
BLASTIC PLASMACYTOID DENDRITIC CELL NEOPLASMS: BPDCN

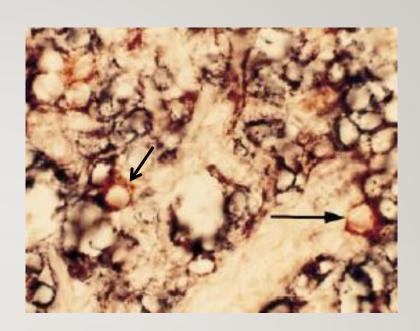
KEYNOTE ACS2024 – HOBART October 21, 2024

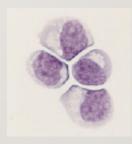
PLASMACYTOID CELLS

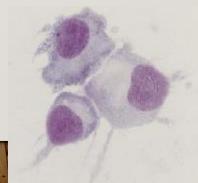
- A few words of history
 - Lennert and Remmele, 1958 (Acta Haematologica, Basel)
 - Tissue sections → plasma cell-like morphology
 - Abundant in T-cell zones of lymphoid tissues

«T associated plasma cells » or

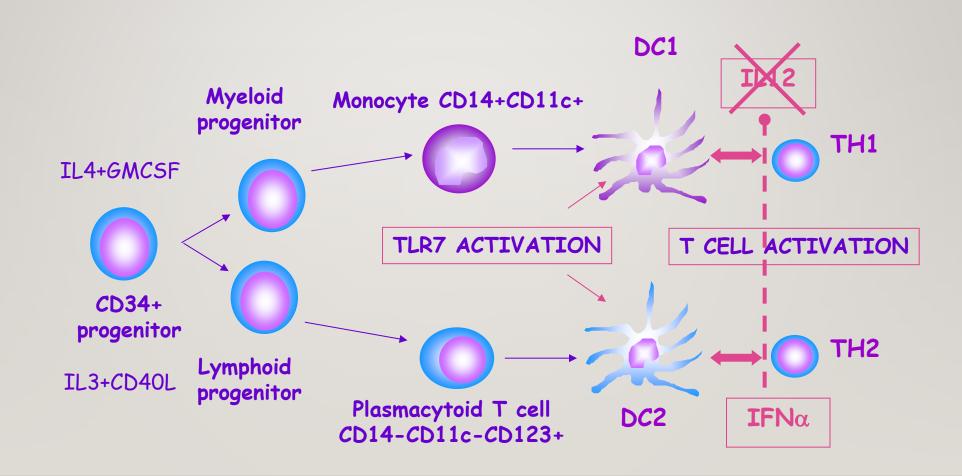
« Plasmacytoid T cells »

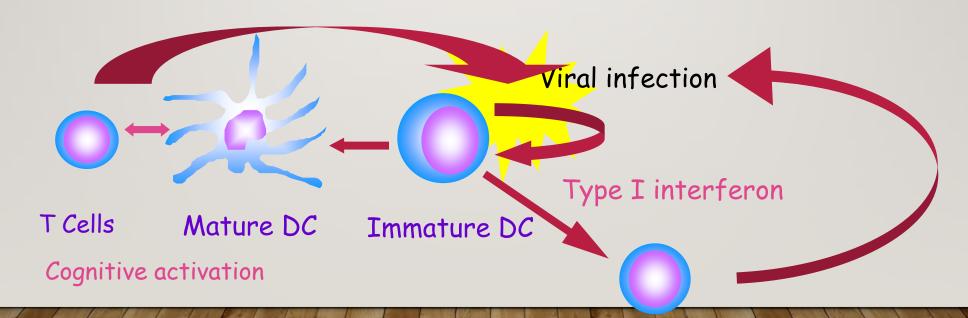

• Facchetti et al., 1988 (Am J Pathol): immunophenotypic characterization


lin-


PLASMACYTOID CELLS CD3-CD11C-CD4+

- Grouard et al. 1997
 (J exp Med)
 - Immunohistological localization in tonsils near HEV


