Climate risk perception and climate information use: gendered differences among South African entrepreneurs

Summary

- Entrepreneurs in South Africa are increasingly vulnerable to extreme weather events and there are differences in vulnerability between women and men.
- Women face 'triple differential vulnerability' from climate risk, systemic barriers and managing household-level climate impacts.
- In climate risk terms, women are more likely than men to report adverse outcomes from flooding and drought.
- Systemically, women lack awareness of impending extreme weather events and are reliant on family support in the absence of access to finance.
- Use of weather and climate information is widespread, with 75% of entrepreneurs using it for decision-making.
- Women tend to favour short-term tools like daily forecasts, which may limit longer-term decision-making, whereas men use more medium-term information. There are also gendered differences in preferred methods of delivery.
- Of the women who do not use weather and climate information, many cite a lack of awareness and distrust in the reliability.

Recommendations to improve equality of outcomes

- Tailor climate information to gendered job categories: Focus on sectorspecific solutions, such as real-time weather alerts for women in informal trade roles and medium-term forecasts for men in building, carpentry and vehicular maintenance.
- Enhance access to actionable climate information: Disseminate this information through a wider range of channels, and ensure that forecasts are relevant and practical and can enable informed decision-making.
- Bridge the gap between awareness and taking action: Provide training on disaster risk reduction and create support systems to empower women in proactive adaptation.
- Start addressing structural gendered inequalities: Increase women's access to financial resources and develop mentorship programmes to encourage long-term planning.

Policy briefs provide analysis on topical issues, presenting specific recommendations to inform ongoing policy debates. Drawing on the Grantham Research Institute's expertise, they summarise either our research findings or the state of knowledge about a particular issue.

This policy brief was written by Denyse S Dookie, Katharine Vincent, Miriam Murambadoro, Emma Archer, Palesa Base, Songo Benya, Declan Conway, Kate Gannon and Gina Ziervogel.

Research context: entrepreneurship in South Africa

Entrepreneurship¹ is often seen as an important engine of economic growth due to the way it can foster innovation, create jobs and stimulate competition (Jobanputra, 2023). In many countries, including South Africa, the entrepreneurial landscape is made up of both formal- and informal-sector businesses, many of them micro, small and medium-sized enterprises (MSMEs). Data from the UN Conference on Trade and Development indicates there are over 2 million MSMEs in South Africa, which constitute less than one-third of all formal jobs (UNCTAD, 2024). However, their survival rate is low, with about 20% failing within the first two years and two-thirds within five years (ibid.).²

South Africa has one of the highest unemployment rates globally, at 33.2% in 2024,³ and the challenge of finding work remains the leading reason people start informal businesses (Statistics South Africa, 2025).⁴ By the end of 2024, the informal sector constituted 19.5% of total employment in South Africa. While there was a higher proportion of women in the informal sector between 2001 and 2005, during the period 2009–23 men were more likely to run informal businesses (ibid.).

Entrepreneurship thus remains key for income generation in South Africa, and creating an enabling environment for entrepreneurs would likely improve business survival, sustainable livelihoods and economic development. A promising initiative is in place to develop a national entrepreneurship strategy for small (formalised) businesses and start-ups (UNCTAD, 2024), emphasising reducing bureaucracy, improving access to finance, and fostering entrepreneurial skills through education and training. But setting the foundation for a resilient, innovative and agile entrepreneurial ecosystem also needs to include the informal sector and to focus on building resilience to climate change (Crick et al., 2018; Gannon et al., 2021). We show in this policy brief how an approach that focuses on climate information use, particularly with gendered dimensions, is critical to ensuring equitable and effective climate adaptation decision-making for entrepreneurs across both the formal and informal sectors.

Why focus on gendered dimensions – and why is a gendersensitive approach needed?

Climate change poses a profound threat to economic activity, livelihoods and natural systems, while also exacerbating existing social vulnerabilities (IPCC, 2022). The effects are particularly acute where livelihoods are closely tied to natural resources, which is the case across Africa.

Women entrepreneurs, who play a critical role in supporting family welfare and contributing to key value chains, face heightened challenges. Socially constructed gender roles and norms often shape the types of economic activities that men and women engage in, influencing their exposure to climate risks and their capacity to adapt. Women's businesses are thought to be disproportionately exposed to climate risks, and they often bear the dual burden of managing household-level climate impacts while navigating systemic barriers to adaptation, such as limited access to land, finance and education. This 'triple differential vulnerability' underscores the urgent need for targeted interventions to support women entrepreneurs in building resilience to climate change (Gannon et al., 2022). But despite the barriers women face, women-led businesses make significant contributions

"An approach that focuses on climate information use, particularly with gendered dimensions, is critical to entrepreneurs' decision-making."

^{1.} Defined by Prince et al. (2021) as the "act of generating and developing an idea for validation."

^{2.} For comparison, a review of US private-sector business established from the period 2013 to 2023 estimated that over 20% of small businesses failed within the first year (BLS, 2024).

^{3.} Compared with a world average of 4.9% and a Sub-Saharan African average of 5.8% (World Bank data, 2025).

