

Applications of computation and artificial intelligence in clinical cytometry

Paul D. Simonson, M.D., Ph.D. Weill Cornell Medicine

ACS 2024 Conference October 22, 2024, 9:30 a.m.

HOBART TASMANIA 20-23 OCTOBER 2024

Outline

What is machine learning?

How can machine learning help in flow cytometry?

Basics of supervised machine learning

Example application: Diagnosis of classic Hodgkin lymphoma

Comparing machine learning classifiers

Example application: Predicting need for add-on panel

Challenges

Summary

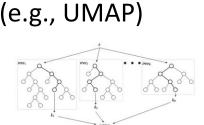
What is machine learning?

- Statistics
- Identifying patterns
- Learns what we teach it
- "Models" y = ax+b

- Two general categories:
- Unsupervised
 - Clustering algorithms (e.g. Flow SOM)
 - Dimensionality reduction (e.g., UMAP)
- Supervised
 - Random forests
 - Support vector machines
 - Deep learning

What machine learning is not...

- Replacement for pathologists
- Sentient robots
- The end of humanity...yet?



How can machine learning help with flow cytometry?

Better accuracy

Less subjectivity Alerts for possible missed diagnoses Highlight cells of interest

Faster workflow

Automate ordering of additional antibodies Alerts for high priority diagnoses Simplify increasingly complex analyses

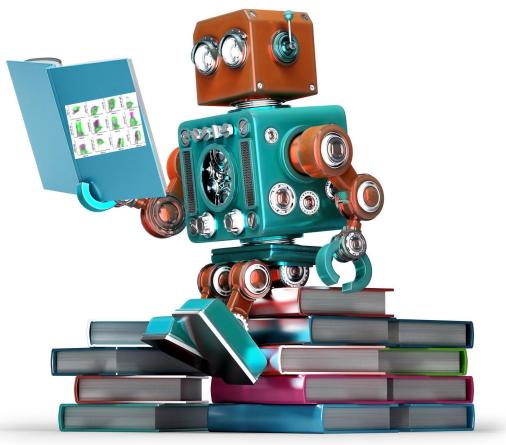
Pre-populate reports

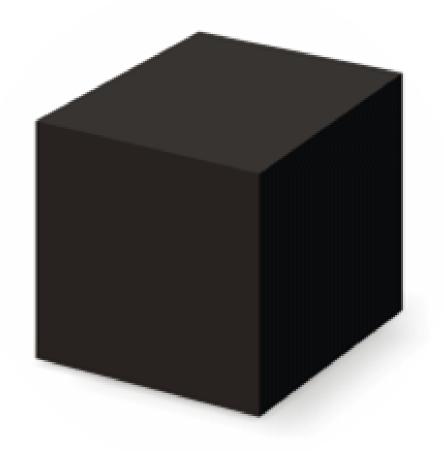
Reduced workload

Shorter work week???

Opportunities for machine learning in flow cytometry: many!

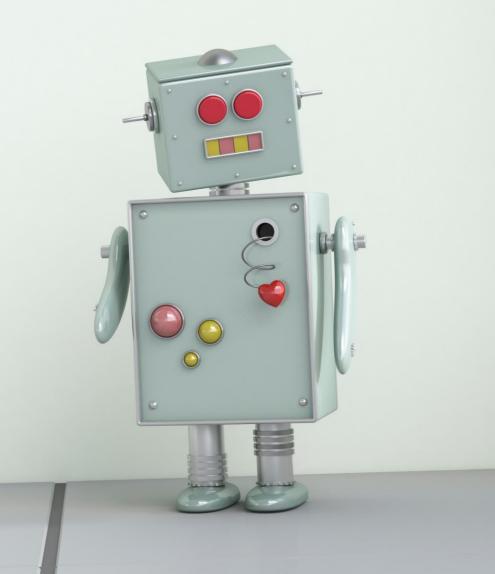
- Workflow
 - Initial specimen processing (orders, prior history, initial antibody panel choices)
 - Flow the specimen
 - Data review by technologists
 - Additional antibody panels?
 - Draft report
 - Review by hematopathologist
 - Additional antibody panels?
 - Final report
 - If new diagnosis, review by second hematopathologist
 - Improvements in accuracy?
 - Improvements in clinical outcomes?





Machine learning is often a black box

- The inner workings of the machine are complex.
- Nobody likes a black box.
 - Physicians
 - Machine learning practitioners
 - Regulators
- How do we look inside?
 - Multiple methods (SHAP, LIME, etc.); can depend on the machine learning algorithm used.
 - Subject of research by many groups.
 - Methods are getting better all the time.



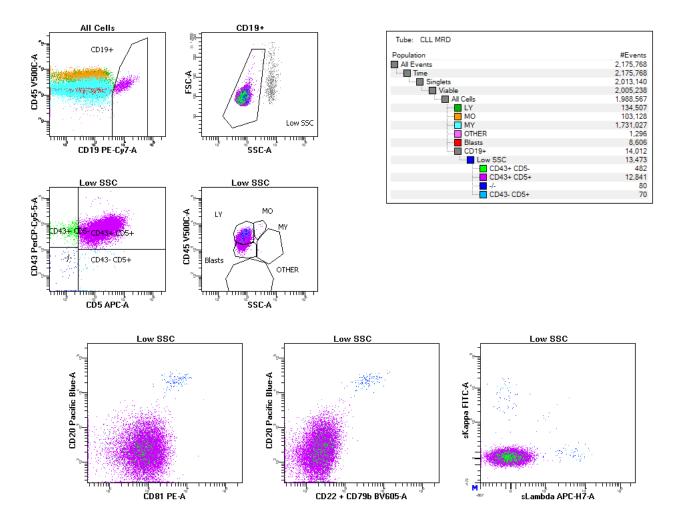
FlowBot: "dumb Al" can actually do a lot of work!

- Machine learning development takes a lot of development
- Is there a "poor man's Al" we can use in the meantime?