- > Isolation
- Demonstration of IL-3 dependency and differenciation in DC



DENDRITIC CELLS

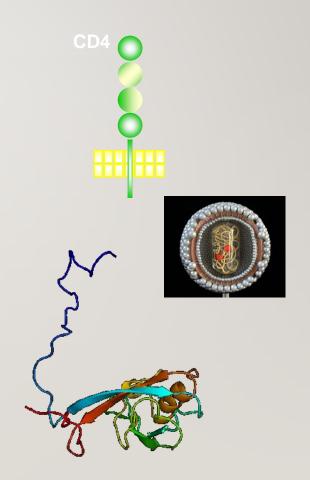
OTHER CHARACTERISTICS OF DC2 LYMPHOPLASMACYTOID DENDRITIC CELLS

- Sensitive to HIV
- Expand upon Flt3 injection or culture
- Could link innate and cognate immunity

PLASMACYTOID DENDRITIC CELLS

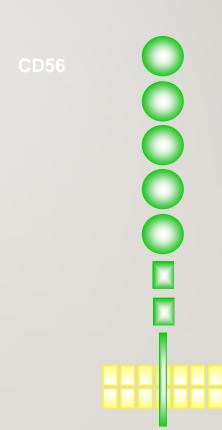
+

subsets

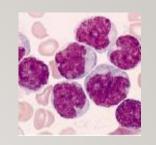

• Immunophenotypic features : not just CD4/CD56

(from Galibert et al., 2001, Sem Immunol)

CD1	CD11a	CD68	CD23	CD40	CD123
CD2	CD11b	CD71	CD28	CD80	CD125
CD3	CD11c	CD32	CD30	CD83	
CD4	CD13	CD36	CD16	CD86	
CD5	CD33	CD38	CD56		
CD7	CD14	CD44	CD57	DR	
CD8	CD15	CD49e	CD94	CD45RA	
CD10	CD65	FceRI			

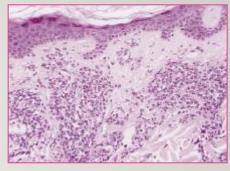

WHY CD4?

- Ig superfamily molecule
- T-cell marker defining T-helper cells
- Also present on monocytes and dendritic cells
- Binds to the constant part of MHC Class II in the immunological synapse
- Signal transduction through p56^{lck}
- HIV-receptor together with CXCR4 or CCR5
- Co-receptor of the chemokine IL-16
- IL-16 produced by epithelial cells

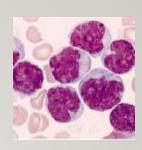


WHY CD56?

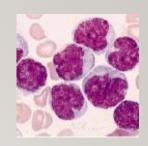
- Ig superfamily molecule
- Allso known as N-CAM « neural cell adhesion molecule »
- Homophilic and heterophilic bonds
- Neurite extension and guidance
- Modulated by polysialylation
- Cerebellum, muscle-nerve junctions
- Small cell lung carcinoma
- NK cells
- pDC
- Adhesion?
- Interaction with NK cells?



- Facchetti et al. 1988 (J Pathol): Plasmacytoid T cells in a case of lymphocytic infiltration of the skin.
- Plasmacytoid T cell leukemia or lymphoma in 1990
 - Rare disease
 - Elderly men
 - Generalized lymphadenopathy
 - Accumulation of PC like cells in the bone marrow, spleen or lymph nodes
 - Later develop acute or chronic myelomonoctytic leukemia that may carry the same chromosomal abnormality as the initial clone
 - Exctinct entity


