2009 0.053 4,204 

1995 0.017 3,156  2010 0.056 4,171 

1996 0.015 5,757  2011 0.065 4,097 

1997 0.015 6,239  2012 0.076 4,131 

1998 0.016 6,393  2013 0.080 4,182 

1999 0.014 6,597  2014 0.092 4,101 

2000 0.019 6,559  2015 0.091 3,968 
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2001 0.023 6,183  2016 0.094 3,859 

2002 0.023 5,769  2017 0.100 3,744 

2003 0.026 5,349  2018 0.095 3,703 

2004 0.026 5,192  2019 0.086 3,676 

2005 0.033 5,052  2020 0.078 3,836 

2006 0.033 4,887  2021 0.076 4,133 

2007 0.038 4,722  2022 0.080 4,069 

2008 0.044 4,336 
 

Total 0.047 133,618 

 Note: This table provides a frequency distribution of biodiversity risk disclosure for U.S. listed firms over the 

period of 1994 - 2022.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  

Industry-level biodiversity disclosure. 

FF Mean Freq. 

FF1 0.027 7,356 

FF2 0.011 3,845 

FF3 0.029 14,571 

FF4 0.252 6,833 

FF5 0.035 3,957 

FF6 0.008 28,524 
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FF7 0.003 4,303 

FF8 0.233 6,531 

FF9 0.024 13,972 

FF10 0.009 21,218 

FF12 0.066 22,508 

Note: This table provides a frequency distribution of Fama & French 12 industries (FF1 – FF12) classification for 

biodiversity risk disclosure over the sample period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Summary of cross-sectional predictive performance of alternative machine learning models for the 

biodiversity disclosure. 

 

Metric TreeNet® Random Forest® CART® 

  Training Testing Training Testing Training Testing 

Average LogLikelihood 0.0241 0.0936 0.3498 0.1813 0.1499 0.1585 

ROC (Area Under Curve) 0.9990 0.9266 0.9095 0.9241 0.8293 0.8218 
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Lower Confidence Limit ROC 0.9986 0.9169 0.9043 0.9148 0.6291 0.6095 

Upper Confidence Limit ROC 0.9994 0.9363 0.9147 0.9335 1.0000 1.0000 

Lift 9.9508 8.0709 7.5607 7.8210 5.0983 5.1094 

Misclassification rate 0.0047 0.0284 0.0366 0.0355 0.4291  0.4461 

Notes: This table provides cross-sectional predictive performance of three alternative machine learning models 

(TreeNet®, Random Forest®, CART®) for the biodiversity risk disclsoure. Five different metrics are used for the 

evaluative purposes: Average LogLikelihood, ROC (Area Under Curve), Lower and Upper Confidence Limit of 

ROC, Lift, and Misclassification rate. 
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Table 4 

Summary of out-of-sample predictive performance of TreeNet® (gradient boosting) model for biodiversity disclosure across industry groups. 

  Fama-French 12 industry classifications 

Metric FF 1 FF 2 FF 3 FF 4 FF 5 FF 6 FF 7 FF 8 FF 9 FF 10 FF 12 

Average LogLikelihood 0.0764 0.0421 0.0816 0.2619 0.1161 0.0439 0.0079 0.2468 0.0711 0.0415 0.1183 

ROC (Area Under Curve) 0.8873 0.9753 0.8887 0.9362 0.8845 0.7819 0.9929 0.9478 0.8670 0.8275 0.9171 

Lower Confidence Limit ROC 0.8130 0.9478 0.8411 0.9206 0.8102 0.7104 0.9791 0.9342 0.8072 0.7548 0.8944 

Upper Confidence Limit ROC 0.9617 1.0000 0.9363 0.9518 0.9589 0.8533 1.0000 0.9613 0.9267 0.9001 0.9399 

Lift 8.0851 9.0000 7.4713 3.8943 7.0588 5.4717 10.0000 3.9678 7.3239 5.5000 7.6779 

Misclassification rate 0.0210 0.0119 0.0241 0.1001 0.0356 0.0090 0.0012 0.1012 0.0178 0.0090 0.0367 

Notes: This table provides cross-sectional out of sample predictive performance of TreeNet® (gradient boosting) model for biodiversity risk disclosure across Fama & French 

12 industries (FF1 – FF12) classification. Five different metrics are used for the evaluative purposes: Average LogLikelihood, ROC (Area Under Curve), Lower and Upper 

Confidence Limit of ROC, Lift, and Misclassification rate. 