Rules-based automated report generation

- Approach:
 - Computer running "Flowbot" python script checks file server every 10 minutes for newly completed flow analysis files
 - Antibody panels are identified, as well as gated populations' numbers
 - Text file with autogenerated report is written, based on a series of if-then programming statements
 - Running list of day's cases with possible neoplasm is updated
 - Text file can be copied, modified, or ignored by pathologist
- Advantages
 - Algorithm is fully understood
 - Completely customizable
- Disadvantages
 - Not very fancy
 - Does not learn

Example: CLL MRD



INTERPRETATION

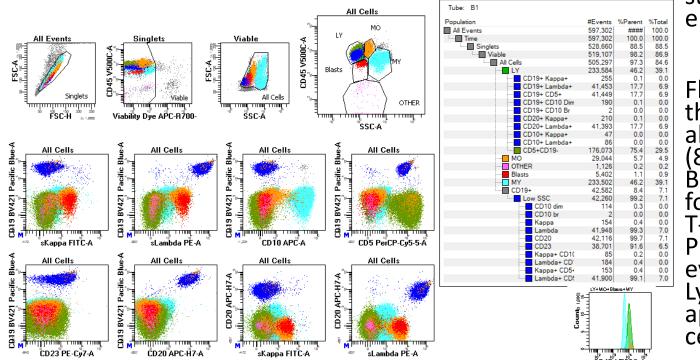
Cytospin: Morphologic evaluation of a Diff-Quikstained cytospin demonstrates peripheral blood elements.

Flow cytometry: Analysis was performed using the antibodies listed above. CD19+, CD5+, CD43+, _____-restricted B cells are 0.6% of viable cells. Lymphocytes, monocytes, and granulocytes are approximately 6.8%, 5.2%, and 87% of viable cells, respectively.

The flow cytometry findings are consistent with persistent chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL).

A minimum of one million viable cells were analyzed for MRD assessment to achieve an analytical sensitivity of 0.01%.

Example: B cell neoplasm



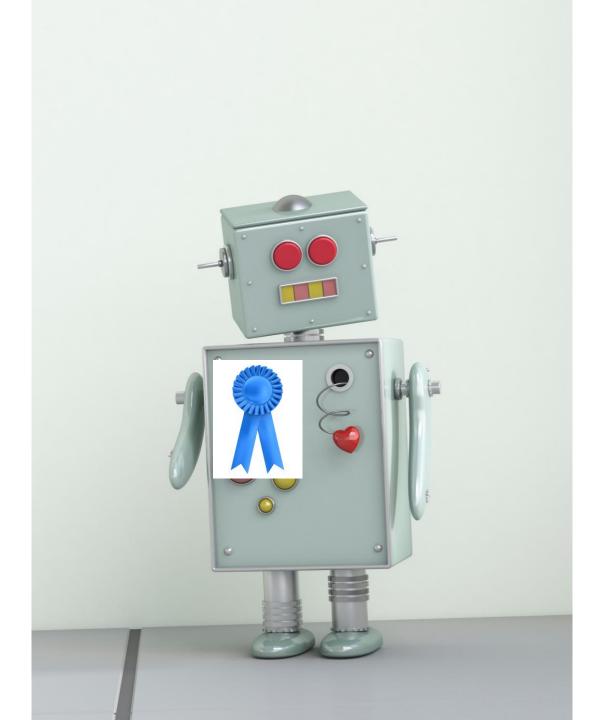
Peripheral blood sample. Panels run: B1, B2, T1, PCD1.

INTERPRETATION

Cytospin: Morphologic evaluation of a Diff-Quikstained cytospin demonstrates peripheral blood elements.

Flow cytometry: Analysis was performed using the antibodies listed above. There is an abnormal, lambda-restricted B cell population (8.2% of viable cells, 18% of lymphocytes, 99% of B cells) that co-expresses and is negative for ______expression. T cells show no loss of pan-T-cell antigens. The CD4:CD8 T cell ratio is 1.2:1. Plasma cells are too few in number for reliable evaluation for light chain restriction. Lymphocytes, monocytes, and granulocytes are approximately 46%, 5.7%, and 46% of viable cells, respectively.

The flow cytometry findings are compatible with a B cell neoplasm. There is no diagnostic evidence of a T cell or plasma cell neoplasm by flow cytometry.

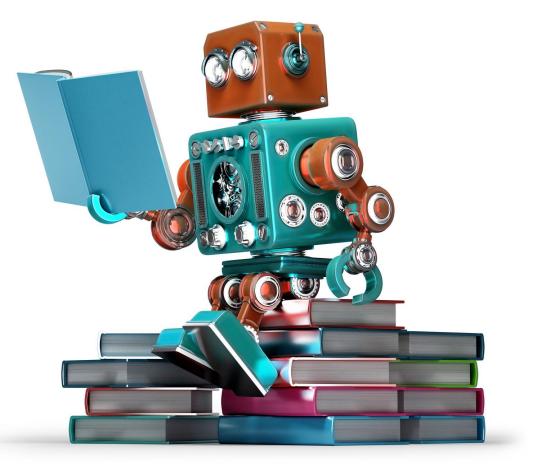


General steps in applying supervised machine learning

Example application: Detecting classic Hodgkin lymphoma

Objectives and approach

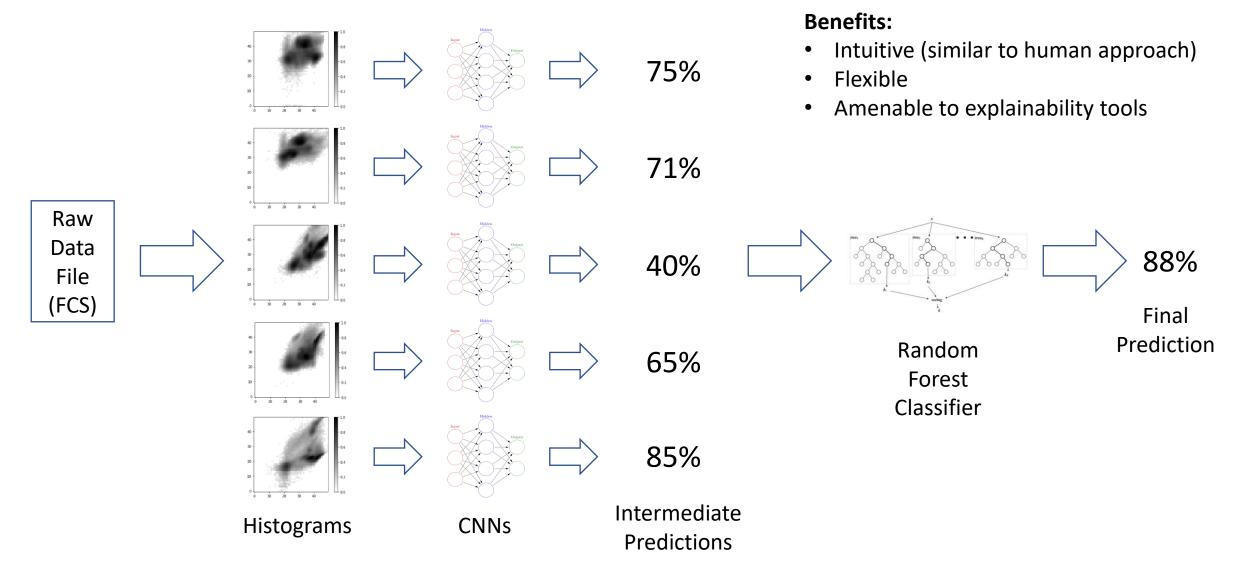
- Develop a machine learning algorithm that can predict the diagnosis based on flow.
- Design with the intention of applying interpretability algorithms.
- Create a series of two-dimensional histograms as inputs to the algorithm.
- Use an ensemble of convolutional neural networks (CNNs) for the classifier.