^{4.} Estimates show that the informal sector is most concentrated in Gauteng province (28.9%), followed by KwaZulu-Natal (16.8%) and Limpopo (15.8%), with most informal businesses operating in trade (48.2% in 2023).

to climate adaptation by providing goods and services that enhance community resilience (Gannon et al., 2021; Seshie-Nasser and Oduro, 2018).

Recognising and addressing the gendered dimensions of climate vulnerability is essential for ensuring equitable and effective responses. Without this focus, adaptation strategies risk perpetuating existing inequalities and failing to meet the needs of the entire population. Access to weather and climate information (WCI) is a critical enabler of climate adaptation, helping individuals and businesses make informed decisions to manage risks and seize opportunities (Craig et al., 2025; Dookie et al., 2023), but gender norms create significant inequalities in its use. Women often face barriers, such as lower levels of education, limited access to technology and exclusion from decision-making spaces, that may hamper their ability to benefit from climate information services (Gannon et al., 2022). The design and dissemination of climate information often fail to account for the specific needs and preferences of women, too, resulting in gender-blind services that primarily benefit men (Archer, 2003). The capacity to act upon this information also reflects gender norms and access to assets and adaptive capacity.

A gender-sensitive approach to the design and delivery of climate information services that addresses these differences can ensure that services are accessible, relevant and actionable for all users, which in turn could have transformative effects on resilience and adaptation outcomes.

Surveying entrepreneurs in South Africa

We surveyed 202 individuals in South Africa in November and December 2024, 102 women and 99 men, randomly selected at their workplaces by our enumerators, who were instructed to engage with a diverse range of entrepreneurs. Most respondents were from Gauteng province (see Figure 1), and many of them from the township of Katlehong, a densely populated urban area featuring a mix of formal, state-sponsored and informal housing. While many residents have access to electricity, clean water, health clinics and schools, Katlehong faces significant challenges related to poor service delivery and overcrowding. Unemployment is high and the informal sector plays a vital role in the local economy.

A high percentage of the survey respondents had completed at least secondary education. Of these, 83 respondents (41%) confirmed their business was registered, while 113 (56%) indicated it was not. They were asked 37 closed and open-ended questions which focused on the nature of entrepreneurship, impacts of extreme weather events, coping strategies, and use of weather and climate information for business purposes. Key terms and concepts used in the survey are defined in Box 1.

Survey findings: differences between women and men entrepreneurs

Extreme weather events have particularly negative effects on women

Extreme weather events (EWEs) are significantly affecting entrepreneurial activities in South Africa. Most respondents (71 women [70%] and 72 men [73%]) reported that their business had been affected by EWEs often multiple times over the past three years. Men and women tend to work in different business categories (see Figure 2); more women than men entrepreneurs reported negative impacts from these events, particularly

Box 1. Key terms and concepts used in the survey

Gender: Socially constructed differences between men and women, recognising there are many different identities beyond this binary division.

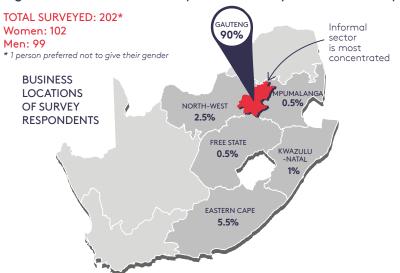
Inclusion: Proactively including different social identities/groups, considering factors including age, race, religion and disability.

Entrepreneur: Anyone making their own living for profit (not salaried employees), including those engaged in piecework, contracting or owning businesses of various sizes.

Extreme weather events (EWEs): Events characterised by their unusual magnitude, location, timing or extent at a specific place and time of year. Includes include droughts, floods, extreme temperatures, extreme rainfall and extreme

Weather information:

wind/dust storms.


'Nowcasts' – very short-term weather forecasts that predict conditions over the next few hours; daily and other short-term forecasts of up to 10 days, including rainfall, temperature and wind speed.

Climate information: Longerterm projections from seasonal (3 to 6 months) to 100-plus years.

Weather and climate information (WCI) services: Tailored information to meet

specific user needs.

Figure 1. South African entrepreneurs survey: overview of respondents

LEVEL OF EDUCATIONAL ACHIEVEMENT OF RESPONDENTS

68%

Matric/secondary
schooling/tertiary-level

24%

Primary or some secondary education

8%

None/did not complete primary school

HOW MUCH DO YOU KNOW ABOUT CLIMATE*?

diploma/degree

12%

20%

mount Not

Not much/ nothing Don't know/ not sure

TOP 5 BUSINESS CATEGORIES

Food & hospitality (18)
Beauty/hair (16)
Convenience store (14)
Street vendor (10)
Education services (8)

Building/carpentry (14) Food & hospitality (12) Vehicular-related (10) Convenience store (10) Internet café (8)

Numbers indicate number of respondents

BUSINESS REGISTRATION STATUS OF RESPONDENTS*

41% registered

56%

not register

The shadings refer to the percentages of total respondents

SELECTED SOUTH AFRICAN STATISTICS:

Population: **64 million**Urban population: **69%**Total unemployment: **33.2%**Population using the internet: **76%**

Mobile cellular subscriptions (per 100 persons): 172

Source: https://data.worldbank.org/country/south-africa

from strong winds, flooding and drought, with heavy rainfall considered to have the most impact. Both men and women reported that impacts included physical damage, business closure, and missed opportunities and income due to a decline in customers. While women reported predominantly negative impacts, men more often reported positive effects (primarily due to increase in sales/demand for their businesses).

