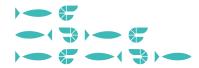


Climate-Smart Shrimp Aquaculture

Environmental Sustainability Improvement **Protection of Coastal Ecosystem**

Strengthening Local Economy

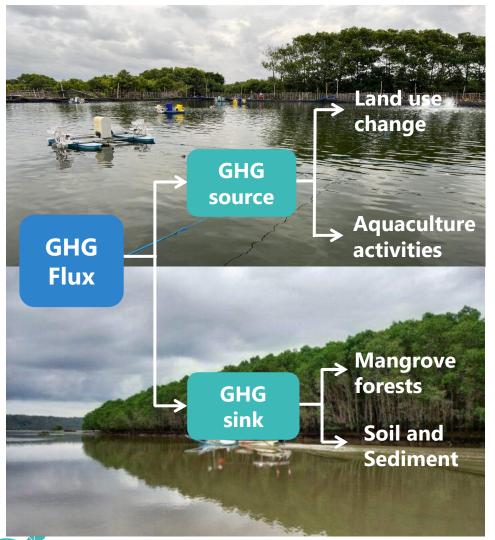

Ensuring Social Equity

GHG Flux Simulation

- GHG inventory of shrimp ponds and mangrove ecosystem.
- Mangrove Health Index analysis.
- Sustainable aquaculture practice for smallholder farmers

Leveraging GEDSI Concept Institutionally and Substantively

- Livelihood mapping
- Women and youth role mapping
- Participative approaches in conducting research and data collection



GHG Flux Simulation

Measuring **Tools/Method**

Shrimp pond **GHG** inventory calculator

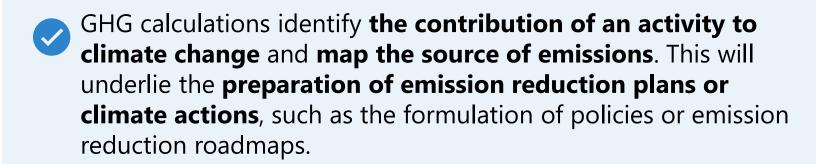
- Field survey
- Carbon stock estimation using allometric formula and lab analysis

Progress to Date

Shrimp Pond GHG Calculator V01 development has been completed. Initial analysis using interview data has been conducted

Baseline study covering above ground biomass and mangrove ecosystem health were conducted in 2024 by Konservasi Indonesia. Further assessment covering soil sampling has been conducted.

Greenhouse Gas Calculation as a Foundation for Climate Action Development


Greenhouse Gas Calculation



Mapping the **Highest Emission** Sources

Preparation of **Emission** Reduction **Strategies**

PERATURAN MENTERI KELAUTAN DAN PERIKANAN REPUBLIK INDONESI NOMOR 1 TAHUN 2025

TENTANG

DENGAN RAHMAT TUHAN YANG MAHA ESA

MENTERI KELAUTAN DAN PERIKANAN REPUBLIK INDONESIA

- bahwa untuk mendukung pelaksanaan Peraturar Presiden Nomor 98 Tahun 2021 tentang Penyelenggaraan erbasis kineria sektor kelautan:
- bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan untuk melaksanakan ketentuan Pasal 8 Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 21 Tahun 2022 tentang Tata menetapkan Peraturan Menteri Kelautan dan Perikanar tentang Tata Cara Penyelenggaraan Nilai Ekonomi Karbo

- Pasal 17 ayat (3) Undang-Undang Dasar Negara Republi Indonesia Tahun 1945;
- Undang-Undang Nomor 39 Tahun 2008 Kementerian Negara (Lembaran Negara Republik Indonesia Tahun 2008 Nomor 166, Tambahan Lembaran Negara Republik Indonesia Nomor 4916) sebagaimana telah diubah dengan Undang-Undang Nomor 61 Tahun 2024 tentang Perubahan atas Undang-Undang Nomor 39 Tahun 2008 tentang Kementerian Negara (Lembaran Negara Republik Indonesia Tahun 2024 Nomor 225, Tambahan Lembaran Negara Republik Indonesia Nomo
- Penyelenggaraan Nilai Ekonomi Karbon untuk Pencapaiai Target Kontribusi yang Ditetapkan secara Nasional dan

GHG Calculator Development Methodology

Activities mapping in various aquaculture schemes completed **Development of GHG** Calculator **Calculator trial using** interview data **Calculator enhancement** planned Socialization & Data gathering **GHG** inventory for smallholder shrimp ponds

Literature study on shrimp life cycle. types of aquaculture practice and activities on each practice

In-depth interview, participatory FGD with farmers, youth and women

Desk study to gather formula and emission factors utilizing IPCC, GHG Protocol, Ministry of Environment guideline, Ministry of Forestry research and Ministry of **Energy and Mineral Resources**

