A customizable murine spectral backbone panel for immune surveillance in complex tissues

Rui Gardner

Director, Flow Cytometry Core Facility

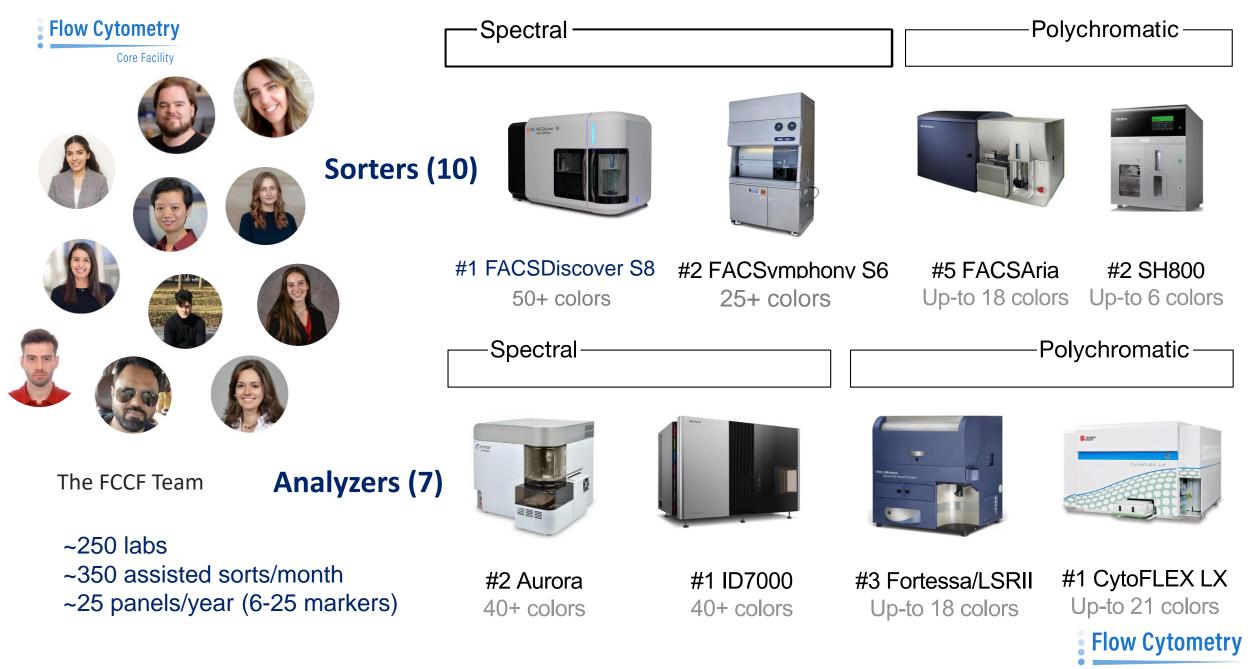
🔀 gardnerr@mskcc.org

@flowMSKCC

Memorial Sloan Kettering Cancer Center

Core Facility

Ţ



Memorial Sloan Kettering Cancer Center

Core Facility

PANEL DESIGN SERVICE

Company Agnostic

Panels are designed for any of our instruments with the best quality in mind considering all possible reagents, regardless of the vendor

Latest Knowledge of Biological Markers

With our knowledge in immunology and cancer biology we consider the most up-to-date markers that identify the immune populations of interest

FCCF staff available throughout

Staff are involved at every step and can more easily assist with troubleshooting

Support with data analysis Assitance with FlowJo, FCSExpress, and OMIQ and high-dimensional analysis