Data

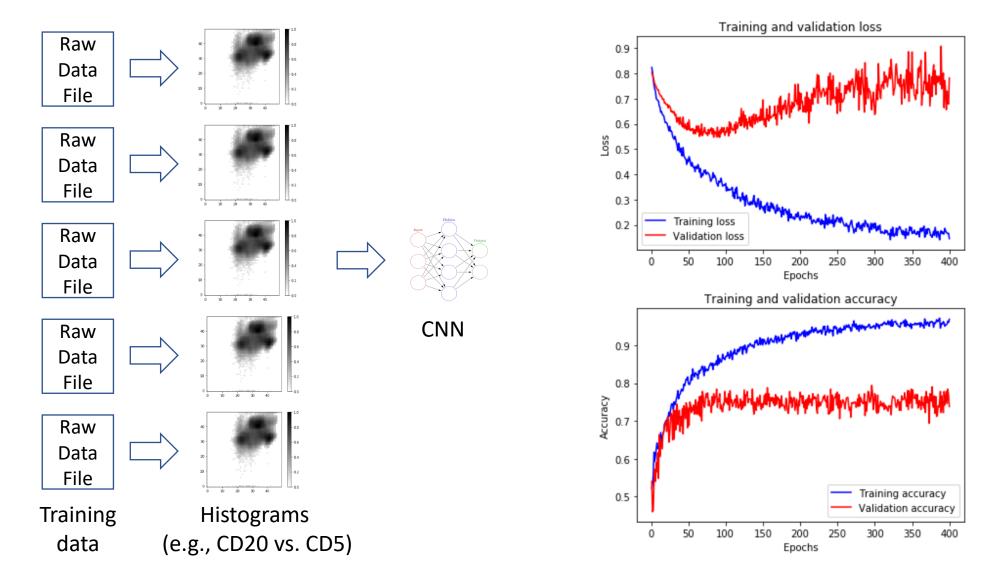
- 1222 patient cases (2010 to mid-2019)
 - 321 positive or suspicious for cHL
 - 921 negative
 - 180 cases consistent with or suspicious for a different neoplasm.
- 80% used for training, 20% for testing

The model used: "EnsembleCNN"



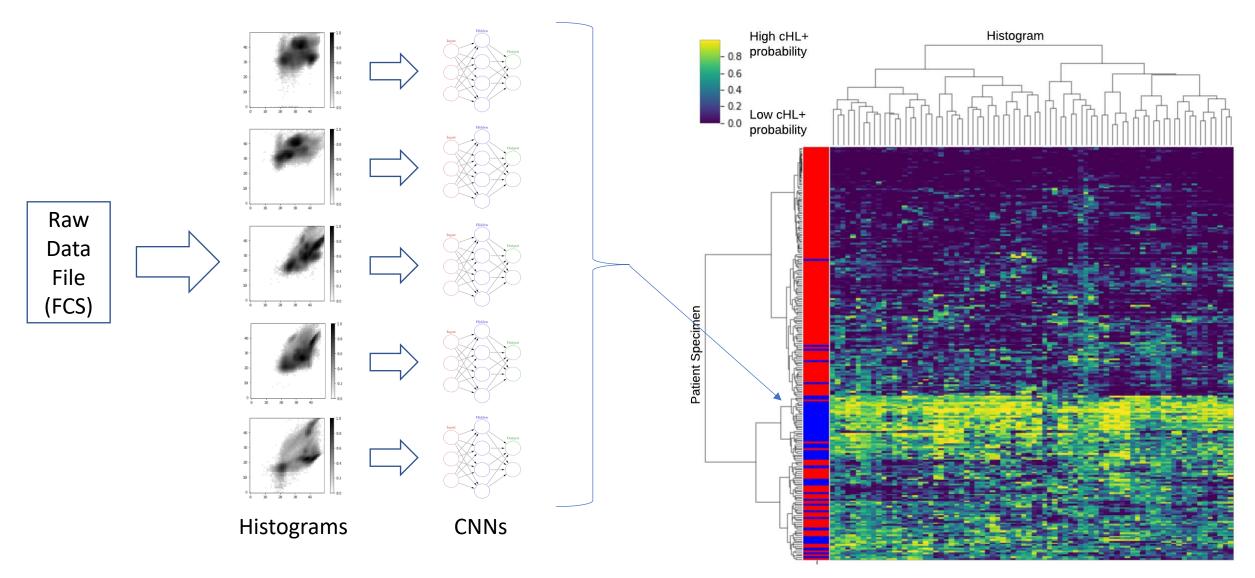
Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. Am J Clin Pathol. 2021 Nov 8;156(6):1092-1102

Step 1: Train the neural networks (CNNs)