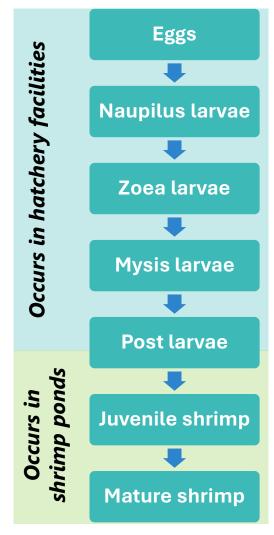
In-depth interview with farmers

Data analysis utilizing excel-based GHG calculator

Desk study to gather formula and emission factors utilizing IPCC, GHG Protocol, Ministry of Environment guideline, Ministry of Forestry research and Ministry of **Energy and Mineral Resources**

Questionnaire development, and socialization through participative FGD

Data analysis utilizing excel-based GHG calculator, validation and review with relevant expert


Validation interview/ pFGD with farmers

Shrimp Pond GHG Calculator V01 Development

GHG Calculator Component based on activities taking place in shrimp ponds

Scope	Activities	Tier	Reference Source
1	Stationary Combustion	Tier 3	Ministry of Energy and Mineral Resources
	Mobile Combustion	Tier 3	Ministry of Energy and Mineral Resources
	Refrigerant Emission	Tier 3	Ministry of Energy and Mineral Resources
	Water N2O	Tier 1	IPCC
	Water body CH4	Tier 1	IPCC
	Land Use Change Emission	Tier 3	Ministry of Forestry
2	2 Purchased Electricity		Ministry of Energy and Mineral Resources
	Purchased Fertilizer	Tier 1	IPCC, WWF, FAO
	Purchased Feeding Product	Tier 1	IPCC, WWF, FAO
	Purchased Shrimp Fries	Tier 1	IPCC, WWF, FAO
3	Wastewater CH4	Tier 1	IPCC, WWF, FAO
	Organic waste-shrimp biomass buried	Tier 1	IPCC
	Organic waste-shrimp biomass incinerated	Tier 1	IPCC

EXTENSIVE

SEMI-INTENSIVE

Shrimp Pond GHG Calculator V01 Development

TRADITIONAL

TRADITIONAL +

Aquaculture Model in Wringin Putih Village

Criteria	Model Categorization based on GROBEST Manual, 2021	Model Categorization identified by farmers		
Pond size	2-3Ha	2,000-2,500m2		
Species produced	Black tiger (<i>P. monodon</i>) Mud crab (<i>Scylla serrata</i>) Other shrimp species and fish	White leg shrimp (<i>L. vannamei</i>) Mud crab (<i>Scylla serrata</i>) Other shrimp species and fish		
Stocking density	1-3 ind m2	25-50 ind m2		
Nutrient Input	Almost all nutrients from compounds feeds	Almost all nutrients from compounds feeds		
Operational and Investment	Minimal investment, minimum to no technological intervention	Minimal investment No technological intervention		
Pond size	2,000-10,000m2	1,000m2-5,000m2		
Culture area	0,5-2 Ha	1,000m2-5,000m2		
Species produced	Black Tiger (<i>P. monodon</i>) White leg shrimp (<i>L. vannamei</i>)	White leg shrimp (<i>L. vannamei</i>) Mud crab (<i>Scylla serrata</i>) Other shrimp species and fish		
Stocking density	4-10 ind m2 (black tiger) 20-50 ind m2 (white leg)	40-100 ind m2		
Nutrient Input	All nutrients from compounds feeds	All nutrients from compounds feeds		
Operational and Investment	Moderate investment and technological intervention	Moderate investment, at least utilize 2 aerators and 1 water pump		

Identified Activity Data in Shrimp Ponds from Traditional (T) and Traditional Plus (T+) Aquaculture Model in Wringin Putih Village

Data	Relevant Calculation	Т	T+
	S1-land use change		
Pool area (m2)	S1-water body CH4		
	Data calibrator		
Shrimp	S1-water body N2O		
production/Cycle	FCR		
Number of aerator	S2-purchased electricity		
Number of water pumps	S2-purchased electricity		
Total feed (kg)/cycle	S2-purchased feed		
Dolomite lime (kg)/year	S2-purchased fertilizer		
Fertilizer Use/Year	S2-purchased fertilizer		
Shrimp fries density/m2	S2-purchased shrimp fries		
Number of cycles	Data calibrator		
Cycle length (months)	Data calibrator		

Initial Analysis on Interview Data Utilizing Shrimp Pond GHG Calculator V01

PONDS	pond area (m2)	number of aerator	number of water pump	feed (kg)/cycle	dolomite lime (kg)	fertilizer	stock density	shrimp live weight (Kg)/cycle		Feed Conversion Rate
T*1	5000	2	1	800	500	EM4 2L	100	150	7503	5,33
T*2	1000	1	1	600	100	EM4 2L	40	80	2814	7,5
T*3	1000	1	1	600	100	EM4 2L	40	80	2814	7,5
T1	2500	_	_	350	250	_	50	100	7503	3,5
T2	2000	-	-	10	-	SP36 50kg	25	87	3450	0,11

