Mechanical dispersion

The Forgotten Step-child of strain imaging

Dr Vinesh Appadurai MBBS, BSc, FRACP, FASE, FACC, FCSANZ Advanced Cardiac Imaging Specialist and Consultant Cardiologist The Prince Charles Hospital Senior Lecturer, The University of Queensland

Disclosures

• None to disclose

Setting the scene

- Understanding myocardial fibre orientation is an important first step in assessing myocardial mechanics.
- Fibre orientation occurs along different planes
- Endocardial layer in a right-handed alignment
- Epicardial layer in a left-handed alignment

. Cardioflash College, Oct 2020, Everything you should know about "myocardial strain"[video] Youtube, https://www.youtube.com/watch?v=_-ZIGcdU-BE

What do we mean by deformational dyssynchrony?

- Traditional parameters of myocardial dyssynchrony focused on tissue doppler quantification of wall motion velocities
 - Colour TD
 - Yu Index (SD of TTP velocity)
- Initially used for suitability and response to CRT

What do we mean by deformational dyssynchrony?

Analysing the strain curves

 \mathbf{V}

Analysing the strain curves

- To standardize the quantification of contraction timing differences or "heterogeneity of contraction" across different heart rates
 - Standard deviation of the timeto-peak (TTP) contraction is calculated
 - Referred to as "Mechanical Dispersion"

Who did it first?

- LQTS leads to delayed myocardial relaxation, increasing risk of arrhythmias
- Subendocardial and subepicardial layers demonstrate asynchronous contraction contributing to increasing mechanical dispersion
- Enhanced mechanical dispersion may serve as a substrate for TdP and SCD

Transmural Differences in Myocardial Contraction in Long-QT Syndrome

Mechanical Consequences of Ion Channel Dysfunction

Kristina Hermann Haugaa, MD; Jan P. Amlie, MD, PhD; Knut Erik Berge, MD, PhD; Trond P. Leren, MD, PhD; Otto A. Smiseth, MD, PhD; Thor Edvardsen, MD, PhD

Myocardial infarction

Figure 2. Mechanical Dispersion by Strain Echocardiography in a Healthy Individual and ICD Patients With and Without Arrhythmias During Follow-Up

Cumulative incidence stratified according to tertiles of GLS (left) and MD (right). Abbreviations as in Figures 1 and 2.

Ersboll M et al. JACC: CVI 2013;6(8);851-60 Haugaa K et al. JACC: CVI 2010;3(3):247-56

Hypertrophic cardiomyopathy

Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy

Trine F. Haland^{1,2,3,4}, Vibeke M. Almaas^{1,2,3}, Nina E. Hasselberg^{1,2,3,4},

Haland TF et al. EHJ CVI 2016;17;613-621

Differences in HCM athlete vs Control Athlete

ORIGINAL RESEARCH

Advanced Echocardiographic Imaging for Prediction of SCD in Moderate and Severe LV Systolic Function

Rebecca Perry, BSc, PhD, ^{a,b,c} Sanjana Patil, BBMed, BSc (Hons),^a Christian Marx, BParamedicSc,^a Matthew Horsfall, RN,^b

Kaplan-Meier analysis using MD \geq 75 ms as the cutoff value stratified to LVEF. LVEF = left ventricular ejection fraction; MD = mech dispersion; VA = ventricular arrhythmia.

FIGURE 1 Regional Strain Curves Showing Strain Output From the Apical 4-Chamber View in 4 Different Patients With the Corresponding Strain Bull's-Eye

ORIGINAL RESEARCH

Prediction of Ventricular Arrhythmias With Left Ventricular Mechanical Dispersion

A Systematic Review and Meta-Analysis

Hiroshi Kawakami, MD, PHD,^a Nitesh Nerlekar, MBBS, MPH,^a Kristina H. Haugaa, MD, PHD,^b Thor Edvardsen, MD, PHD,^b Thomas H. Marwick, MBBS, PHD, MPH^a

Study	Log [Hazard Ratio]	SE	Weight	95% CI	Hazard Ratio, 95% CI
Ersbøll et al ¹⁹	0.3221	0.0546	13.3%	1.38 [1.24, 1.54]	
lasselberg et al ²⁶	0.006	0.0456	13.9%	1.01 [0.92, 1.10]	
laugaa et al ¹³	0.2624	0.059	12.9%	1.30 [1.16, 1.46]	
laugaa et al ¹⁸	0.3293	0.0708	12.0%	1.39 [1.21, 1.60]	_ _
laugaa et al ²⁰	0.5878	0.1024	9.5%	1.80 [1.47, 2.20]	
eong et al ²²	0.131	0.0229	15.2%	1.14 [1.09, 1.19]	-
Natsuzoe et al ²⁵	0.0953	0.1001	9.7%	1.10 [0.90, 1.34]	
Nornos et al ²⁷	0.1989	0.0528	13.4%	1.22 [1.10, 1.35]	
legishi et al ²⁴	-5.2983	4.457	0.0%	0.01 [0.00, 31.10]	< →
Total (95% CI)			100.0%	1.26 [1.14, 1.39]	•
leterogeneity: Tau	$^{2} = 0.02$; Chi ² = 5	0.12, df = 8			