Women have lower EWE awareness and poorer access to resources to respond

Entrepreneurs' awareness and preparedness for EWEs, and coping strategies, vary significantly between men and women. Women were more likely to report being unaware of impending EWEs, while men attributed impacts to the unexpected or compounding nature of such events. Women often relied on family support or took no action in response, whereas men were more likely to use personal savings or other resources to cope. At least 37 women (36% of the 102 surveyed) felt that their gender plays a role in their ability to access business resources for preparing for and responding to EWEs. Statistical analysis confirms a gender-based disparity in resource accessibility, with women experiencing more barriers than men.

Men and women have different timeframe preferences

Access to and use of WCl is a critical factor for entrepreneurs managing climate risks. About 75% of those surveyed (80 women [78%] and 71 men [72%]) reported using WCl to guide business decisions, such as assessing

^{*}The survey question asked: How much would you say you personally know about the terms 'climate chanae', 'climate variability', 'disaster risk reduction' and/or 'extreme weather events'?

^{*3%} of respondents were not sure

risks to business locations and operations. Women were more likely to frequently use near-term nowcasts and daily forecasts while men reported slightly greater use of medium-term seasonal forecasts. Use of long-term climate projections was low across the board.

Men and women have different preferences for how they receive WCI

Women preferred receiving WCl through apps, WhatsApp, SMS/text and community networks, while men favoured email, radio and social media platforms. Both genders showed similar preferences for accessing WCl via websites and television.

Relevance and reliability are barriers to using WCI

Among non-users, women often cited a lack of awareness about WCl or doubts about its relevance and reliability. For instance, one woman who sold items including clothing likened the predictive ability of WCl to that of a sangoma – a traditional healer or diviner: "I don't think it's a reliable source for me to base decisions for my business on. It's like going to the sangoma, it's all predictions, it could be right, and it could be wrong."

See Figure 2 for a further summary of key findings.

Policy recommendations

Our research in South Africa and analysis of the survey with entrepreneurs lead us to make the following recommendations for government policymakers in areas related to entrepreneurship, business, economic growth and community resilience, the business community, climate information providers and boundary organisations.⁵

1. Better tailor and deliver WCI to reflect gendered preferences

Since the impact of extreme weather events on businesses is significantly associated with job category, and women and men are concentrated in different sectors, it is important to produce actionable information that addresses the unique vulnerabilities of female- and male-dominated businesses. For instance, for women working in food/hospitality, street vending and convenience stores, strategies need to consider the provision of resources to mitigate immediate disruptions, such as temporary shelters, storage facilities and real-time weather alerts. Men working in building and carpentry could benefit from a focus on longer-term adaptation strategies, such as infrastructure improvements and training in the use of climate-resilient materials and techniques. Increasing awareness of and access to WCI can be achieved through improved and more appropriate means of information delivery that is more engrained within the community and better designed for specific sectors.

2. Bridge the gap between awareness and action

Building broader trust in the relevance and utility of WCl and developing strategies to assist acting on such knowledge is vital. For short-term planning, training is needed on disaster risk reduction to help women and men understand the utility of WCl to anticipate and mitigate the impacts of extreme weather events. Community-based support systems could provide women with the resources and networks needed to make better decisions based on WCl. For longer timescales, business cooperatives and women's organisations could provide training programmes to help members interpret and apply long-term projections for proactive planning.

"Access to and use of weather and climate information is a critical factor for entrepreneurs managing climate risks."

^{5.} Boundary organisations are those that bridge the gap between, in this case, science and policy, by facilitating communication, collaboration and knowledge exchange. They often take climate information and translate it into appropriate climate services.

Overall, inclusive climate communication campaigns that address the specific needs and challenges faced by women and men in vulnerable sectors could help close the awareness-action gap, as could providing impact-based forecasts that are more in tune with user needs.

3. Address structural gender inequalities

Women's reliance on short-term forecasts and relatively more cautious decision-making may stem from structural roles, limited resources and lesser decision-making power, which constrains their long-term planning ability. Addressing these structural barriers could include increasing women's awareness of and access to financial resources, such as loans, grants and insurance, to help reduce reliance on family support and enable proactive adaptation; creating mentorship and training programmes to build women's confidence in making strategic business decisions; establishing peer networks to share best practice and success stories of women-led businesses that have successfully adapted to climate risks to further build trust in the utility of WCl and improve salience; and providing incentives for long-term investments, such as subsidies for climate-resilient technologies or tax breaks for businesses adopting proactive adaptation measures.