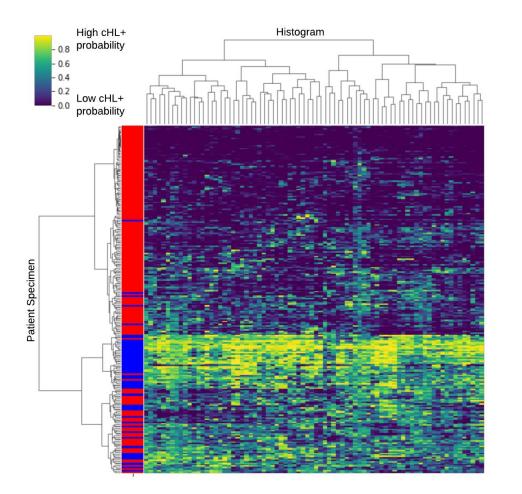
Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. Am J Clin Pathol. 2021 Nov 8;156(6):1092-1102

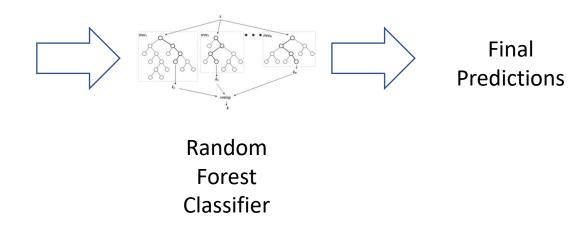
Step 2: Use the CNNs to predict results



Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. Am J Clin Pathol. 2021 Nov 8;156(6):1092-1102

Step 3: Use the results to train the random forest classifier



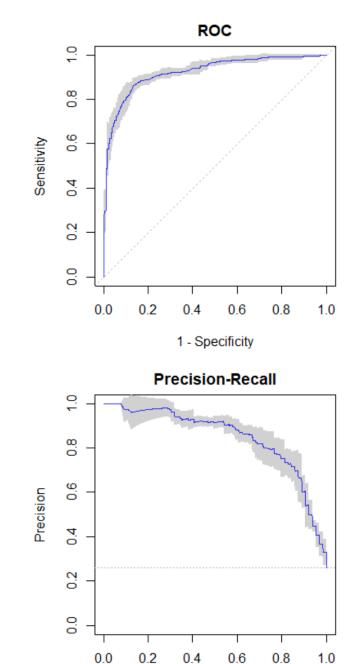


Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. *Am J Clin Pathol.* 2021 Nov 8;156(6):1092-1102

Final Results

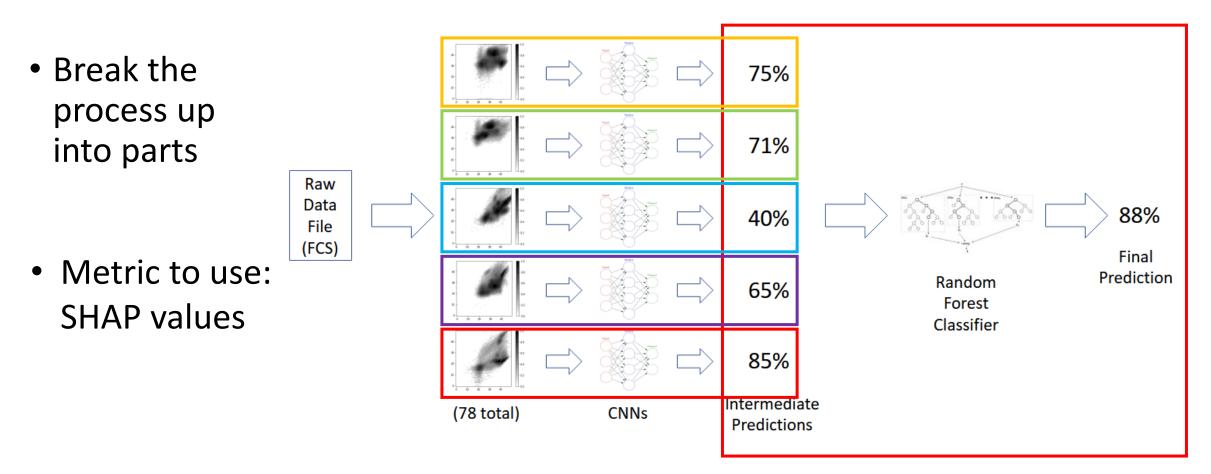
- 89% accuracy
- AUC = 0.93
- Precision = 83%
- Recall (sensitivity) = 69%
- F1 score = 75%

CNN ensemble classifier	Predicted -	Predicted +
True -	174	9
True +	20	42



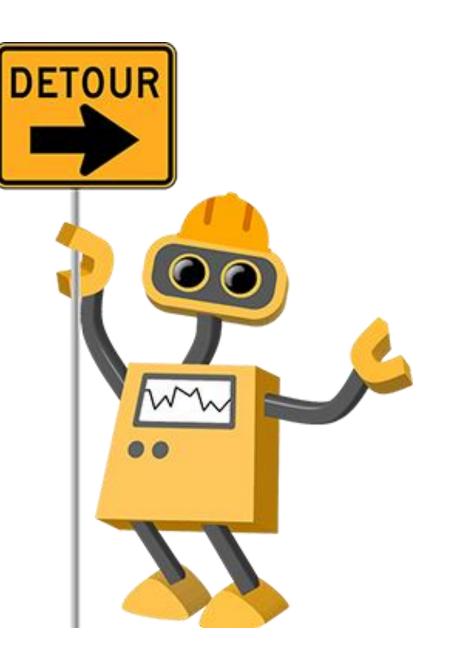
Recall Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. Am J Clin Pathol. 2021 Nov 8;156(6):1092-1102

That's great, but how do you explain it?

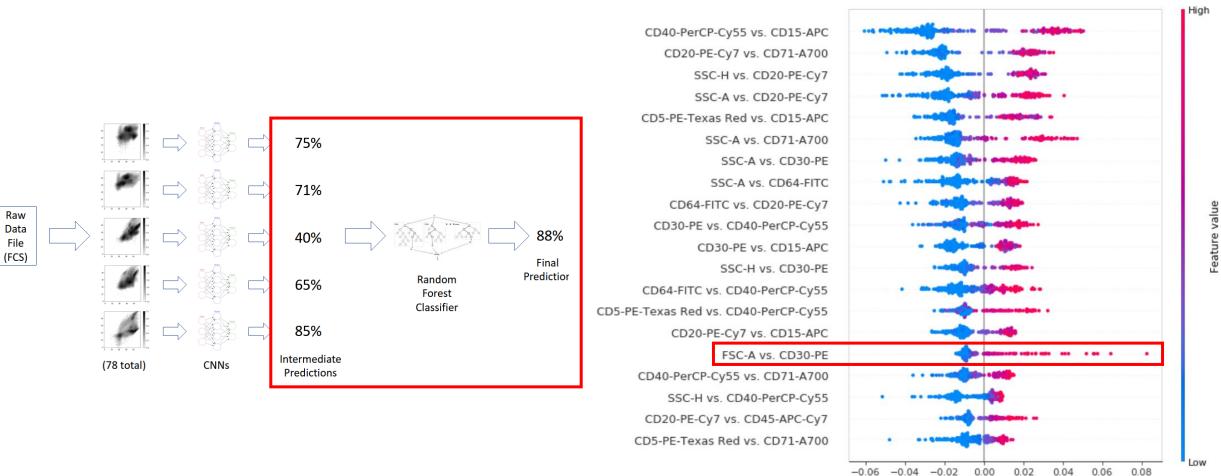


Detour: What are SHAP values?