THE CD4+CD56+ ENTITY

1994	Hayashi	1 pt	_gastrointestinal	involvement
1996	Dummer	1 pt	skin lesions	
1997	Drenou	1 pt	inguinal mass	BM++
1998	Bagot	1 pt	skin nodules	BM later
1998	Uchiyama	1 pt	angiocentric infi	Itrates
1999	Kameoka	2 pts	skin nodules	BM++
1999	Petrella	7pts	skin nodules	BM 1 then 6 pts
2000	Ginarte	1 pt	skin lesions	
2000	Nagatani	4 pts	skin lesions	BM later
2001	Hofbauer	1 pt	skin nodules	BM
2001	Kato	1 pt	skin nodules	BM, nasopharynx, LN
2001	Kimura	1 pt	skin lesions	BM, LN
2002	Feuillard	23 pts	skin lesions	BM++


	2000	5 1		1 . 1 .	D44
•	2002	Bayerl	5 pts	skin lesions	ВМ
•	2002	Chang	15 pts	skin lesions	
•	2002	Petrella	7 pts	skin tumors	
•	2004	Hallerman	1 pt	skin tumor	
•	2004	Machet	2 pts	skin tumors	
•	2005	Kim	4 pts	skin lesions	
•	2006	Ng	5 pts	skin lesions	вм
•	2006	Martin	2 pts	skin lesions	вм
•	2007	Pilichowka	3 pts	skin lesions	
•	2008	Shiman	1 pt	skin lesion	
	2009	Mulijono	1 child	skin lesion	
	2009	An	2 pts	skin	вм
•	2009	Kaune	1 p†	skin lesion	вм
•	2009	Löffler	1 p†	skin lesions	вм
•	2010	Lopez	1 pt	skin tumor	
•	2010	Dalle	47 pts	skin lesions	BM, LN Allo SCT
•	2010	Tsagarakis	22 pts	skin involvement	ВМ
•	2010	Cota	33 pts	variability of skin lesions	
•	2010	Prystupa	1 pt	skin lesions	вм
•	2010	Hwuang	1 p†	skin lesion	BM, LN
•	2010	Chang	1 pt	skin lesions (lupus)	BM, LN
•	2010	Xue	1 p†	skin tumors	вм
	2010	Su	1 p†	skin lesions	вм
	2011	Matsuo	1 pt	conjunctiva	
•	2011	Inoue	1 pt	orbital cavity	ВМ
	2011	Hashikawa	26 pts	skin lesions ←	ВМ
•	2011	Rauh	3 pts	no skin involvement	BM BM
•	And more				

FROM PLASMACYTOID TO DC MALIGNANCIES

- Chaperot et al., 2001 (Blood)
 - Hypothesis:
 - CD4+CD56+ are the malignant counterpart of plasmacytoid dendritic cells
 - They are of lymphoid origin
 - Methods
 - 7 patients with bone marrow infiltration
 - Cytokine dependence for viability
 - Differentiation into DC
 - IL-3R α , FasL, pre-T α , perforin, CD56 mRNA
 - Functional capacities

CHARACTERISTICS OF CD4+CD56+ PDC LEUKEMIA

- Feuillard et al, 2002 (Blood)
- Multicentric collection of cases → 23 patients
- Immunophenotypic definition criteria
 - coexpression of CD4 and CD56
 - absence of CD13, CD33, CD3, CD5, pan-B markers
- Clinical features, extensive immunophenotyping, treatment, outcome

BLASTIC PLASMACYTOID DENDRITIC CELL NEOPLASM

- WHO 2008 included in acute leukemia section
- WHO 2016 quoted after acute myeloid leukemia
- WHO 2022:
 - "Plasmacytoid dendritic cell neoplasms: recognition of clonal proliferations detected in association with myeloid neoplasms"
 - Refinement/update of the diagnostic criteria for blastic plasmacytoid dendritic cell neoplasm »: norion of MDCP
 - BPDCN unchanged

5TH WHO 2022 CRITERIA FOR BPDCN IMMUNOPHENOTYPE. IN MYELOID TUMORS

- Expected positive expression:
- Expected negative expression:

CD123*

CD3

TCF4*

CD14

TCLI*

• CD19

• CD303 *

CD34

• CD304*

Lysozyme

CD4

Myeloperoxidase

CD56

Immunophenotypic diagnostic criteria:

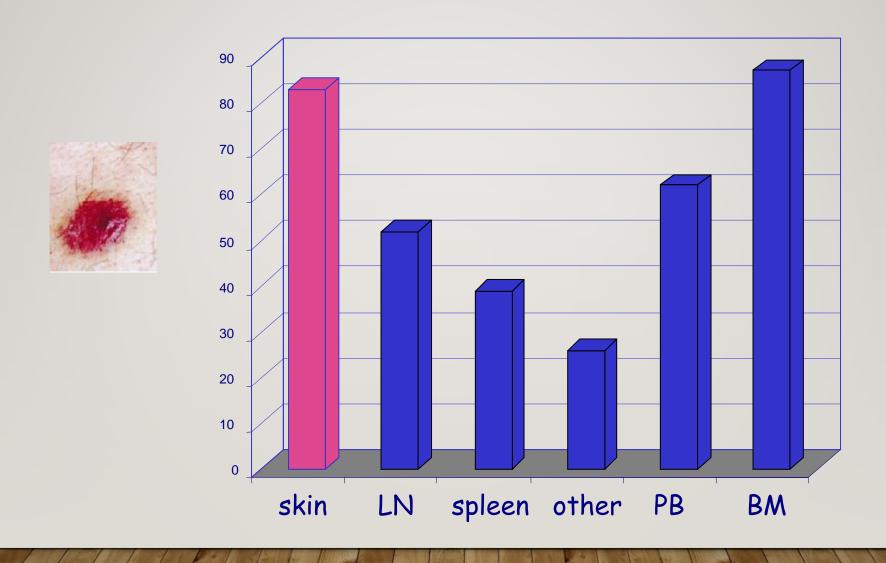
-Expression of CD123 and one other pDC marker (*) in addition to CD4 and/or CD56.

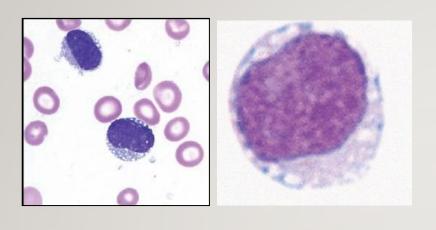
or,

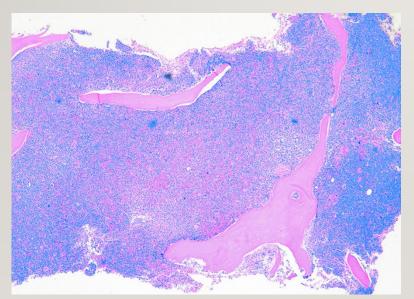
-Expression of any three pDC markers (*) and absent expression of all expected negative markers.