 

 

 

 

 

 

 

 



 

 

Table 5 

Summary of cross sectional out-of-sample predictive performance of TreeNet® (gradient boosting) 

model for biodiversity disclosure across dimensions. 

Metric ACCT MKT GOVERN ENVIRON OTHERS 

Average LogLikelihood 0.1068 0.1546 0.1502 0.1719 0.1481 

ROC (Area Under Curve) 0.9018 0.7884 0.7964 0.6535 0.8286 

Lower Confidence Limit ROC 0.8908 0.7745 0.7822 0.6374 0.8171 

Upper Confidence Limit ROC 0.9129 0.8024 0.8105 0.6696 0.8402 

Lift 7.3372 4.5095 4.8228 3.1418 5.2540 

Misclassification rate 0.0324 0.0439 0.0426 0.0446 0.0454 

Note: This table provides cross-sectional out of sample predictive performance of TreeNet® (gradient boosting) 

model for biodiversity risk disclosure across five dimensions: Accounting, Market, Governance, Environment, 

and Others. Five different metrics are used for the evaluative purposes: Average LogLikelihood, ROC (Area Under 

Curve), Lower and Upper Confidence Limit of ROC, Lift, and Misclassification rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6 

RVIs for TreeNet® (gradient boosting) model. 

 

Variables   

RVIs 

Scores  RVIs Strengths  

PPE 100  |||||||||||||||||||||||||||||||||||||||||||||||  

Herfindahl Index  96.1  |||||||||||||||||||||||||||||||||||||||||||||  

Employees  65.7  |||||||||||||||||||||||||||||||||  

Total Assets 61.2  ||||||||||||||||||||||||||||||||  

Shareholders Number  55.6  ||||||||||||||||||||||||||||||||  

PPE Newness  55.2  ||||||||||||||||||||||||||||||||  

BVPS 50.9  |||||||||||||||||||||||||||||||  

FF4  49.1  |||||||||||||||||||||||||||||||  

Cash  46.4  ||||||||||||||||||||||||||||||  

Inventory Turnover  46.1  ||||||||||||||||||||||||||||||  

CAPX  44.9  ||||||||||||||||||||||||||||||  

Firm Age  44.7  ||||||||||||||||||||||||||||||  

Climate Change Exposure  44.2  ||||||||||||||||||||||||||||||  

Current Ratio  43.9  ||||||||||||||||||||||||||||||  

Gender Diversity  43.7  ||||||||||||||||||||||||||||||  

Sales 42.6  |||||||||||||||||||||||||||||  

Leverage  42.4  |||||||||||||||||||||||||||||  

Ind_Adj_ROA  40.1  ||||||||||||||||||||||||||||  

Profit Margin  38.8  ||||||||||||||||||||||||||||  

Ind. Adj_MTB  38.3  ||||||||||||||||||||||||||||  

Inst. Ownership Concentration  35.8  |||||||||||||||||||||||||||  

ROE  35.5  |||||||||||||||||||||||||||  

ROA  35.4  |||||||||||||||||||||||||||  

Share Price  35  |||||||||||||||||||||||||||  

Distress  34.7  ||||||||||||||||||||||||||  

Institutional Ownership  33.5  |||||||||||||||||||||||||  

Media Coverage  33.2  |||||||||||||||||||||||||  

Sales Growth  32.7  |||||||||||||||||||||||||  

MTB  32.1  |||||||||||||||||||||||||  

MCap 31.7  ||||||||||||||||||||||||  