В							
Study	Log [Hazard Ratio]	SE	Weight	Hazard Ratio, 95% Cl	Covariates in Multivariable Model	Hazard Ra	tio, 95% CI
Ersbøll et al ¹⁹	0.1398	0.0662	19.9%	1.15 [1.01, 1.31]	Age, QRS, LVEDV, GLS		_ _ _
Haugaa et al ¹³	0.2546	0.0691	19.0%	1.29 [1.13, 1.48]	Age, Sex, LVEF, GLS		_
Haugaa et al ¹⁸	0.1823	0.0779	16.7%	1.20 [1.03, 1.40]	Age, QRS, LVEF, GLS		_
Haugaa et al ²⁰	0.5306	0.1777	4.8%	1.70 [1.20, 2.41]	Age, LVEF, GLS		
Leong et al ²²	0.1133	0.0281	33.9%	1.12 [1.06, 1.18]	Age, QRS, Cr, Revascularized infarct-relate Time from MI, LVESVI, LV sca VT inducible, LVEF, GLS	d artery are,	+
Mornos et al ²⁷	0	0.1606	5.7%	1.00 [0.73, 1.37]	Age, LBBB, E/e', LVEF, GLS		
Total (95% CI) Heterogeneity: Test for overall	Tau ² = 0.00; Chi ² effect: Z = 4.10 (F	= 9.53, df < 0.0001	100.0% = 5 (P = 0.)	1.19 [1.09, 1.29] 09); I ² = 48%	∣ 0.5	0.7	1 1.5 2

Kawakami et al. JACC CVI 2020;13(2);562-72

FIGURE 3 Difference in Left Ventricular Mechanical Dispersion Between Patients With and Those Without Ventricular Arrhythmias

Kawakami et al. JACC CVI 2020;13(2);562-72

A							
_	Study	Log [Hazard Ratio]	SE	Weight	Hazard Ratio, 95% Cl	Hazard Ratio, 95%	CI
	Ersbøll et al ¹⁹	0.3221	0.0546	13.3%	1.38 [1.24, 1.54]		—
	Hasselberg et al ²⁶	0.006	0.0456	13.9%	1.01 [0.92, 1.10]	_ + _	
	Haugaa et al ¹³	0.2624	0.059	12.9%	1.30 [1.16, 1.46]		_
	Haugaa et al ¹⁸	0.3293	0.0708	12.0%	1.39 [1.21, 1.60]		
	Haugaa et al ²⁰	0.5878	0.1024	9.5%	1.80 [1.47, 2.20]		
	Leong et al ²²	0.131	0.0229	15.2%	1.14 [1.09, 1.19]		
	Matsuzoe et al ²⁵	0.0953	0.1001	9.7%	1.10 [0.90, 1.34]		
	Mornos et al ²⁷	0.1989	0.0528	13.4%	1.22 [1.10, 1.35]		
	Negishi et al ²⁴	-5.2983	4.457	0.0%	0.01 [0.00, 31.10]	-	►
	Total (95% CI)			100.0%	1.26 [1.14, 1.39])
	Heterogeneity: Tau						
	Test for overall effe	ect: Z = 4.55 (P < 0	0.00001)			0.5 0.7 1	1.5 2

В							
_	Study	Log [Hazard Ratio]	SE	Weight	Hazard Ratio, 95% Cl	Covariates in Multivariable Model	Hazard Ratio, 95% CI
	Ersbøll et al ¹⁹	0.1398	0.0662	19.9%	1.15 [1.01, 1.31]	Age, QRS, LVEDV, GLS	
	Haugaa et al ¹³	0.2546	0.0691	19.0%	1.29 [1.13, 1.48]	Age, Sex, LVEF, GLS	_
	Haugaa et al ¹⁸	0.1823	0.0779	16.7%	1.20 [1.03, 1.40]	Age, QRS, LVEF, GLS	
	Haugaa et al ²⁰	0.5306	0.1777	4.8%	1.70 [1.20, 2.41]	Age, LVEF, GLS	
	Leong et al ²²	0.1133	0.0281	33.9%	1.12 [1.06, 1.18]	Age, QRS, Cr, Revascularized infarct-related ar Time from MI, LVESVI, LV scare, VT inducible, LVEF, GLS	-tery
	Mornos et al ²⁷	0	0.1606	5.7%	1.00 [0.73, 1.37]	Age, LBBB, E/e', LVEF, GLS	
	Total (95% CI) Heterogeneity: Test for overall	Tau ² = 0.00; Chi ² effect: Z = 4.10 (F	= 9.53, df ? < 0.0001	100.0% = 5 (P = 0.)	1.19 [1.09, 1.29] 09); I ² = 48%	0.5	0.7 1 1.5 2