4. Foster gender-sensitive climate policies

While respondents did not identify gender as a primary barrier to accessing resources overall, women were more likely than men to perceive gender as having some influence, indicating subtle inequities. National policies in South Africa acknowledge the importance of gendered dimensions in climate information use (these include the National Framework for Climate Services, the Climate Change Act [2024], its Nationally Determined Contribution [NDC] under the Paris Agreement, and the National Climate Change Adaptation Strategy [NCCAS]). However, gaps remain in implementation, accessibility and representation. There is limited evidence of practical mechanisms to ensure that women can access and use climate information effectively. Although barriers such as literacy and technology access are noted, more focus is needed on addressing these challenges through targeted interventions, such as tailored communication strategies or capacity-building programmes. It is also unknown whether there is adequate representation of women in the design and dissemination of climate information services, which could increase the likelihood that their unique needs and perspectives are adequately addressed.

Gender-sensitive climate policies could be encouraged by conducting community-level engagement to identify and address specific barriers women face in accessing resources. Raising awareness about gender dynamics in resource access could promote equitable distribution of support and opportunities. And a more cohesive integration and alignment of gendered perspectives across both adaptation and disaster risk reduction policies could help ensure consistent gender-sensitive approaches in climate adaptation efforts towards encouraging inclusivity and fairness.

Conclusions

Overall, this research from South Africa indicates that although gender does not significantly influence the overall use of climate information, there are pivotal areas that warrant further attention. Firstly, women's reliance on short-term forecasts and possibly relatively more cautious

"This research indicates that although gender does not significantly influence the overall use of climate information, there are pivotal areas that warrant further attention."

Figure 2. Survey findings - key differences between women and men entrepreneurs

EFFECT OF EXTREME WEATHER EVENTS ON BUSINESS

of respondents affected by these events over past 3 years

of respondents affected multiple times

Others

flooding

strong winds

heavy rainfall

Negative impacts:

- felt by 65% of respondents
- physical damage, business closure, missed opportunities and income
- felt more by women

Positive impacts:

- felt by 4% of respondents
- increase in sales/business demand
- felt more by men

AWARENESS OF EXTREME WEATHER EVENTS AND COPING STRATEGIES

AWARENESS

29% of affected women were unaware of impending threat

40% of affected men thought an event was unexpected and were uncertain how it would impact business

COPING STRATEGIES

21% used personal finances; 19% did nothing; 10% received family support

28% used personal finances to revive business; 16% did nothing

DID GENDER PLAY A ROLE?

36% said yes, in relation to access to resources; 50% said no

18% said yes; **57%** said no

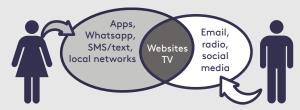
CURRENT USE OF WEATHER AND CLIMATE INFORMATION

use this information for business decisions (78% of women, 70% of men)

Nowcasts:

30% use frequently (34% of women, 26% of men)

Daily forecasts: 40% use frequently (same for women and men)



Seasonal forecasts:

6% use frequently (4% of women, 8% of men)

Climate projections: 4.5% use frequently (<4% of women, >5% of men)

PREFERENCES FOR RECEIVING INFORMATION

BARRIERS TO USING WEATHER AND **CLIMATE INFORMATION**

of respondents said they do not use this information for business decisions (51 out of 201 respondents)

22 women

do not currently use this information

- 10 have heard of it but think it's not reliable, useful or relevant
- 4 would like to use it but don't know how
- 8 have never heard of it

29 men

do not currently use this information

- 12 have heard of it but think it's too expensive or not useful or relevant
- 9 would like to use it but don't know how
- **7** have never heard of it

decision-making reflect a reactive approach to adaptation, likely shaped by societal norms, structural roles, resource constraints and the immediate vulnerabilities of their business sectors. Further, women's reported lack of awareness of oncoming extreme weather events highlights a gap between accessing climate information and effectively using it for preparedness. The gendered distribution of job categories also plays a critical role in shaping how men and women experience and respond to extreme weather. Women's businesses may be more likely to be exposed to immediate disruptions, while men's businesses face longer-term impacts.

Understanding and addressing these differences can enhance the effectiveness of climate information systems and ensure equitable access to resources and decision-making opportunities for both men and women – both in South Africa and in countries facing similar challenges.

Grantham Research Institute on Climate Change and the Environment

London School of Economics and Political Science

Houghton Street, London, WC2A 2AE

- e gri.policy@lse.ac.uk
- w www.lse.ac.uk/granthamInstitute

References

Archer E R (2003) Identifying underserved end-user groups in the provision of climate information. *Bulletin of the American Meteorological Society*, 84(11): 1525-1532.

Bureau of Labor Statistics [BLS], U.S. Department of Labor (2024) *The Economics Daily, 34.7 percent of business establishments born in 2013 were still operating in 2023*. Web page.

Craig A, James RA, Archer E, Daron J, Jack CD, Jones, RG et al. (2025) How is climate science used to inform national-level adaptation planning in southern Africa? *Climate Policy:* 1-16.

Crick F, Gannon KE, Diop M and Sow M (2018) Enabling private sector adaptation to climate change in sub-Saharan Africa. *Wiley Interdisciplinary Reviews: Climate Change*, 9(2): e505

Dookie DS, Conway D and Dessai S (2023) Perspectives on climate information use in the Caribbean. *Frontiers in Climate*, *5*: 1022721.