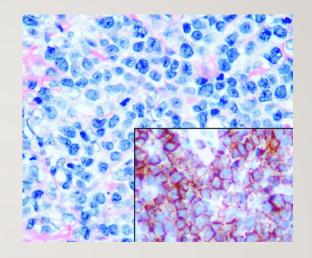
SKIN

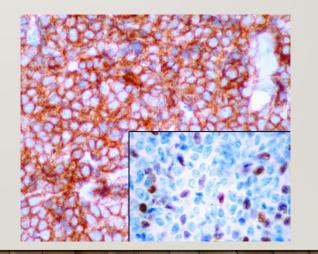
PLEIOMORPHIC SKIN LESIONS

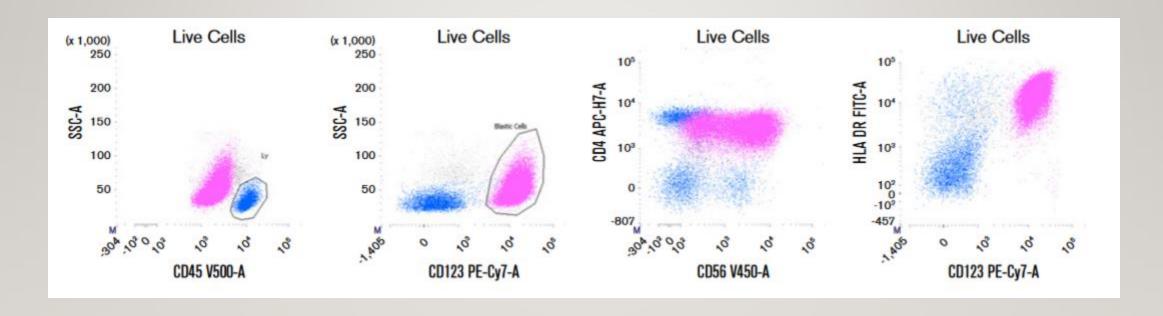







PDC LEUKEMIA: TUMORAL SYNDROME


CELL CHARACTERISTICS

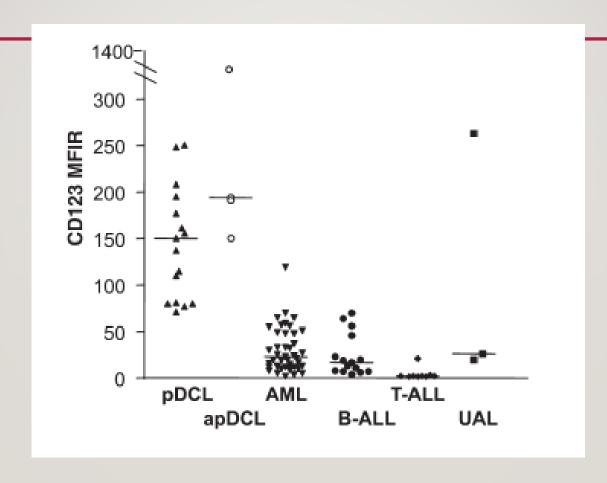


CD4

TdT

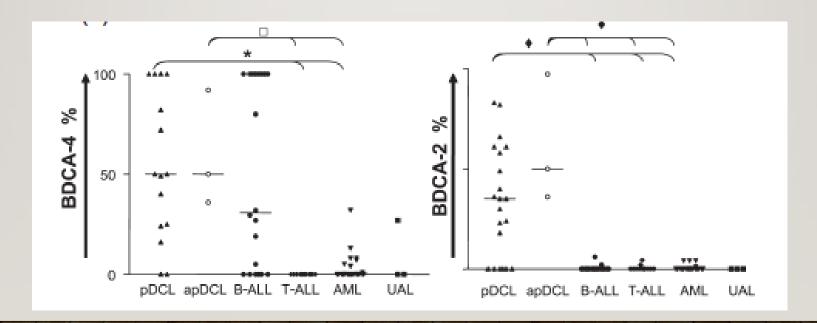
IMMUNOPHENOTYPE

Garnache Ottou, Blood Advances 2019

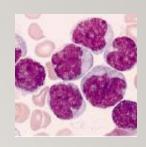

SYSTEMATIC REVIEW OF CASES PRESENTED IN PUBLICATIONS (PUBMED 1965-2016 AND OTHER DATABASES)

- 357 cases
- 74 pediatric, 283 adults
- M:F 41:33 (1.3) for children, 209:74 (2.8) for adults (p<0.01)
- Bone marrow affected in 66% of cases, blood 40%
- CNS in 17 of 38 children, for adults usually not reported
- Lymph nodes 47%, spleen 27%

REVISED IMMUNOPHENOTYPIC CRITERIA GARNACHE OTTOU *ET AL.*, 2010, BJH


- I6 typical BPDCN, 4 atypical
- I I 3 acute leukemias
 - 79 AML, 12 T-ALL, 19 BCP-ALL
 - 5 cases with CD4+/CD56+ expression
 - Associated to cCD79, cCD22 and CD19 in a BCP-ALL
 - Associated to myeloid antigens (MPO, CD11c, CD13, CD33) in 4 AML