Kawakami et al. JACC CVI 2020;13(2);562-72

Determinants and prognostic implications of left ventricular mechanical dispersion in aortic stenosis

Edgard A. Prihadi¹, E. Mara Vollema¹, Arnold C.T. Ng^{1,2}, Nina Ajmone Marsan¹, Jeroen J. Bax¹, and Victoria Delgado¹*

ORIGINAL RESEARCH

Additive Prognostic Value of Left Ventricular Dispersion and Deformation in Patients With Severe Aortic Stenosis

Nicolas Thellier, MD,^a Alexandre Altes, MD,^a Michael Rietz, MD,^a Aymeric Menet, MD, PhD,^a Jeremy Layec, MD,^a François Outteryck, MD,^a Ludovic Appert, MD,^a Christophe Tribouilloy, MD, PhD,^{b,c} Sylvestre Maréchaux, MD, PhD^a

Left ventricular mechanical dispersion as a predictor of the need for pacemaker implantation after transcatheter aortic valve implantation: MeDiPace TAVI study

Esra Kaya (^b^{1,2,3}, Kristoffer Andresen^{1,3,4}, Øyvind H. Lie^{1,3}, Lars Aaberge¹, Kristina H. Haugaa^{1,3,4}, Thor Edvardsen (^b^{1,3,4}, and Helge Skulstad (^b^{1,2,3,4}*

How can you measure it?

- GE Automated
- TomTec Manual
- Philips Manual
- Siemens ?Manual

Echocardiography WILEY

Impact of inter-vendor variability on evaluation of left ventricular mechanical dispersion

 Vinesh Appadurai MBBS^{1,2}
 |
 Gregory M. Scalia MBBS^{1,2}
 |
 Katherine Lau MBBS^{1,2}
 |

 Robert Chamberlain BSc^{1,3}
 |
 Natalie Edwards PhD^{1,3}
 |
 Hannah Bushell MCIPhysiol¹

 William Scalia MBBS^{1,2}
 |
 Stephen Tomlinson MBBS^{1,3}
 |

 Christian Hamilton-Craig PhD^{1,2,3}
 |
 Jonathan Chan PhD^{1,3}

Are there intervendor differences?

Are there intervendor differences?

ORIGINAL ARTICLE

Echocardiography WILEY

Impact of inter-vendor variability on evaluation of left ventricular mechanical dispersion

Vinesh Appadurai MBBS^{1,2} | Gregory M. Scalia MBBS^{1,2} | Katherine Lau MBBS^{1,2} | Robert Chamberlain BSc^{1,3} | Natalie Edwards PhD^{1,3} | Hannah Bushell MCIPhysiol¹ William Scalia MBBS^{1,2} | Stephen Tomlinson MBBS^{1,3} | Christian Hamilton-Craig PhD^{1,2,3} | Jonathan Chan PhD^{1,3}

Software Variability in Measurement of LV Mechanical Dispersion in Patients With LV Hypertrophy

Yoshihito Saijo, MD, PhD Brett Sperry, MD Dermot Phelan, MD, PhD Milind Y. Desai, MD Brian Griffin, MD Richard A. Grimm, DO Kimi Sato, MD, PhD Zoran B. Popović, MD, PhD* *Heart and Vascular Institute Department of Cardiovascular Medicine Cleveland Clinic Cleveland, Ohio 44195

Are there normal reference ranges for it?

- Different across age groups
 - Young adults ~30-40ms
 - Middle age ~35-50ms
 - Elderly ~40-60ms
- Different across Athletes
- Different across vendors

	Table 1. Reference Values for Mechanical Dispersion Across Age Decades										
	Overall (N = 303)	Age Groups (yrs)									
		18−30 (n = 63)	31–40 (n = 71)	41–50 (n = 67)	51–60 (n = 51)	>60 (n = 51)					
MD, ms	34 ± 10	29 ± 8	30 ± 9	34 ± 10	37 ± 10	41 ±10	<0.001				
ULN	56	49	50	55	64	64	<0.001				

RVMD/LAMD

- RVMD in pulmonary hypertension
- RVMD in ARVC
- RVMD in severe TR
- LAMD in AF

Murata M et al. Int J Card 2017;228(1);912-18

Where would you apply it?

- Patients with preserved LVEF and arrhythmia risk
 - Genetic CMs/Channelopathies
 - HCM
- Sequential testing on the same vendor if under surveillance
- Pre-TAVI when in sinus and no significant BBB

Thank you

Any questions?