Gannon KE, Crick F, Atela J and Conway D (2021) What role for multi-stakeholder partnerships in adaptation to climate change? Experiences from private sector adaptation in Kenya. *Climate Risk Management*, 32: 100319.

Gannon KE, Castellano E, Eskander S, Agol D, Diop M, Conway D, et al. (2022) The triple differential vulnerability of female entrepreneurs to climate risk in sub-Saharan Africa: gendered barriers and enablers to private sector adaptation. *Wiley Interdiscip Rev Clim Change* 13, e793.

Intergovernmental Panel on Climate Change [IPCC] (2022) Summary for Policymakers, in: Pörtner H-O (et al.) (Eds.) Climate Change 2022 – Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK and New York, NY, USA, p. 33.

Jobanputra K (2023) Entrepreneurship: The Engine of Growth Driving Our Economy. Forbes, 31 July.

Prince S, Chapman S and Cassey P (2021) The definition of entrepreneurship: is it less complex than we think? *International Journal of Entrepreneurial Behaviour and Research 27*, 26–47.

Seshie-Nasser HA and Oduro AD (2018) Women-owned businesses and household welfare. *International Journal of Gender and Entrepreneurship*, 10(4): 310-331.

Statistics South Africa (2025) South Africa's Informal Economy: A Lifeline for Millions. Web page.

UNCTAD (2024) South Africa builds new roadmap to revitalize entrepreneurship. *UNCTAD News*, 2 April.

About the authors

Denyse S Dookie is a Research Fellow at the Grantham Research Institute. Katharine Vincent is Director of Kulima Integrated Development Solutions, South Africa. Miriam Murambadoro is a former Lead Scientist at the South African Weather Service. Emma Archer is a Professor in Geography and Environmental Studies at the University of Pretoria. Palesa Base is a former Research Assistant at the University of Cape Town. Songo Benya is a former Research Assistant at the University of Cape Town. Declan Conway is Research Director at the Grantham Research Institute. Kate Gannon is an Assistant Professorial Research Fellow at the Grantham Research Institute. Gina Ziervogel is an Associate Professor and Director at the African Climate and Development Initiative, University of Cape Town.

Acknowledgements

This policy brief is a result of a grant funded by LSE's International Science Partnership Fund 2024-25. This work was also supported by the Economic and Social Research Council [grant number ES/Y008278/1]. Denyse S Dookie, Katharine Vincent, Kate Gannon and Declan Conway are also supported through the BASIN Project by UK aid from the UK government and by the International Development Research Centre, Ottawa, Canada as part of the Climate Adaptation and Resilience (CLARE) research programme.

The authors are grateful for reviews of this paper by Anna Steynor, Ailish Craig, Dorice Agol and Minette Nago, and would like to thank the enumerators who assisted in data collection. Georgina Kyriacou edited the brief, with typesetting and infographic design by Joseph Adjei.

The views expressed in this brief represent those of the authors and do not necessarily represent those of the reviewers, host institutions or funders. The authors have no relevant financial or non-financial interests to disclose.

This brief was first published in August 2025 by the Grantham Research Institute on Climate Change and the Environment.

© The authors, 2025

Licensed under CC BY-NC 4.0. Commercial permission requests should be directed to gri.publications@lse. ac.uk.

Suggested citation: Dookie D et al (2025) Climate risk perception and climate information use: gendered differences among South African entrepreneurs. London: Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science

Meso-Level Organizations as Key Intermediaries in Climate Information Services for Small-Scale Producers

Key insights

Meso-Level Organizations (MLOs) are central to the climate information services (CIS) ecosystem in sub-Saharan Africa, bridging scientific data and the practical needs of small-scale producers through producing, translating, and implementing CIS.

Effective CIS delivery relies on dynamic partnerships across vertical and horizontal networks, with feedback loops enhancing relevance and usability.

Incorporating Indigenous Knowledge enhances CIS legitimacy but requires conscientiousness mobilization as climate patterns shift.

Gender disparities remain a major challenge, limiting women's access to CIS despite targeted efforts.

MLOs face financial, infrastructural, and human resource limitations internally, while dealing with external issues such as poor timing and access to information, low data accuracy, and general comprehension barriers among users.

Trust between institutions and communities is essential, built through timely, accurate information, two-way communication, and alignment with local contexts, surpassing purely technical improvements.

To **strengthen CIS impact**, there is a pressing need to invest in MLO capacity, foster coproduction approaches, improve gender inclusion, expand digital access, and enhance institutional collaboration and feedback mechanisms.

Background and context

In sub-Saharan Africa (SSA), climate change is dramatically reshaping the landscape for small-scale producers (SSPs), who form the backbone of the region's agricultural economy. These producers, typically working on farms of less than two hectares, are highly vulnerable to increasing weather variability, prolonged droughts, and extreme events. Their capacity to adapt is constrained by limited access to information, financial services, technology, and institutional support. In this context, climate information services (CIS) have emerged as a critical tool to support climate-resilient agriculture.