OCF 31.2  ||||||||||||||||||||||||  

FF12  31.1  ||||||||||||||||||||||||  

Capital Issue  31  ||||||||||||||||||||||||  

Advertising Exp.  30.8  |||||||||||||||||||||||  

FF8  30.7  |||||||||||||||||||||||  

Fin_Const  30.6  |||||||||||||||||||||||  

Total_Assets_Growth  29.8  ||||||||||||||||||||||  

Trading Volume  29.5  ||||||||||||||||||||||  

BETA  29.5  ||||||||||||||||||||||  

EPS Growth  28.6  |||||||||||||||||||||  

R&D  25.9  |||||||||||||||||||  

Transient Ownership  25.7  |||||||||||||||||||  



 

 

Analyst Following  25.6  |||||||||||||||||||  

Climate Change Risk  23.6  |||||||||||||||||  

Dedicated Ownership  22.9  |||||||||||||||||  

RET_SD  22.8  |||||||||||||||||  

CEO Age  22.4  |||||||||||||||||  

CEO Ownership  21.1  |||||||||||||||  

Stock Returns  20.8  |||||||||||||||  

Total Waste Generation  19.7  ||||||||||||||  

Blockholder Ownership  19.2  ||||||||||||||  

Total CO2 Emissions  18.4  |||||||||||||  

CEO MBA  18.1  |||||||||||||  

FF1  17.4  |||||||||||  

FF3  16  |||||||||||  

Environmental Concerns  16  |||||||||||  

Dividend Payment  15.9  ||||||||||  

Board Size  15.9  ||||||||||  

CEO Tenure  15.6  ||||||||||  

FF9  14.2  |||||||||  

Environmental Fines  13.6  |||||||||  

Big4  13.2  |||||||||  

Board Independence  13  |||||||||  

Land Env. Impact Reduction  12.7  ||||||||  

Climate Change_Sentiment  12.5  ||||||||  

Human Rights  11.9  ||||||||  

HITECH  11.7  ||||||||  

FF10  10.9  |||||||  

Employee Relations  10.9  |||||||  

FF5  10.8  |||||||  

CSR Committee  9.7  ||||||  

Environmental Invest. Initiative  9.5  ||||||  

Environmental Investment  9.3  ||||||  

Waste Recycled  9.1  ||||||  

Biodiversity Impact Reduction  9  ||||||  

Meeting Attendence  8.4  |||||  

FF6  7.9  |||||  

Crisis  7.2  |||||  

Environmental Mgt. Team  6.9  ||||  

Cap Mkt. Reliance  6.6  ||||  

FF7  5.3  |||  

CEO Female  5.1  |||  

CSR Award  5  |||  

Duality  4.1  ||  

Environmental Performance  3.4  ||  

FF2  3  ||  

Waste Reduction Initiative  2.5  |  

Environmental Restore  1.8  |  



 

 

Notes: This table shows the relative variable importances (RVIs) of the TreeNet (gradient boosting) model using 

all the variables outlined in the appendix. Only the variables with RVI scores greater than zero are presented here. 

RVI measures a variable’s contribution to the model by weighting its split frequency by the squared improvement 

it provides, averaged across all trees. The most important variable is assigned 100, with others scaled accordingly. 

 

 

 

Table 7 

Comparisons of predictive performance between TreeNet® (gradient boosting) model and logit model 

on cross-sectional out-of-sample data for the top 20 variables. 