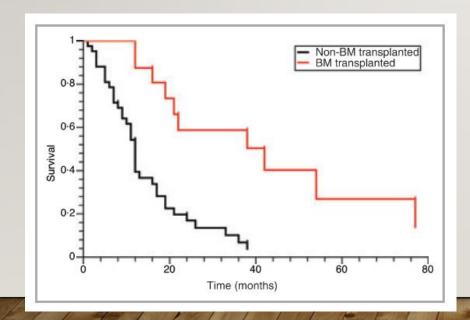
SPECIFICITY OF CD 123

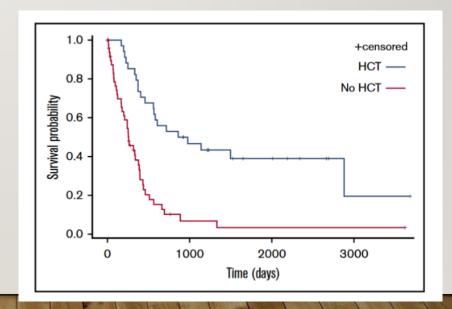

BDCA-2 BDCA- 4 BLOOD DENDRITIC CELL ANTIGENS

- BDCA-2, CD303, type C lectin
- BDCA-4, neuropilin

TREATMENT

BPDCN TREATMENT AND OUTCOME FEUILLARD ET AL, 2002




- CR rate: 86%
- Skin lesions reappear at relapse
- 83% of patients who achieved complete remission have had a relapse
- The median time of relapse was 9 months (range, 3-18 months).
- Five patients had a relapse in the CNS.
- Among patients treated by polychemotherapy, overall survival was 52% (10 of 19) after 1-year of follow-up and 25% (4of 16) after 24 months of follow-up.
- Among the 3 patients who benefited from allogeneic bone marrow transplantation, 2 were still in complete remission after 60 months of follow-up.

TREATMENT

DALLE ET AL, 2010 B J DERMATOL

- CR obtained in about 55% of cases
- Rapid relapse
- Allo SCT to be seriously considered

LEUKEMIC PRESENTATION OF BLASTIC PLASMACYTOID DENDRITIC CELL NEOPLASM

Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: 10-Color flow cytometry diagnosis and HyperCVAD therapy

Uday Deotare, ¹ Karen W.L. Yee, ¹* Lisa W. Le, ² Anna Porwit, ³ Anne Tierens, ³ Rumina Musani, ³ David Barth, ³ Emina Torlakovic, ³ Aaron Schimmer, ¹ Andre C. Schuh, ¹ Matthew Seftel, ^{1,4} Mark D. Minden, ¹ Vikas Gupta, ¹ and Elizabeth Hyjek ²*