- SHAP: SHapley Additive exPlanations
- Calculates the marginal impacts of each of the individual data elements on the final prediction scores
- Can calculate values are for *individual* predictions
- Can be averaged to identify general trends



SHAP values highlight the most useful 2D histograms



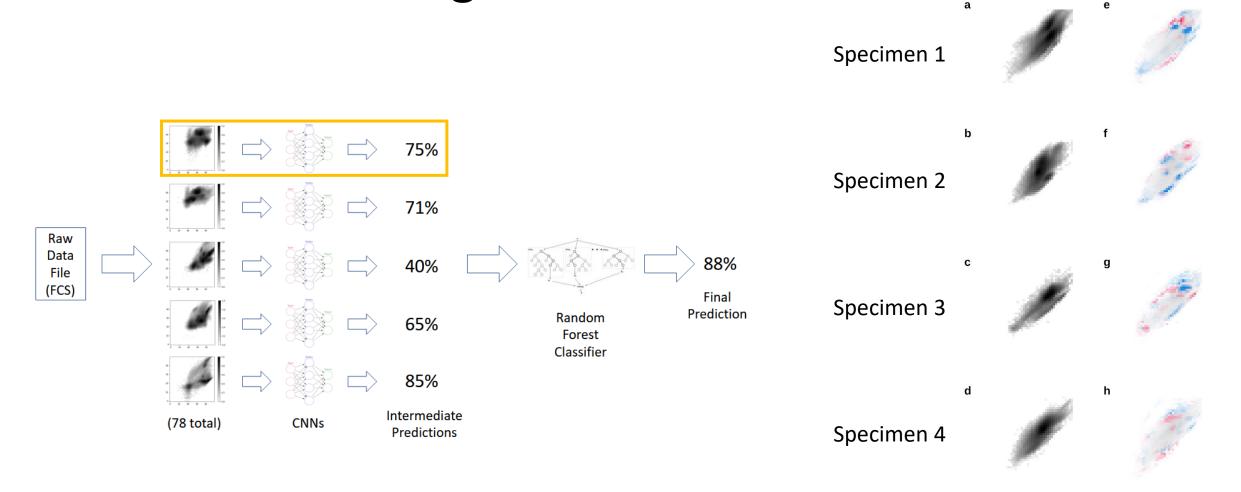
Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. Am J Clin Pathol. 2021 Nov 8;156(6):1092-1102

0.06

SHAP value (impact on model output)

0.08

SHAP values can also highlight key regions in individual histograms



Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. Am J Clin Pathol. 2021 Nov 8;156(6):1092-1102

Less likely cHL+

-0.01

0.00 SHAP value

-0.02

More likely cHL+

0.02

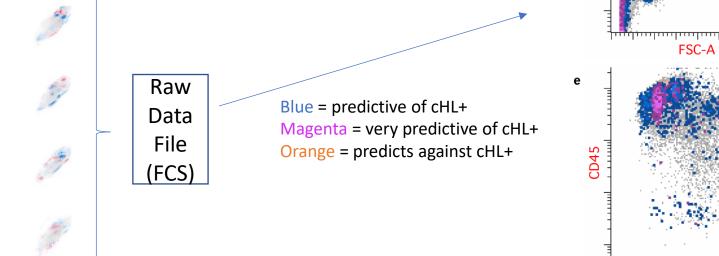
0.01

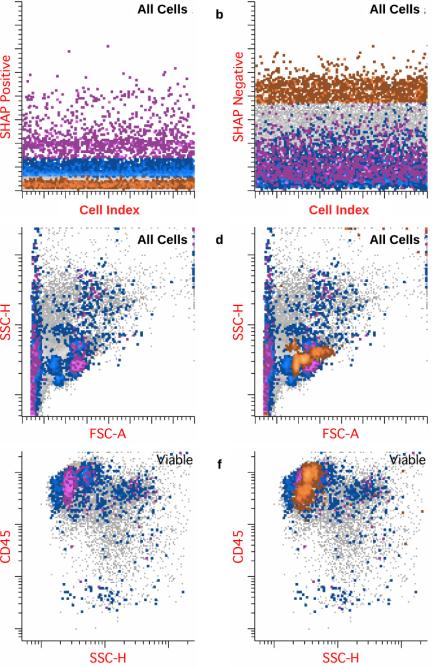
That's great, but can you correlate that back to individual cells and plot it in normal flow cytometry software?

• Yes, we can!

Visualizing important cell populations using standard software

- Integrate the SHAP values from each histogram bin within which an individual cell is found
- Save a new FCS file that includes the summed SHAP values for each cell

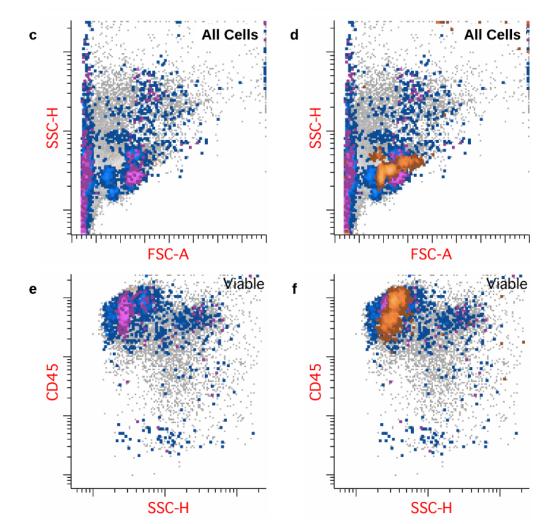




Simonson PD, Wu Y, Wu D, Fromm JR, Lee AY. *Am J Clin Pathol.* 2021 Nov 8;156(6):1092-1102