Panels for murine immune cells

Panel 1	Panel 2	Panel 2 Panel 3 Par		Panel 5
CD8	CD45	CD45 CD127		CD3
CD4	CD4	CD3	CD135	CD4
MHC-II	CD3	CD4	\$ea=1	CD8
Ly6G	CD8	CD8a	NK1.1	CD45
EB86	N1.1	NK1.1	CD3	CD11c
CD11c	CD25	CD11b	B220	MHC Class II
XER1	CD11b	I-A/I-E	CD4	B8= <u>1</u>
FOXP3	B220	CBSE	CD8	Fox-P3
E∕/B	EB127	PDL1	EXERÍ	EB123
Ki-67 ki-67	Ly6G	1685	EER4	Ly6C
CD45	CD44	PD-1 PD-1	CD25	Ly6G
CD11b	CD69 CD69	FoxP3	CD11b	CD11b
ČĎ1Ŏ3	ÇD62L	GranzymeB	Ly6C	B220
PD1	Ly6C	F4/80	F4/80	F4/80
ŢĊŖĎ		LY6C	MHC II	CD25
F4/80		Ly6G	Ly6G	
RR298		CD11c CXCR4		
NKAAA		B220	CD11c	
Gz/66B			CD127	
Ly6C				

Journal of Immunological Methods 507 (2022) 113294

A 33-color panel of phenotypic analysis of murine organ specific immune cells

Si-Yu Yang ^{a,1}, Meng-Xing Huang ^{a,1}, Yan-Xia Sun ^{b,1}, Liang Li ^c, Zhen-Hua Bian ^a, Jie Long ^d, Zhi-Bin Zhao ^{c,*}

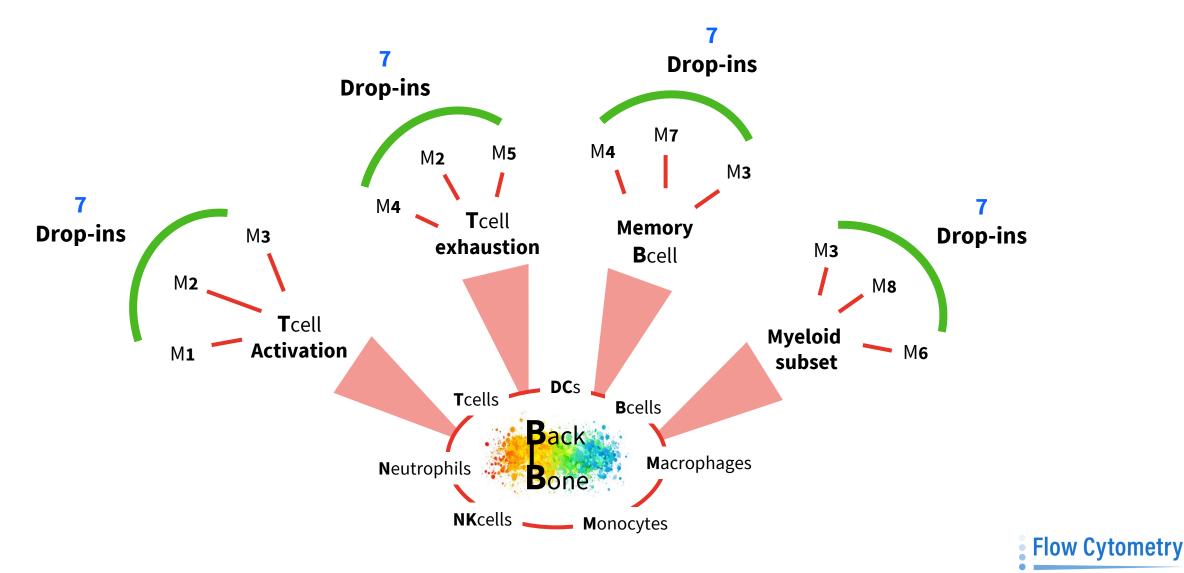
CANCER IMMUNOLOGY RESEARCH | RESEARCH ARTICLE

Longitudinal Immune Profiling Reveals Unique Myeloid and T-cell Phenotypes Associated with Spontaneous Immunoediting in a Prostate Tumor Model