CIS refers to the production, tailoring, dissemination, and use of climate data to inform individual and collective decision-making. For agriculture, this might include seasonal forecasts, early warning alerts, or agro-advisories linked to weather conditions. Effective CIS delivery, however, is not a linear process. It involves dynamic and iterative exchanges among producers of climate information (e.g., meteorological services), translators (e.g., non-governmental organizations (NGOs), research institutions), and implementers (e.g., extension agents and field-based organizations).

Meso-Level Organizations (MLOs) occupy a crucial but underexamined position in the CIS ecosystem. MLOs provide the social connections and technical infrastructure to bridge the gap between high-level data producers and grassroots users. This information brief highlights the key findings of a multi-country study undertaken in Ghana, Kenya, Malawi, and South Africa, focusing on how MLOs deliver CIS to SSPs, the challenges they face, and the opportunities for strengthening their role.

KEY TERMS

Meso-Level Organizations (MLOs): Complex heterogeneous organizations involved in the implementation of planned climate change adaptation investments in the form of programs and projects.

Climate Information and Services (CIS): Climate data and forecasts tailored to support decision-making in agriculture and other climate-sensitive sectors. Effective CIS is timely, accessible, relevant, and actionable.

Indigenous Knowledge (IK): Knowledge developed through long-standing traditions and interactions with local environments. IK can inform interpretations of climate trends and help design culturally appropriate adaptation strategies.

METHODOLOGY

This study is part of the broader "Accelerating Climate Adaptation via Meso-level Integration (ACAMI)" project, which investigates the roles of MLOs in climate adaptation. It draws on thematic content analysis of qualitative data from Key Informant Interviews (KIIs) conducted in Ghana, Kenya, Malawi, and South Africa. KIIs were conducted between August 2023 and January 2024, with interviews (n=70) distributed across Kenya (18), Ghana (18), Malawi (26), and South Africa (8).

Key findings

1

ROLE OF MLOS IN THE CIS VALUE CHAIN

The study mapped MLOs to three overlapping roles: producers of climate information, translators of scientific data, and implementers of services at the community level. These roles correspond to stages in the CIS value chain but, in practice, are fluid and context dependent.

Producers are typically meteorological agencies and scientific institutions that are legally mandated to collect and analyze weather data. In our sample 11 (15.7%) MLOs served as primary producers of climate information. Producers operate within a network of partnerships. Vertically, they work with translator and implementer MLOs, such as NGOs, private enterprises, and extension services, that interpret and share their data at the community level. For example, in Ghana and South Africa, meteorological agencies work with agricultural research institutions and local extension officers to ensure forecasts are integrated into advisory services for smallholder farmers. Horizontal partnerships with scientific and technical bodies, such as regional climate centers, research institutes, and global modeling platforms, enhance data accuracy, enable peer learning, and promote cross-border forecast alignment. Across these partnerships, producers benefit from feedback mechanisms including regular consultation with beneficiaries, joint model evaluation sessions, and participatory review of forecast products which help improve the relevance and usability of forecasts.

"So, I think on an annual basis we have a stakeholder consultative meeting where all stakeholders involved in CIS delivery, including the users, come together to reflect on the forecasts issued, share their experiences, and provide recommendations for improvement."

MLOs operating as **translators** (22.9%, n = 16) include NGOs, private information and communications technology (ICT) firms, and government agencies with technical and communication expertise. Their function is to adapt forecasts into localized, culturally relevant advisories. This translation often involves

co-production, where multiple actors work together to create content. Translators build horizontal partnerships with civil society, media, and tech firms to package CIS into formats like text alerts, voice messages, and radio shows. They also serve as intermediaries between producers and implementers, interpreting data and guiding its use in the field. Feedback from both ends helps refine language and delivery. In some cases, translators facilitate community forums and scenario planning sessions, using input from SSPs to shape future CIS.

"...we generate seasonal forecasts with the Met Department, then work with NGOs and county extension officers to translate this information into simplified advisories. These advisories are then shared through farmer field schools, radio programs, and sometimes mobile phone platforms, depending on what works best in the local context."

Most MLOs involved in CIS are **implementers** (61.4%, n = 43) that operationalize CIS through field-level activities, embedding climate data into agricultural practices and local governance. They build farmer capacity through training, distribute tools like radios or apps, and facilitate peer learning. Implementers deliver CIS vertically by engaging directly with SSPs and local governance bodies to support farm-level decision-making. Horizontally, they use community committees, call centers, and peer networks to enable decentralized communication and continuous access. Active feedback loops with translators and producers help adapt content, build trust, and improve future CIS delivery.

"We work with the village civil protection committees, building their capacities [on CIS], providing them with some hardware, looking at the early warning systems".

2 INCORPORATING INDIGENOUS KNOWLEDGE

Some MLOs employed strategies to integrate IK in CIS delivery. They viewed IK as key to enhancing the cultural legitimacy and local relevance of CIS. Some MLOs documented traditional forecasting indicators, collaborated with IK holders, and used participatory scenario planning to integrate these insights. Other organizations engaged IK holders and local farmers directly in co-producing the information that would later be disseminated more widely, including through radio and WhatsApp platforms.

"That process empowers people with the new information, the tools that they use to do it, but enables them to really capitalize on and bring in and use their existing knowledge and skills and their existing local knowledge of their own farms".

