Echo Australia 2025

Beware the HFpEF Dr Ian Goh

History 62-year-old lady

- 2 years of progressive dyspnoea, palpitations, fatigue, chest pain
- Diagnosed with HFpEF and was commenced on HF therapy
- Symptoms worsened over 5 months prior to admission, NYHA III
- B/:G Hyperlipidemia, non-smoker, 70kg

Medications pre-admission

- Rosuvastatin 10mg daily
- Empagliflozin 10mg daily
- Furosemide 40mg mane/midi
- Spironolactone 25mg daily
- Metoprolol 12.5mg BD

Investigations

CTCA - Jan 2024

- Calcium score 0
- No coronary atherosclerosis.

Stress TTE - May 2024:

- Baseline Septal e' 5cm/s, lateral e' 6cm/s, IVRT 60ms, E/e' avg 15
- Stage II, 3:30 minutes, 5.2 METs, 80% MPHR
- Stress Poor systolic and mitral annular velocities augmentation

CTPA - June 2024

- No pulmonary embolism
- Moderate bilateral pleural effusions

Basal anteroseptum ~ 12mm. Inferolateral wall ~ 10mm. RWT 0.57. LVMi 71 g/m²

Basal septum ~ 11mm

APICAL SPARING PATTERN IS NOT EXCLUSIVE TO AMYLOIDOSIS

9 Leitman M, Tyomkin V. Apical Sparing in Routine Echocardiography: Occurrence and Clinical Significance. J Cardiovasc Dev Dis. 2024 Aug 27;11(9):262. doi: 10.3390/jcdd11090262. PMID: 39330320; PMCID: PMC11431858.

Ratio		Cutoff
RRSR ⁹	Average apical segment LS/ average combined mid + basal segment LS	>1.0
Ejection fraction to strain ratio ¹³		>4.1

AHA 2017 – Echo Parameters for Differential Diagnosis in Cardiac Amyloidosis Table 2 - ASE 2022 - Practical Points for Echocardiography in Cardiac Amyloidosis

2023 - ESC Guidelines for the Management of Cardiomyopathies

Hb	152 g/L
HCT	0.48
WCC	8.8
Platelets	257
ESR	47
INR	1.3
Kappa FLC	10.3 mg/L (3.3 - 19.4)
Lambda FLC	421 mg/L (5.7 - 26.3)
K/L ratio	0.02 (0.26 – 1.65)
Urine protein/creatinine ratio	600 g/L (normal <30)
Paraprotein	Not detected
Urine protein	6.7g/L

Sodium	141 mmol/L
Potassium	4.5 mmol/L
Urea	7.5 mmol/L
Creatinine	65 umol/L
eGFR	88
Corrected Ca	2.6 mmol/L
Albumin	32 g/L
Protein	66 g/L
ALP	146 U/L
GGT	137 U/L
LDH	320 U/L
BNP	1,353 ng/L (<100)

2023 ESC Guidelines for the management of cardiomyopathies

LVEDVi 66ml/m ²	RVEDVi
LV SVi 30ml/m ²	RV SVi 2
LVEF 45%	RVEF 41
LVMi 61 g/m²	TAPSE 9
Lateral MAPSE 5mm	

RVEDVi 66ml/m² RV SVi 27ml/m² RVEF 41% TAPSE 9mm

ROI1

Min / Max: 1072.00 ms/1208.00 ms Mean/SD: 1155.38 ms/38.73 ms Area: 0.44 cm2

R0I3

Min / Max: 1055.00 ms/1132.00 ms Mean/SD: 1097.63 ms/27.45 ms Area: 0.11 cm2

Prolonged T1 recovery time: 1157ms 1.5 T Normal range of 934 - 1079ms

Prolonged T2 decay time 52ms (N 39 – 49ms)

TI scout – inversion time

- Aim: Determine when normal myocardium crosses null point = black
- Why: Improve contrast resolution between normal vs abnormal myocardium
- How: Administer IV gadolinium -> inversion pulse -> take images at different time points
- Gadolinium increases rate of recovery i.e shortens inversion time
- Normal gadolinium kinetics blood pool crosses the null point first before normal myocardium
- "Difficult to null myocardium", "reversed gadolinium kinetics"

19 2021 - Journal of Cardiovascular Magnetic Resonance – Usefulness of TI-scout images in the assessment of late gadolinium enhancement in children

Reversed nulling pattern (abnormal myocardium nulling before blood pool) = correlated with higher extracellular volume 20

2023 ESC Guidelines for the management of cardiomyopathies

24 Photo courtesy of Dr Anand Murugasu, Department of Pathology, Royal Melbourne Hospital

Take Home Points

- Clinical
 - Male predominant disease ATTR (M:F of 95:5)
 - · Difficult diagnosis to make in early stages with a delay in diagnosis
 - Dyspnoea out of proportion
 - Don't forget the humble ECG
 - Utilise NT-proBNP (new MBS item 66829 as of 1st Nov 2024)
- TTE
 - Mildly increased LV wall thickness
 - · Apical sparing pattern is not exclusive to amyloidosis
 - Quantitative; RASR >1 and LVEF to Strain Ratio >4.1
- Bone scan (PYP) and myeloma screen (*immunofixation electrophoresis*)
 - 20% of AL can have false positive bone scan
 - 20% of ATTR can have MGUS
 - HCM can also have positive bone scan!
- MRI
 - Utility of Ti scout as a diagnostic tool; abnormal gadolinium kinetics
 - Expected LGE pattern is subendocardium or transmural, our case was atypical as it was predominantly subepicardial
 - · Unable to differentiate AL vs ATTR definitely but there will be clues
- Biopsy "target" vs "off-target" required for non-ATTR or in some cases of MGUS, or negative bone scan + myeloma screen

Take Home Points

- Clinical
 - Male predominant disease ATTR (M:F of 95:5)
 - Dyspnoea out of proportion
 - Don't forget the humble ECG
 - Difficult diagnosis to make in early stages with a delay in diagnosis
 - Utilise NT-proBNP (new MBS item 66829 as of 1st Nov 2024)
- TTE
 - Mildly increased LV wall thickness
 - Apical sparing pattern is not exclusive to amyloidosis
 - Quantitative; RASR >1 and LVEF to Strain Ratio >4.1
- Bone scan (PYP) and myeloma screen (immunofixation electrophoresis)
 - 20% of AL can have false positive bone scan
 - 20% of ATTR can have MGUS
 - HCM can also have positive bone scan!
- MRI
 - Utility of *Ti scout* as a diagnostic tool; abnormal gadolinium kinetics
 - Expected LGE pattern is subendocardium or transmural, our case was atypical as it was *predominantly subepicardial*
 - Unable to differentiate AL vs ATTR definitely but there will be clues
- Biopsy "target" vs "off-target" required for non-ATTR or in some cases of MGUS, or negative bone scan + myeloma screen

#MEGA *Making Echo Great Again*