What information it provides

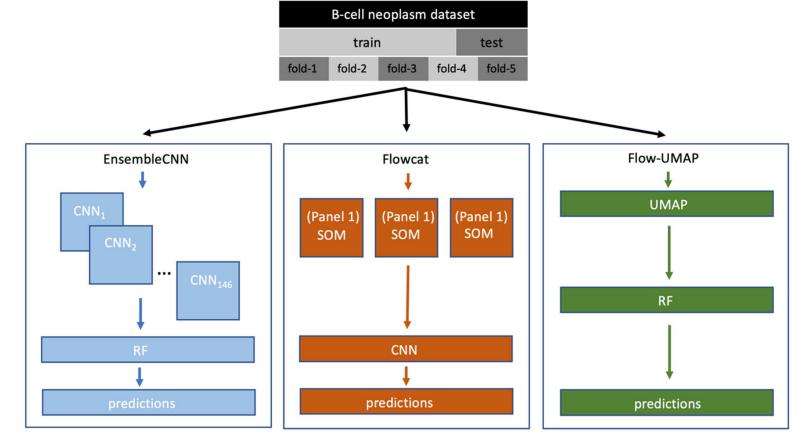
- Highlight cells that most impact the machine's decision making for a given case.
- Can potentially contribute to basic science by highlighting previously unrecognized associations.



Blue = predictive of cHL+ Magenta = very predictive of cHL+ Orange = predicts against cHL+

Which machine learning algorithm is best?

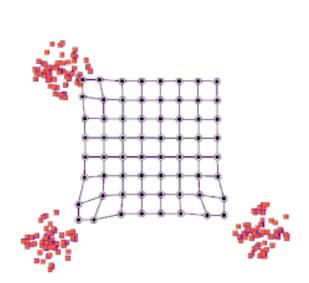
- Approach
 - Use public B cell neoplasms data set for comparison
- Classifiers compared
 - EnsembleCNN
 - FlowCat
 - UMAP-RF
- Comparisons
 - Accuracy
 - Speed
 - Interpretability



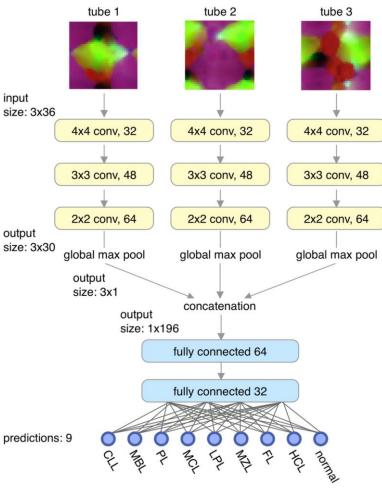
Dinalankara W et al. Cytometry B Clin Cytom. 2024 Jul;106(4):282-293.

FlowCat uses FlowSOM mappings as inputs for machine learning

- Generate FlowSOM mappings, which are passed to supervised ML algorithms
- Examples:
 - Identifying B cell neoplasms by machine learning (Zhao M et al. Cytometry A. 2020 Oct;97(10):1073-1080) (FlowCAT)
 - Identifying MDS (Duetz C et al. Cytometry A. 2021 Aug;99(8):814-824.)



https://en.wikipedia.org/wiki/Selforganizing_map



B-cell neoplasms dataset

- Healthy cases and 9 sub-types of mature B-cell neoplasms
 - Source: "Hematologist-Level Classification of Mature B-Cell Neoplasm Using Deep Learning on Multiparameter Flow Cytometry Data", Zhao et al., Cytometry, 2020.
- 3 Tubes with 9-11 markers in each; 21152 total cases, 20731 cases after filtering

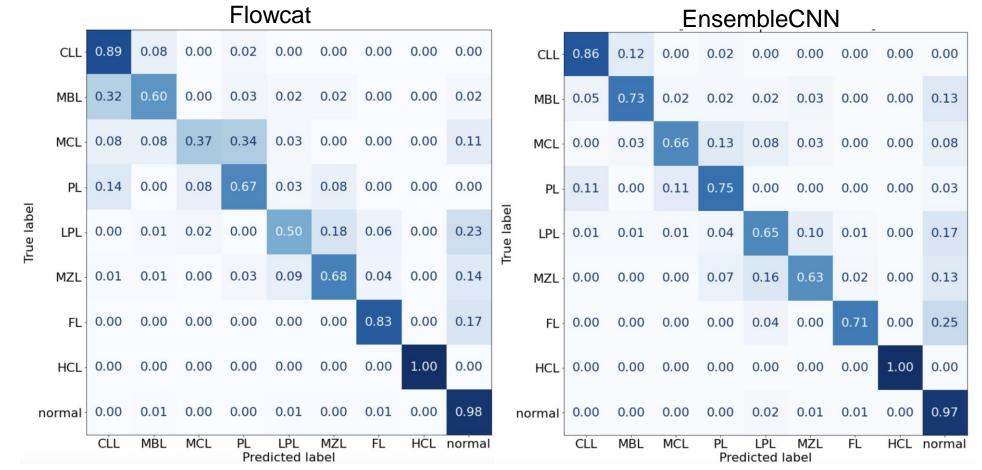
type	count	description		Panel 1	Panel 2	Panel 3
normal	11373	normal	1	'FS INT LIN'	'FS INT LIN'	'FS INT LIN'
CLL	4442	chronic lymphocytic leukemia	2	'SS INT LIN'	'SS INT LIN'	'SS INT LIN'
MBL	1614	monoclonal B-cell lymphocytosis	3	'FMC7-FITC'	'Kappa-FITC'	'CD8-FITC'
MZL	1121	marginal zone lymphoma	4	'CD10-PE'	'Lambda-PE'	'CD4-PE'
LPL	731	lymphoplasmacytic lymphoma	5	'IgM-ECD'	'CD38-ECD'	'CD3-ECD'
PL			6	'CD79b-PC5.5'	'CD25-PC5.5'	'CD56-APC'
	593	prolymphocytic leukemia	7	'CD20-PC7'	'CD11c-PC7'	'CD19-APCA750'
MCL	313	mantle cell lymphoma	8	'CD23-APC'	'CD103-APC'	'HLA-DR-PacBlue'
FL	250	follicular lymphoma	9	'CD19-APCA750'	'CD19-APCA750'	'CD45-KrOr'
HCL	225	hairy cell leukemia	10	'CD5-PacBlue'	'CD22-PacBlue'	
HCLv	69	hairy cell leukemia variant	11	'CD45-KrOr'	'CD45-KrOr'	