However, IK's predictive reliability was questioned by some MLOs due to shifting climate baselines. It was noted that some farmers had become more receptive to technical forecasts after traditional signs had failed to provide dependable guidance. Cyclone Freddy in Malawi was cited as a turning point in taking early warning messages seriously.

"...a lot of farmers that have undergone this training [in scientific CIS] are now changing their mind to say no, it's better to listen to Met [Department] because it's kind of a bit more accurate, especially these days."

ADDRESSING GENDER DISPARITIES IN CIS

Gender disparities in CIS emerged as a concern across all four countries. Women often lack access to mobile phones or radios, are excluded from training, and face time constraints due to domestic responsibilities. "For activities that demand them to be physically present in meetings, that could be a crisis because they have so many other things that they need to be running at the household level".

To address these challenges, MLOs have piloted inclusive strategies such as women-only listening groups, distribution of radios, and targeted advisory sessions. Gender integration was described as a deliberate part of organizational missions.

"The core mission of girls and women.... This for us is very important in terms of ensuring they have skills to use climate information, but also that they can advocate for themselves within their communities."

4 CHALLENGES FACING MLOS

Despite their central role, MLOs face numerous internal and external constraints that undermine effective CIS delivery. The constraints are interlinked and mutually reinforcing, creating bottlenecks across the CIS delivery chain.

Producers

Internal constraints:

- Financial and infrastructure limitations e.g., inability to maintain or expand observation networks.
- Insufficient funding for outreach, such as stakeholder workshops, training sessions, or media engagements to explain forecasts.
- Human resource and technical gaps, particularly in translating scientific data into actionable advisories for end-users.

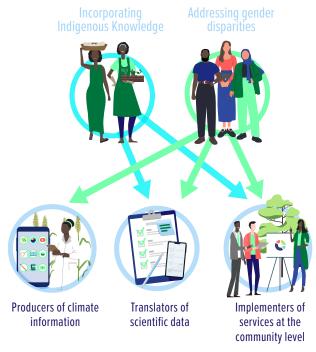
External constraints:

 Disconnect between data generation and user application, driven by limited capacity to tailor outputs to farmer needs.

Internal constraints:

- Lack of skilled staff to interpret and simplify complex forecasts into usable content.
- Limited understanding of CIS systems, especially among tech-based actors unfamiliar with agricultural cycles.
- Weak institutional collaboration, especially when working with poorly trained extension agents.
- Low investment in communication and training, driven by skepticism about farmers' ability or willingness to use forecasts.

External constraints:


 Perceived mistrust from farmers, often rooted in past inaccuracies and social beliefs, which further discouraged translators from prioritizing usercentered design.

Implementers

External constraints:

- Barriers to access and usability, including literacy challenges, poor mobile coverage, and digital exclusion.
- Timing issues, where forecasts often arrived too late for practical decision-making.
- Coordination breakdowns leading to inconsistent or conflicting messages from different actors.
- Mistrust and low credibility, fueled by forecast failures, misinformation, and the presence of unregulated or "fraudulent" CIS sources.
- Cultural and perceptual barriers, such as reliance on IK, religious beliefs, and skepticism based on past experiences.

ROLE OF MLOS IN THE CIS VALUE CHAIN

CHALLENGES FACING MLOS: Bottlenecks across the CIS delivery chain

PRODUCERSe.g. Financial and infrastructure limitations

TRANSLATORSe.g. Limited understanding of CIS systems

e.g. Poor mobile coverage

Recommendations

The research highlights a CIS delivery system that is both dynamic and fragmented, with MLOs playing indispensable yet often overstretched roles. Their ability to bridge science and local realities enables flexible, context-responsive delivery, but overlapping functions can blur responsibilities and strain capacity. Key weaknesses persist in gender inclusion and in the meaningful integration of IK. Scaling participatory co-production and embedding mutual learning between scientific and traditional systems is

essential for long-term relevance and equity. Above all, trust remains foundational, built through timely, accurate forecasts, two-way communication, and alignment with local practices.

To meet the growing challenges of climate change, MLOs must be recognized and supported not merely as intermediaries, but as central actors in resilience-building across SSA. Their effectiveness hinges on sustained investment, institutional collaboration, and systemic transformation.

Key recommendations include:

- 1 Invest in MLOs to strengthen their capacity to deliver timely, trusted, and context-sensitive climate information, recognizing their critical role in bridging scientific knowledge and SSP's realities.
- Poster co-production approaches that integrate both scientific and local expertise to enhance the relevance and legitimacy of CIS, and that leverage MLO's strategies to enhance CIS uptake.
- **Build and sustain trust** between organizations and communities, acknowledging that technical improvements alone are insufficient for effective CIS uptake.
- 4 Embed feedback mechanisms to ensure CIS remain responsive and adaptive to user needs and shifting conditions.
- 5 Support the integration of IK while ensuring it is carefully contextualized to account for changing climate patterns, avoiding reliance on outdated or unreliable indicators.
- Address structural gender barriers
 by scaling successful gender equity
 interventions and acknowledging the role
 of household power relations, technological
 disparities, and labor burdens in limiting
 women's access.
- Address internal organizational challenges within MLOs, including deficits in technical skills, human resources, and funding, which undermine effective CIS delivery.
- 8 Improve external dimensions of CIS delivery, including the timing, relevance, and accuracy of forecasts, to reduce farmer skepticism and increase trust in the system.