Metric TreeNet® Logit 

  Training Testing Training Testing 

Average LogLikelihood 0.0324 0.1018 -0.1738 0.1687 

ROC (Area Under Curve) 0.9970 0.9085 0.8436 0.8290 

Lower Confidence Limit ROC 0.9962 0.8973 0.8435 0.8289 

Upper Confidence Limit ROC 0.9978 0.9196 0.8437 0.8291 

Lift 9.8937 7.5927 5.6518 5.8176 

Misclassification rate 0.0079 0.0304 0.0615 0.0615 

 

Notes: This table provides comparisons of predictive performance between TreeNet® (gradient boosting) model 

and logit model on cross-sectional out-of-sample data for the top 20 variables identified in table 6. Five different 

metrics are used for the evaluative purposes: Average LogLikelihood, ROC (Area Under Curve), Lower and Upper 

Confidence Limit of ROC, Lift, and Misclassification rate. 

 

 

 



 

 

Table 8 

Logit parameter estimation based on top 20 most important predictors from TreeNet® (gradient 

boosting) cross-sectional model. 

Variable Coefficients S.E. T-ratio P-value RVIs 

Pearson's correlation  

with Biodiversity 

const -5.2397 0.3906 -13.4137** 0.0001 n/a n/a 

PPE 2.7553 0.1754 15.7095** 0.0001 100.0 0.3314** 

Herfindahl Index -0.1662 0.1812 -0.9169 0.3592 96.1 -0.0991** 

Employees -0.5298 0.0428 -12.3815** 0.0001 65.7 -0.0481** 

Total Assets 0.6117 0.0491 12.4501** 0.0001 61.2 0.1385** 

Shareholders Number -0.0924 0.0259 -3.5705** 0.0004 55.6 0.0377** 

PPE Newness -0.2739 0.2252 -1.2165 0.2238 55.2 0.1879** 

BVPS 0.0013 0.0455 0.0277 0.9779 50.9 0.0937** 

FF4 0.9225 0.0954 9.6737** 0.0001 49.1 0.2892** 

Cash -2.6154 0.3465 -7.5475** 0.0001 46.4 -0.1410** 

Inventory Turnover -0.0002 0.0003 -0.7829 0.4337 46.1 0.0005 

CAPX -1.3882 0.4932 -2.8145** 0.0049 44.9 0.1956** 

Firm Age -0.2537 0.0367 -6.9198** 0.0001 44.7 -0.0252** 

Climate Change 

Exposure 

39.5753 7.0503 5.6133** 0.0001 

44.2 

0.1474** 

Current Ratio 0.0513 0.0176 2.9134** 0.0036 43.9 -0.0914** 

Gender Diversity 0.1349 0.2923 0.4614 0.6445 43.7 -0.0024 

Sales -0.1776 0.0481 -3.6946** 0.0002 42.6 0.0677** 

Leverage 0.0714 0.2050 0.3482 0.7277 42.4 0.1185** 

Ind_Adj_ROA -0.0035 0.0087 -0.4006 0.6887 40.1 -0.0111 

Profit Margin 0.0001 0.0017 0.0480 0.9617 38.8 0.0049 

Ind_Adj_MTB -0.0004 0.0002 -2.4556* 0.0141 38.3 -0.0375** 

Notes: This table presents logit parameter estimates for the top 20 most important variables identified in Table 6. 

The first column lists the variables, followed by coefficients and standard errors in the second and third columns. 

The next two columns display t-ratios and their corresponding p-values. The second-to-last column reports RVIs 

for each of the top 20 variables, while the final column shows Pearson’s correlation between each explanatory 

variable and biodiversity. *Sig < 0.05; **Sig < 0.01 
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Table 9 

Summary of predictive performance of longitudinal analysis. 