Training/Testing Data Sets

group	train (CNN)	train (RF)	test
CLL	2016	2019	403
MBL	776	778	60
MCL	136	139	38
PL	278	277	36
LPL	320	322	84
MZL	498	499	116
FL	110	112	24
HCL	100	101	24
normal	4900	4903	1563

- We followed a similar training/testing split as used in Zhao et. al. (FlowCat)
- For EnsembleCNN, the training data was split further into 50% for CNN training and 50% for the random forest

Accuracy is very similar between the two



Precision Recall F1-score Flowcat **EnsembleCNN EnsembleCNN** Flowcat EnsembleCNN Flowcat 0.70 0.72 0.72 0.77 0.70 0.74 macro average weighted average 0.91 0.92 0.90 0.90 0.91 0.91

Dinalankara W et al. Cytometry B Clin Cytom. 2024 Jul;106(4):282-293.

Time required to train the classifiers

Flowcat (python 3.6 with GPU)

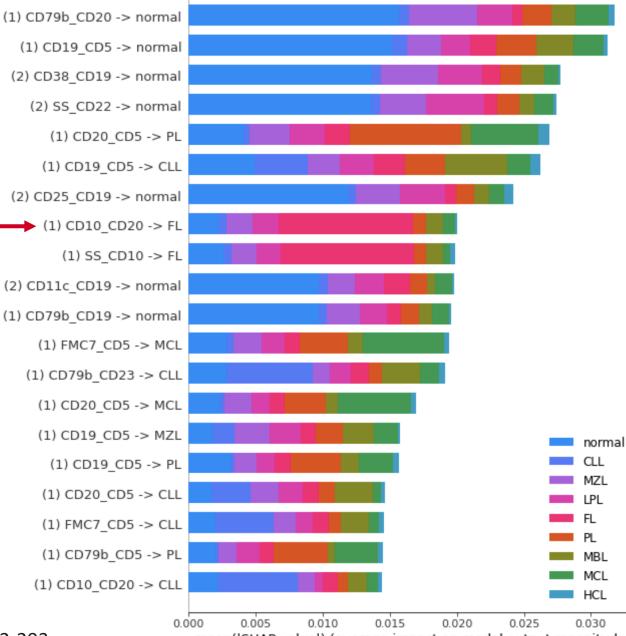
- ~ 15 hrs, 45 mins
- Almost all time is used for SOM creation

EnsembleCNN (python 3.9 with GPU)

- ~ 5 hr, 30 mins
- ~4 hours for creating case histograms for all the cases (mostly I/O operations)
- ~ 1 hr, 30 mins for training and testing the CNN+RF
- About one CNN per minute

Interpretability

 SHAP (Shapley Additive Explanations) applied to EnsembleCNN



Python source code: https://github.com/SimonsonLab/ flowComparison

Dinalankara W et al. Cytometry B Clin Cytom. 2024 Jul;106(4):282-293.

mean(|SHAP value|) (average impact on model output magnitude)

Example application #2: Using machine learning to predict the need for additional antibody panels

- Could reduce number of times a tech/pathologist looks at a case
- CLL antibody panel helps distinguish CLL from mantle cell lymphoma, etc.

Data: UW B cells antibody panel (CD20, kappa, lambda, CD5, CD19, CD38, CD10, and CD45)

- Non-gated data (for now)
- First specimen only for each patient
- 10495 cases (~3 years' data)
 - 9.1% were positive for follow up CLL panel
- **Results** 80:20 training:test data

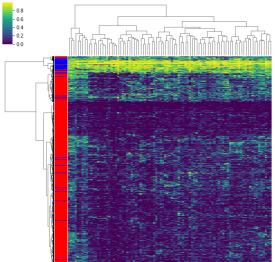
CLL panel ordered	True +	True -
Predicted +	140	51
Predicted -	50	1858

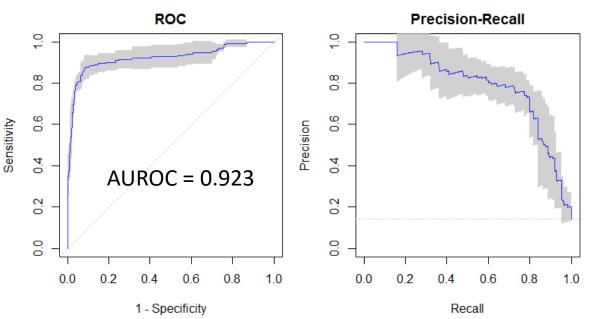
Accuracy = 95%

Limitations:

1. Data were only "roughly compensated"

2. Classifier is not aware of patient history (CLL add-on is not ordered if patient is already known to have CLL).



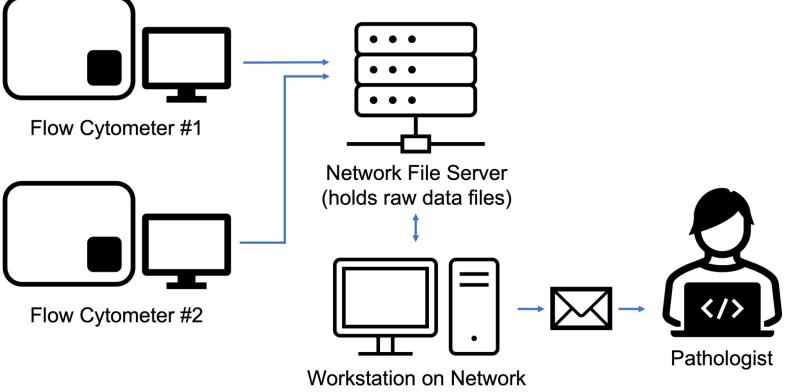


That's great, but when are you going to actually apply it to real, prospective data with real-time analysis?

• We already did!