American Journal of Hematology, Vol. 91, No. 3, March 2016

Of 9 pts 7 responded to HyperCVAD and 4 were alive in CR after HSCT

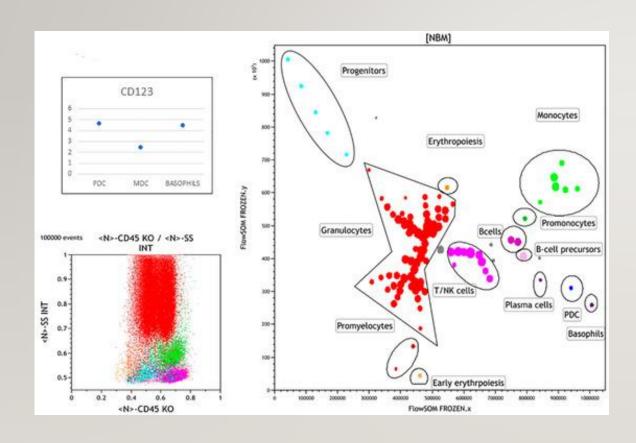
TABLE I. Patient Characteristics

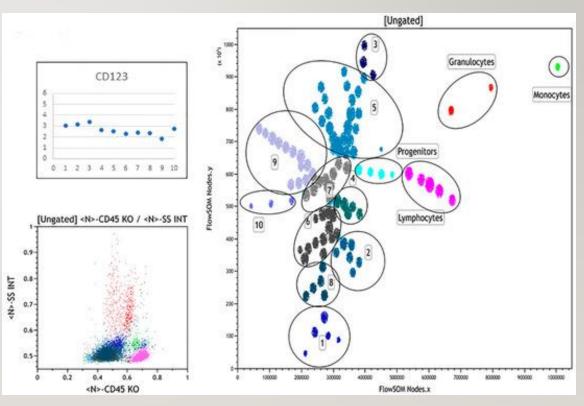
Characteristic	All (n = 9)
Median age, y (range)	66 (25-91)
Age≥70 y	4 (44%)
Gender	4 F: 5 M
Antecedent hematologic disorder	0 (0%)
Presence of B symptoms	4 (44%)
Duration of symptoms prior to diagnosis,	5 (1-6)
mos, median (range)	
Clinical features	
Skin lesions	8 (89%)
Lymphadenopathy	7 (78%)
Hepatomegaly	0 (0%)
Splenomegaly	2 (22%)
Central nervous system ^a	0 (0%)
Cytogenetic risk group (MRC 2010	
AML stratification)	
Intermediate risk	3 (33%)
Adverse risk	2 (22%)
Unknown	4 (44%)
Baseline hemoglobin (g/L), median (range)	117 (86-147)
Baseline white blood cell count (× 10°/L), median (range)	3.5 (1-35.1)
Baseline platelet count (× 10°/L), median (range)	99 (11-238)
Baseline peripheral blast count (× 10°/L), median (range)	0 (0-14)
Bone marrow blasts infiltration (%), median (range) ^b	66 (27-94)

2020 INTERNATIONAL SURVEY 398 ADULTS

Table 3. Patient characteristics according to treatment

	Chemotherapy+ allo-HSCT (n = 61)	Chemotherapy+ auto-HSCT (n = 16)	Chemotherapy without consolidation ($n = 222$)
Age, median (range), y	50 (18-70)	63 (19-68)	68 (18-87)
Disseminated with cutaneous involvement	37 (60)	12 (75)	133 (60)
Disseminated noncutaneous	12 (20)	1 (6)	20 (9)
Cutaneous isolated	12 (20)	3 (19)	69 (31)
ALL-type	33 (53)	6 (38)	57 (26)
AML-type	16 (27)	1 (6)	36 (16)
NHL-type	12 (20)	9 (56)	129 (58)
Response to treatment			
CR	57 (94)	16 (100)	153 (69)
PR	2 (3)	0	31 (14)
PD	2 (3)	0	38 (17)
Relapse	16/60 (27)	5/16 (31)	131/168 (78)


Unless otherwise noted, data are n (%). Patients treated with new drugs (n = 6), radiotherapy (n = 27), or palliative approaches (n = 62) were excluded.


RECENT FINDINGS

- Gene expression profiling
 - Confirmed resting/precursor pDC counterpart
 - Upregulation of Cylcin D1 and BCL2 → venetoclax?
 - Aberrant activation of NFkB → bortezomib?
- Efficacy of allo-SCT
- SL-401/Tagraxofusp
 - diphtheria toxin fused to IL-3) targeting CD123
 - encouraging results at ASH 2017
- CD123 targeting with bispecifics, CAR T-cells

STILL A MYSTERIOUS DISEASE...

HETEROGENEITY DEMONSRATED BY AI: FLOWSOM

IN CONCLUSION

- Rare disease
- Cutaneous/mucosal involvement
- Leukemic forms
- Specific immunophenotype
- Probable counterpart of Pdc2 but disputed
- Poor prognosis: look for donor
- Perhaps new therapeutic options