Metric TreeNet® Random Forest® CART® 

  Training Testing Training Testing Training Testing 

Average LogLikelihood 0.0560 0.1686 0.7492 0.7579 0.1461 0.2353 

ROC (Area Under Curve) 0.9740 0.8969 0.8617 0.8688 0.7816 0.7885 

Lower Confidence Limit ROC 0.9713 0.8861 0.8554 0.8561 0.3077 0.3020 

Upper Confidence Limit ROC 0.9768 0.9077 0.8680 0.8815 1.0000 1.0000 

Lift 9.1862 6.6428 6.9952 6.3451 4.6013 4.6122 

Misclassification rate 0.0155  0.0579 0.0344 0.0655 0.4832 0.4619 

Notes: This table provides longitudinal predictive performance of three alternative machine learning models 

(TreeNet®, Random Forest®, CART®) for the biodiversity disclosure prediction. Five different metrics are used 

for the evaluative purposes: Average LogLikelihood, ROC (Area Under Curve), Lower and Upper Confidence 

Limit of ROC, Lift, and Misclassification rate. 
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Table 10 

TreeNet® (gradient boosting) model stability test with different k-fold cross-validation.  

Metric K=5 K=10 K=15 

  Training Testing Training Testing Training Testing 

Average LogLikelihood 0.0285 0.0905 0.0282 0.0895 0.0282 0.0903 

ROC (Area Under Curve) 0.9977 0.9362 0.9978 0.9379 0.9978 0.9361 

Lower Confidence Limit ROC 0.9972 0.9322 0.9973 0.9340 0.9973 0.9321 

Upper Confidence Limit ROC 0.9982 0.9402 0.9983 0.9417 0.9983 0.9400 

Lift 9.8964 8.2367 9.9015 8.2306 9.9015 8.2077 

Misclassification rate 0.0063 0.0282  0.0062 0.0276  0.0062 0.0283  

Notes: This table provides TreeNet® (gradient boosting) model stability test with different three different k-fold 

cross-validation (k=5, k=10, and k=15). Five different metrics are used for the evaluative purposes: Average 

LogLikelihood, ROC (Area Under Curve), Lower and Upper Confidence Limit of ROC, Lift, and 

Misclassification rate. 

 

 

Table 11 

TreeNet® (gradient boosting) model stability test with different learning and subsample fraction on out-

of-sample data. 

 

Model 

Optimal 

Number 

of Trees 

Average 

LogLikelihood 

ROC 

(Area 

Under 

Curve) 

Misclassification 

Rate 

Learning 

Rate 

Subsample 

Fraction 

1 5000 0.128657 0.862867 0.0399895 0.001 0.5 

2 5000 0.110326 0.901200 0.0346775 0.010 0.5 

3 4803 0.095874 0.924212 0.0291785 0.100 0.5 

4 5000 0.128741 0.862677 0.0399521 0.001 0.7 

5 5000 0.109732 0.902688 0.0341912 0.010 0.7 

6 4851 0.093631 0.926635 0.0283555 0.100 0.7 

Notes: This table provides TreeNet® (gradient boosting) model stability test with different learning (0.001, 0.010, 

and 0.100) rates and subsample fractions (0.5 and 0.7) on out-of-sample data. Three different metrics are used for 

the evaluative purposes: Average Log Likelihood, ROC (Area Under Curve), and Misclassification rate 
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Online Appendix 

Appendix OA.1 

Biodiversity dictionary 

 

We use the following biodiversity dictionary to comprehensively collect biodiversity-related 

terms as referenced in corporate disclosures (Giglio et al., 2023). This dictionary includes terms 

that reflect key concepts such as biodiversity loss, habitat destruction, species extinction, and 

ecosystem services, among others. 
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Appendix OA.2 

Alternative sample period (2002 – 2022) 

Appendix OA.2A 

Summary of cross-sectional predictive performance of machine learning models for the biodiversity 

disclosure from 2002 to 2022. 