REFERENCES

Carr, E. R., Goble, R., Rosko, H. M., Vaughan, C., & Hansen, J. (2020). Identifying climate information services users and their needs in Sub-Saharan Africa: A review and learning agenda. Climate and Development, 12(1), 23–41. https://doi.org/10.1080/17565529.2019.1596061

Eakin, H., Wightman, P. M., Hsu, D., Gil Ramón, V. R., Fuentes-Contreras, E., Cox, M. P., Hyman, T.-A. N., Pacas, C., Borraz, F., González-Brambila, C., Ponce de León Barido, D., & Kammen, D. M. (2014). Information and communication technologies and climate change adaptation in Latin America and the Caribbean: A framework for action. Climate and Development, 7(3), 208–222. https://doi.org/10.1080/17565529.2014.951021

Findlater, K., Webber, S., Kandlikar, M., & Donner, S. (2021). Climate services promise better decisions but mainly focus on better data. Nature Climate Change, 11(9), 731–737. https://doi.org/10.1038/s41558-021-01125-3

Hansen, J. W., Mason, S. J., Sun, L., & Tall, A. (2011). Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Experimental Agriculture, 47(2), 205–240. https://doi.org/10.1017/S0014479710000876

Hansen, J., List, G., Downs, S., Carr, E. R., Diro, R., Baethgen, W., Kruczkiewicz, A., Braun, M., Furlow, J., Walsh, K., & Magima, N. (2022). Impact pathways from climate services to SDG2 ("zero hunger"): A synthesis of evidence. Climate Risk Management, 35, 100399. https://doi.org/10.1016/j.crm.2022.100399

Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009325844

Steynor, A., Padgham, J., Jack, C., Hewitson, B., & Lennard, C. (2016). Co-exploratory climate risk workshops: Experiences from urban Africa. Climate Risk Management, 13, 95–102. https://doi.org/10.1016/j.crm.2016.03.001

Tall, A., Coulibaly, J.Y., & Diop, M. (2018). Do climate services make a difference? A review of evaluation methodologies and practices to assess the value of climate information services for farmers: Implications for Africa. Climate Services, 11, 1–12. https://doi.org/10.1016/j.cliser.2018.06.001

Vaughan, C., & Dessai, S. (2014). Climate services for society: Origins, institutional arrangements, and design elements for an evaluation framework. Wiley Interdisciplinary Reviews: Climate Change, 5(5), 587–603. https://doi.org/10.1002/wcc.290

Vincent, K., Daly, M., Scannell, C., & Leathes, B. (2020). What can climate services learn from theory and practice of co-production? Climate Services, 17, 100130. https://doi.org/10.1016/j.cliser.2018.11.001

About ACAMI

The Accelerating Climate Adaptation via Mesolevel Integration (ACAMI) project was a two-year collaborative initiative focused on enhancing the role of meso-level organizations—public, private, and non-profit entities that act as intermediaries between small-scale agricultural producers and broader policy and investment communities—in advancing effective climate change adaptation strategies across Africa. ACAMI identified leverage points and bottlenecks affecting the capacity of these organizations to facilitate equitable and effective adaptation for small-scale producers. By co-creating tools and metrics that capture the attributes and strategies of meso-level organizations, the project supports partnership opportunities and improves risk management and sustainable livelihoods under climate change. The project was conducted in four African countries: Ghana, Kenya, Malawi, and South Africa.

Project team: Awula Abby Apuryinga, Darlington Sibanda, Ekua Semuah Odoom, Eric Welch, Hallie Eakin, Jinghuan Ma, Joanes Atela, Mark New, Mauricio Bellon Corrales, Nadine Methner, Ruth Magreta, Tim Johnson, Washington Kanyangi, Yamini Yogya

Suggested citation: ACAMI Project. 2025. Meso-Level Organizations as Key Intermediaries in Climate Information Services for Small-Scale Producers. Center for Science, Technology & Environmental Policy Studies and the School of Sustainability at Arizona State University and African Climate & Development Initiative at the University of Cape Town.

For more detailed information, please contact the ACAMI project leads for access to academic publications and working papers.

Contacts:

Eric Welch (Co-PI): ericwelch@asu.edu Hallie Eakin (Co-PI): Hallie.Eakin@asu.edu Nadine Methner (Project coordinator): Nadine.methner@uct.ac.za

Acknowledgement: This report was prepared for the Gates Foundation. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Gates

Produced by KANDS Collective: hello@kandscollective.com

KNOWLEDGE SERIES

Framework for Conceptualizing MLO

MLO Self Assessment Tool

Mapping MLO Attributes and Diversity

MLO Landscape Across Four Countries

MLO Innovations for Gender Equity

MLO Roles in Climate Information Services

A Practical Guide on Strategy Visualization Tool for MLOs to Share, Scale, and Strengthen Their Work

Guidance on Engaging with MLOs

What's your Strategy? Organizational Learning Game (Prototype)

