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SHORT BIOGRAPHY - CEDARTA DONOU

e Cedarta Donou is a Senior Data Scientist, Al Researcher,
Modeler passionate about Ileveraging digital technol
strengthen climate resilience and sustainable agriculture in A
He is currently pursuing a PhD focused on modelling land suit
and rice yield for sustainable multiple-harvest systems in
Saharan Africa.

His research Integrates niche ecology, agricultural mod
artificial intelligence, and agro-economics to support
adaptation and food security strategies.

Cedarta has presented his work at major international co
Including Adaptation Futures 2023 (Canada), and in
Zealand), he will present innovative approaches to si
yields and predicting climate change impacts in West Afri
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INTRODUCTION & MOTIVATION 1/2

e On average, rice yield in sub-Saharan Africa is 2.8 t/ha, and much lower
than world average yield of 4.8 t/ha (FAOSTAT, 2023).

e Rice is mainly produced in irrigated lowlands, rainfed lowlands and
rainfed uplands.

e Large variation in yield: 0.03 to 4.0 t/ha in rainfed uplands, 0.1 to 6.0 t/ha in
rainfed lowlands and 0.3 to 8.0 t/ha in irrigated lowlands (Niang et al,
2017).

e Major determinants of rice yield variations include varieties, soils, climates
and management practices (Niang et al., 2017).

e Several approaches including statistical analysis, remote sensing and crop
models were used for quantifying yield variation.




INTRODUCTION & MOTIVATION 2/2

e Crop models rely on high resolution input data, which are difficult to
obtain in SSA.

e The quantity and quality of input data limit statistical methods. They also
assume linear correlations with variables and report generating large
uncertainties.

e Machine learning can be used to address these challenges. However,
reports from machine learning were shown to largely vary based on
models/algorithms used.

e Ensemble modeling approach combining several algorithms may provide
better predictive performance. Also, little is known about the magnitude
of rice yield changes due to changes in climate conditions.




RESEARCH OBJECTIVE

The objectives were to:
e i) Evaluate performance of ensemble machine learning approach in
simulating rice yield,
e ii) Iidentify most important determinants of rice yield and
e ili) Simulate climate change impacts on rice yield in growing
environments in WA.




RESEARCH INSTITUTE

¢ About AfricaRice

o AfricaRice (Africa Rice Center) is a pan-African research
organization and one of the CGIAR centers.

e Headquartered in Abidjan, Céte d'lvoire, with regional
research stations across Africa.

e Mission: “To contribute to poverty alleviation and food
security in Africa through research, development, and
partnerships to improve rice-based systems.”

e Works with national research institutions, universities, and
farmers in more than 30 African countries.

e Plays a key role in developing improved rice varieties,
sustainable farming practices, and policy support.




STUDY AREA & DATA 1/3 : MATERIAL AND METHODS

Data collected on 17,647 rice fields distributed in three growing environments. Irrigated
lowlands include both wet and dry seasons.
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STUDY AREA & DATA 2/3: MEAN AND VARIATIONS OF DATA AND DATA SOURCES

Agro-ecological zone (AEZ)

Growing environment
Season (wet/dry)

Rice yield (t/ha)
Management practices
N input (kg/ha)

P input (kg/ha)

Kinput (kg/ha)

Soil properties

Sand (%)

Clay (%)

Soil organic carbon (%)
Total nitrogen (%)

Soil pH

Available soil water holding capacity (%) (ASWC)

Weather variables of growing season

Rainfall (mm)
Maximum temperature (oC)
Minimum temperature (oC)

Relative humidity (%)

Solar radiation (MJ/m2/day)
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STUDY AREA & DATA 3/3: FUTURE CLIMATE SCENARIOS

e Future climate data (precipitation, and minimum and maximum temperatures, and
solar radiation) from GCM were used under the RCPs emission scenarios (RCP 8.5).

e The future scenarios were divided into four-time frames which include the horizons
2030s, 2050s, 2070s and 2100s.

e The baseline period of 2012 - 2014 depending on the year the data were collected and
considering the season of cultivation.
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METHOD

Existing Approaches
e Crop Models » Good but less accurate on large
scales
e Statistical Models » Limited, miss non-linearities
e Machine Learning (ML) » Captures complexity, but
depends on algorithm choice

Why Ensemble ML?
e Combines strengths of multiple ML models
e More robust, less bias
e Gap: No regional-scale study for West Africa rice yields
using ensemble ML




METHOD

Models:
e AdaBoostRegressor (ABR)
e DecisionTreeRegressor (CART)
e RandomForestRegressor (RFR)
e ExtraTreesRegressor (ETR)
e GradientBoostingRegressor (GBR)
e HistGradientBoostingRegressor (HR)
e KNeighborsRegressor (KNN) To
e Lasso (LASSO)
e ElasticNet (EN)
e LinearRegression (LR)
e Multilayer Perceptron (MLP)
e Support Vector Regression (SVR)
e XGBoostRegressor (XGBOOST)

Stacking Approach:
e Data were analyzed per growin

environment and season.
The dataset was randomly split into
training (2/3 of dataset) and testing
(1/3 of dataset)
Automatic hyperparameters tuning
was performed for optimizing
number of trees and number of
splitting variables

R2, root mean squared error (RMSE),
mean squared error (MSE) were used
for selecting the four best models.
Ensemble model was developed
based on the four best performin
models.



SYSTEM ARCHITECTURE
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RESULTS 1/10

Overview of variation in rice yield per rice growing environment
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e IL wet season: Irrigated lowland wet
e IL dry season: Irrigated lowland dry
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RMSE

RMSE
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RESULTS 3/10

ROOT MEAN SQUARE ERROR (RMSE) OF THE ENSEMBLE MODELS
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RESULTS 4/10

PERFORMANCE OF ENSEMBLE MODELS
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RESULTS 5/10
VARIABLES IMPORTANCE
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RESULTS 6/10

PARTIAL RESPONSE CURVES OF RICE YIELD IN IRRIGATED LOWLANDS
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RESULTS 7/10

PARTIAL RESPONSE CURVES OF RICE YIELD IN RAINFED LOWLANDS AND UPLANDS
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RESULTS 8/10

CLIMATE DATA FOM BASELINE TO FUTURE VALUES
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RESULTS 9/10

SIMULATED CHANGES IN RICE YIELD
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RESULTS 10/10

SIMULATED CHANGES IN RICE YIELD
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ENSEMBLE
ML WINS

Ensemble machine

learning
outperformed the
best individual
models in
simulating rice
yields.

KEY CONCLUSIONS & DISCUSSION

ENVIRONME
NT MATTERS

Stronger
performance in

irrigated and rainfed

lowlands; weaker in
uplands due to
factors like weeds,
pests, and crop
rotations not

aptured by models.

NITROGEN IS
KING

Nitrogen input was
consistently one of
the top three
drivers of rice yield
across all
environments.

CLIMATE
CHANGE HURTS

Projected climate
change will reduce
rice yields overall,
though impacts vary
by country.

FROM
INSIGHT TO
ACTION

Need to better link
climate conditions
with yield outcomes
to design targeted
adaptation
strategies.
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