System for real-time prediction and alerting for adding CLL antibody panel

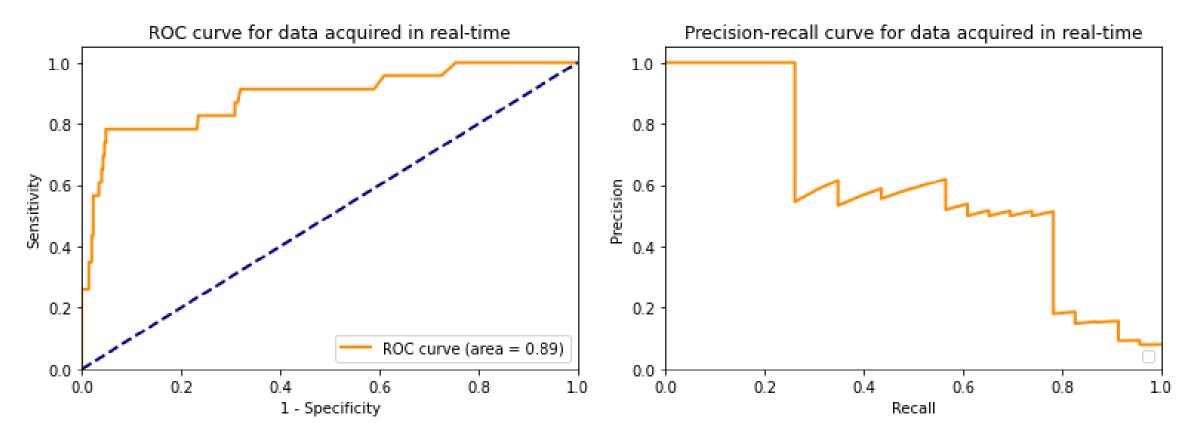
- Workstation checks the FCS file server every minute for newl B cell panel FCS file.
- Each FCS file receives a probability score.
- If probability meets determined threshold, the computer sends an alert email with accession number.



Workstation on Network (running machine learning classifier)

Prospective, real-time application of the classifier

• 367 prospective cases during March-May, 2020, 6.1% positive for CLL add-on.



Inspecting the cases the system got wrong

	Predicted no CLL order	Predicted CLL order
CLL panel not ordered	336	17 (false pos.)
CLL panel ordered	5 (false neg.)	18

On closer examination...

Of the 5 false negative predictions:

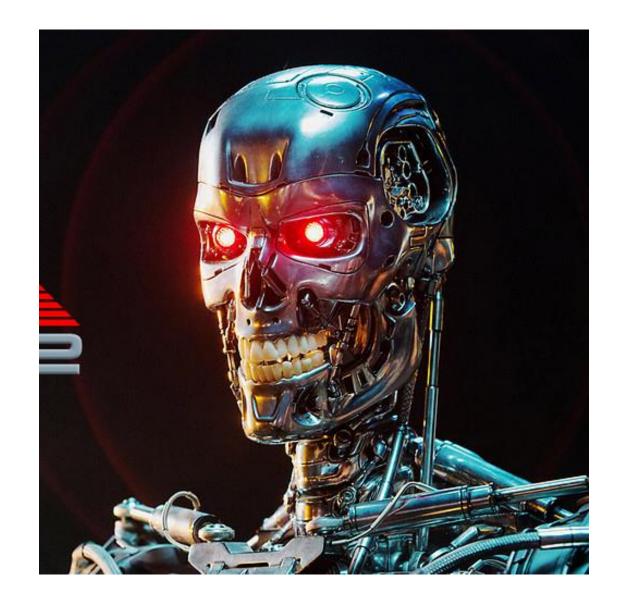
- 3 cases did not have CLL panel included in final report (2 normal and 1 suspicious for CD5-negative DLBCL).
- 1 case suspicious for a small number of CD5negative large B cell lymphoma cells.
- 1 case was CSF involved by mantle cell lymphoma (CLL panel was justified).

Of the 17 false positive predictions:

- 13 had a prior diagnosis of CLL/SLL and 1 had a prior diagnosis of mantle cell lymphoma, so CLL panel was not ordered per lab protocol.
- 3 were CD5-negative B cell lymphomas.

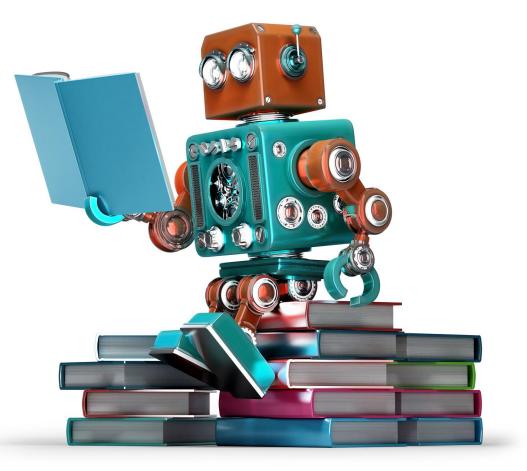
Challenges in applying machine learning to flow cytometry

- Regulatory uncertainty
- Data availability
- Generalizability of algorithms



Summary

- There are many potential applications for machine learning/AI in flow cytometry.
- Machine learning can assist in identifying diagnoses, predicting add-on tubes, etc.
- Interpretability tools can help in understanding how the algorithms are functioning with respect to data.
- Don't overlook easy ways to improve efficiency (e.g., rules-based report generation).

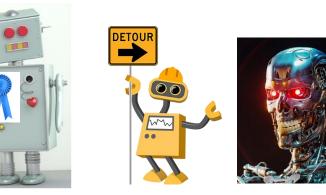


Acknowledgments

- Luigi Marchionni
- Sophie Rand
- Wikum Dinalankara
- Sanjay Patel
- David Brundage
- Nadine Demko
- Tayler Van den Akker
- James Yip
- Yue Wu
- David Wu
- Jonathan Fromm
- Aaron Lee
- David Ng

Funding

- Weill Cornell Medicine Department of Pathology and Laboratory Medicine
- University of Washington Department of Laboratory Medicine
- Roger Moe Fellowship (PDS)
- Donation of a GPU by NVIDIA Corporation (PDS)
- NEI K23EY029246 (AYL)
- Research to Prevent Blindness (AYL)



Questions?