 

Metric TreeNet® Random Forest® CART® 

  Training Testing Training Testing Training Testing 

Average LogLikelihood 0.0203 0.1088 0.1911 0.1628 0.1660 0.2081 

ROC (Area Under Curve) 0.9999 0.9390 0.9339 0.9345 0.8593 0.8339 

Lower Confidence Limit ROC 0.9999 0.9298 0.9294 0.9253 0.6763 0.6301  

Upper Confidence Limit ROC 1.0000 0.9482 0.9383 0.9438  1.0000 1.0000 

Lift 9.9978 8.1569 7.7037 7.8362 5.6512 5.6552 

Misclassification rate 0.0025 0.0354 0.0449 0.0442 0.3731 0.4096 

 

Notes: This table provides cross-sectional predictive performance of three machine learning models (TreeNet®, 

Random Forest®, CART®) for the biodiversity risk disclosure from 2002 to 2022. Five different metrics are used 

for the evaluative purposes: Average LogLikelihood, ROC (Area Under Curve), Lower and Upper Confidence 

Limit of ROC, Lift, and Misclassification rate. 
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Appendix OA.2B 

Summary of cross sectional out-of-sample predictive performance of TreeNet® (gradient boosting) 

model for biodiversity disclosure across dimensions from 2002 to 2022. 

 

Metric ACCT MKT GOVERN ENVIRON OTHERS 

Average LogLikelihood 0.1315 0.1920 0.1864 0.2125 0.1756 

ROC (Area Under Curve) 0.9043 0.7825 0.7879 0.6786 0.8414 

Lower Confidence Limit ROC 0.8923  0.7674 0.7723 0.6628 0.8298 

Upper Confidence Limit ROC 0.9164 0.7977 0.8036 0.6944 0.8531 

Lift 7.3084 4.3339 4.7445 2.8467 5.2420 

Misclassification rate 0.0422 0.0592 0.0558 0.0600 0.0601 

 

Note: This table provides cross-sectional out of sample predictive performance of TreeNet® (gradient boosting) 

model for biodiversity risk disclosure across five dimensions from 2002 to 2022: Accounting, Market, 

Governance, Environment, and Others. Five different metrics are used for the evaluative purposes: Average 

LogLikelihood, ROC (Area Under Curve), Lower and Upper Confidence Limit of ROC, Lift, and 

Misclassification rate. 
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Appendix OA.3 

RVIs for TreeNet® (gradient boosting) model for biodiversity disclosure from 2002 to 2022. 

 

Variables   

RVIs 

Scores  RVIs Strengths  

PPE 100  |||||||||||||||||||||||||||||||||||||||||||||||  

Herfindahl Index  98.0  |||||||||||||||||||||||||||||||||||||||||||||  

Total Assets 58.2  |||||||||||||||||||||||||||||||||  

Employees 56.6  ||||||||||||||||||||||||||||||||  

Shareholders Number 49.4  ||||||||||||||||||||||||||||||||  

PPE Newness  48.7  ||||||||||||||||||||||||||||||||  

CAPX 47.0  |||||||||||||||||||||||||||||||  

BVPS 45.7  |||||||||||||||||||||||||||||||  

FF4   44.4  ||||||||||||||||||||||||||||||  

Firm Age  43.7  ||||||||||||||||||||||||||||||  

Inventory Turnover  43.4  ||||||||||||||||||||||||||||||  

Cash 42.3  ||||||||||||||||||||||||||||||  

Current Ratio  41.9  ||||||||||||||||||||||||||||||  

Sales 41.8  |||||||||||||||||||||||||||||  

Leverage  39.6  |||||||||||||||||||||||||||||  

Ind_Adj_ROA  38.0  ||||||||||||||||||||||||||||  

Distress 37.7  ||||||||||||||||||||||||||| 

Profit Margin 37.4  ||||||||||||||||||||||||||| 

Climate Change Exposure  34.8  ||||||||||||||||||||||||| 

Share Price 34.2  |||||||||||||||||||||| 
Notes: This table shows the relative variable importances (RVIs) of the TreeNet (gradient boosting) model using 

all the variables outlined in the appendix. For brevity, we only present top 20 variables. RVI measures a variable’s 

contribution to the model by weighting its split frequency by the squared improvement it provides, averaged across 

all trees. The most important variable is assigned 100, with others scaled accordingly. 

 

 

 

 

 