Findings

- Samples are taken from ponds under the **extensive** or **traditional** model spectrum. There are **Traditional** + and **Traditional** pond. The main difference between those two is the usage of **aerator** and water pump.
- It is estimated that the fairly lowest emission intensity and closer to ideal FCR rate is found in T2 pond, the **low maintenance** one with **no technological intervention**. Key factor behind this findings are:
 - Rapid cycle and soil treatment turnover, resulting in highest shrimp tonnage in a year.
 - Low feeding product usage due to rich healthy microbes in water because of soil treatment and fertilizer usage.

Potential Climate Adaptation Strategy for Smallholder Farmers

For smallholder farmers, enhancing their capacity in disease identification and mitigation is identified as the most accessible strategy to boost productivity while also ensuring low-emission practice.

> emission estimation from aquaculture practice ($CO_2e \ kg$) emission intensity = commodity biomass (kg)

Climate Actions	Accessibility			
Rapid cycle and soil treatment turnover, resulting in highest shrimp tonnage in a year.	Local knowledge adaptation strategy that has been implemented through years. Highly accessible.			
Low feeding product usage due to rich healthy microbes in water because of soil treatment and fertilizer usage.	Local knowledge adaptation strategy that has been implemented through years. Highly accessible.			
Increasing production through disease mitigation and data-based aquaculture strategy.	Identified as one of farmers' lack of capacity that is going to be facilitated under LEAPS project series of capacity building.			
Pond intensification through supporting technology and facilities.	Not accessible to most of the smallholder farmers but considered as an option. Strong financial and capacity building needed.			
Commodity diversification to increase disease resilience and biomass which decrease emission intensity.	Local knowledge adaptation strategy that has been implemented through years. Highly accessible.			

Potential Climate Action from Local Knowledge and **Communal Practice**

- Farmer Cooperation: Unlocking Access, Cutting Emissions

By pooling resources through cooperative groups, smallholder farmers overcome access barriers to feed and other supporting goods while reducing operational **emissions (mobile combustion)**, showing how collective action drives both equity and sustainability.

- Women-led POKLAHSAR: Turning Rejected Shrimp into Value, **Reducing Waste and Emissions, Boosting Local Economy**

Smallholder ponds often produce undersized shrimp that fail to meet market standards, risking higher emissions from wasted biomass. Through POKLAHSAR, a women-led processing and marketing group, these products are transformed into value-added foods such as shrimp nuggets and fried meatballs. This initiative not only reduces potential emissions but also strengthens household and village economy, expanding women's leadership beyond household roles into formal decision-making in aquaculture value chains, by positioning women as innovators, not just support labor. .

Potential Climate Action from Local Knowledge and **Communal Practice**

- Traditional Ponds: Inclusive Family-based Aquaculture Reducing **Operational and Emission Intensity**

Traditional ponds serve as an inclusive workspace for farming families, where women and youth can directly participate in aquaculture. With stronger family involvement, farmers do not need to hire daily workers from outside the village, avoiding additional costs and reducing operational emissions from mobility and accommodation. This practice enables intergenerational learning in pond management, ensuring actor regeneration. Moreover, traditional ponds support commodity diversification such as crabs, fish, and shellfish, which contributes to lowering emission intensity by generating higher overall biomass from diverse production.

Summary and Recommendation

To support the implementation of fishery and aquaculture GHG inventory as the foundation of the carbon economic value in Indonesia, the development of this calculator has identified several gaps that need to be addressed, namely:

- **Emission factor for feeding, fertilizer and shrimp fries**
 - This would require local manufacturers, industries and hatcheries to conduct their own LCA resulting in more relevant emission factor for each product. Serving a more contextualized basis for Indonesia fishery GHG inventory.
- **Emission factor for waterbody N2O, CH4**
 - This would require more robust research on waterbody (especially shrimp ponds water) research in Indonesia.
- Development of aquaculture GHG calculator for other commodities in Indonesia This would require wider studies and data sampling from other aquaculture commodities in Indonesia



For the upcoming calculator development and enhancement, there are some things to further considerate and assess. These would enhance the calculator and hopefully result in a more objective **GHG** estimation:

- Incorporating the other commodities (mud crab, fish, clamshells) biomass into the calculator
- Incorporate dead shrimp/ the other commodities biomass into the calculator, to estimate GHG emission from organic waste.
- Conduct more robust data gathering and analysis

Upcoming research topics following up this findinas:

- Assessing the effectiveness of local practice NbS strategy such as traditional fertilizers and molasses in term of aquaculture performance and emission reduction.
- 2. Estimating mitigation strategy through mangrove restoration utilizing GHG estimation and mangrove carbon stock analysis.