Check for updates

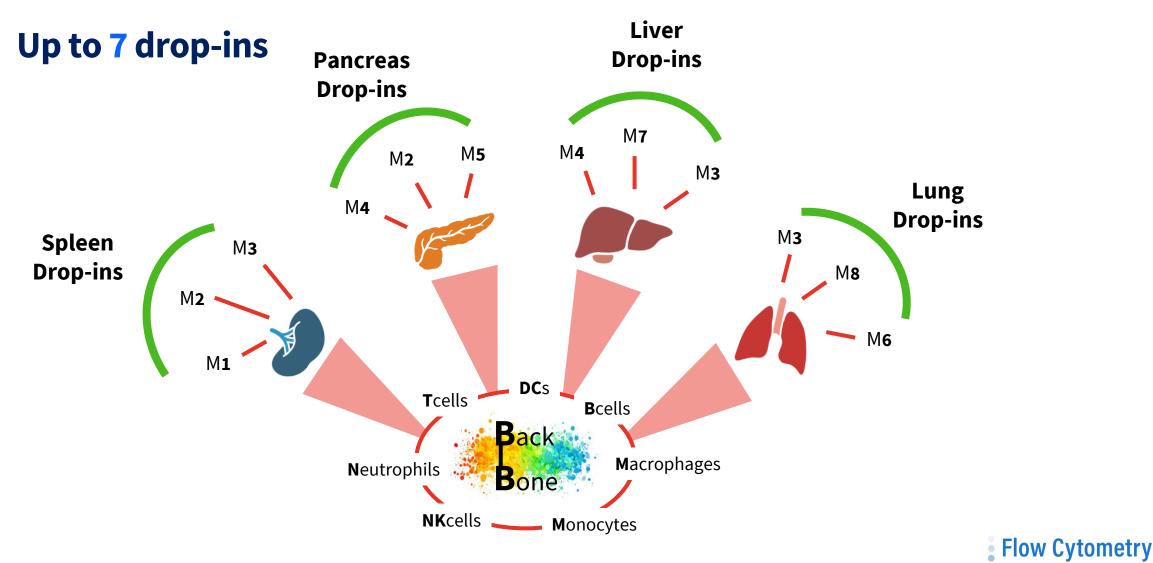
Casey R. Ager¹, Aleksandar Z. Obradovic^{1,2}, Juan M. Arriaga³, Matthew G. Chaimowitz¹, Andrea Califano^{2,4,5,6,7,8}, Cory Abate-Shen^{2,3,4,9,10}, and Charles G. Drake^{1,9,11}

Using Full-Spectrum Flow Cytometry to Phenotype Memory T and NKT Cell Subsets with Optimized Tissue-Specific Preparation Protocols


Kathryn Farrand,^{1,5} Lauren E. Holz,^{2,5} Laura Ferrer-Font,^{1,3} Michael D. Wilson,¹ Mitch Ganley,⁴ Jordan J. Minnell,¹ Ching-Wen Tang,¹ Gavin F. Painter,⁴ William R. Heath,² Ian F. Hermans,^{1,3,6} and Olivia K. Burn^{1,6,7}

OMIP-93: A 41-color high parameter panel to characterize various co-inhibitory molecules and their ligands in the lymphoid and myeloid compartment in mice

Johannes Brandi 🔀 Carsten Wiethe, Mathias Riehn, Thomas Jacobs 🔀


Immune surveillance of different subsets

© 2024 Memorial Sloan Kettering Cancer Center, et al. All rights reserved.

Core Facility

Immune surveillance of different tissues

© 2024 Memorial Sloan Kettering Cancer Center, et al. All rights reserved.

Core Facility

Murine spectral backbone panel for immune surveillance

Frontiers | Frontiers in Immunology

Check for updates

OPEN ACCESS

EDITED BY

Paola Cappello, University of Turin, Italy

REVIEWED BY

Vera Svobodova Donnenberg, University of Pittsburgh, United States Aaron Victor, Cedars Sinai Medical Center, United States

*CORRESPONDENCE

Ana Leda F. Longhini figueia@mskcc.org Ross L. Levine leviner@mskcc.org Rui Gardner gardnerr@mskcc.org

[†]These authors have contributed equally to this work

RECEIVED 23 January 2024 ACCEPTED 13 March 2024 PUBLISHED 27 March 2024

CITATION

Longhini ALF, Fernández-Maestre I, Kennedy MC, Wereski MG, Mowla S, Xiao W, Lowe SW, Levine RL and Gardner R (2024) Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues

Ana Leda F. Longhini^{1*†}, Inés Fernández-Maestre^{2,3†}, Margaret C. Kennedy^{3,4}, Matthew G. Wereski², Shoron Mowla², Wenbin Xiao^{2,5,6}, Scott W. Lowe^{4,7}, Ross L. Levine^{2,5,8*†} and Rui Gardner^{1*†}

¹Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States, ²Memorial Sloan Kettering Cancer Center, New York, NY, United States, ³Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States, ⁴Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States, ⁵Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States, ⁶Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States, ⁷Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States, ⁸Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Introduction: In vivo studies of cancer biology and assessment of therapeutic

TYPE Original Research PUBLISHED 27 March 2024 DOI 10.3389/fimmu.2024.1374943

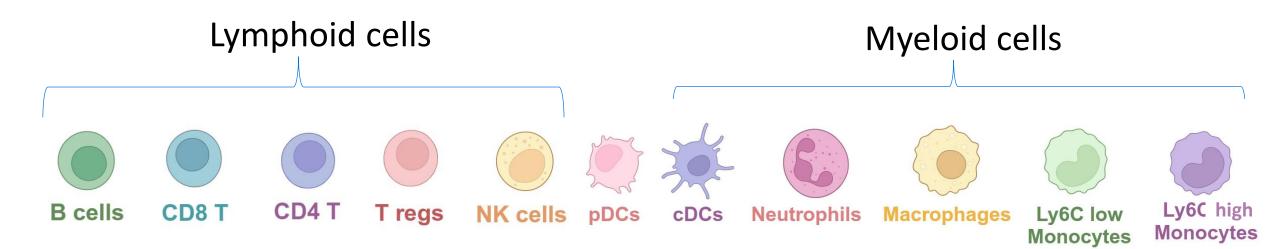
Ana Longhini

Ines Maestre

Longhini et al (2024) *Front Immunol* doi: 10.3389/fimmu.2024.1374943

Building a backbone panel

Purpose:


Mouse Immuno-profiling of tumor samples and other disease models

- Characterize the major immune populations
- Expandable and customizable panel pre-defined drop-in fluorochromes
- Work for a variety of tissues
- Work on any spectral cytometer

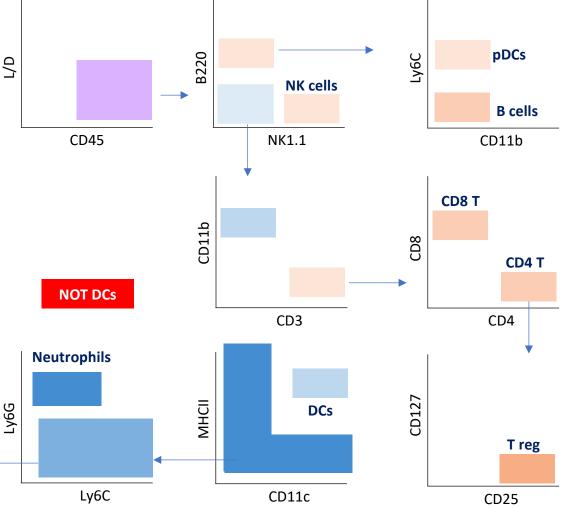
Populations

Immune populations

Flow Cytometry

Backbone Markers and gating strategy

Macrophages


8/7 Mono LY6C+ low and high

Ly6C

Backbone: 14 markers + L/D

Lymphoid Markers	Myeloid Markers	Common Markers	r/D
CD3	CD11b	CD45	
B220	Ly6C	L/D	
CD4	F4/80		
CD8	MHC II		
NK1.1	LY6G		
CD25	CD11c		
CD127			

Gating strategy allows definition of **11** subpopulations

Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943

© 2024 Memorial Sloan Kettering Cancer Center, et al. All rights reserved.

Markers

Drop-in fluors

Drop-ins – the logic behind

- Fluors: Bright and common
- Minimal impact on the Backbone resolution and vice-versa
- Minimal impact between each other

First-choice drop-ins : BV421, FITC (or BB515), PE, APC

Another valuable point: First-choice Drop-ins are not tandem dyes - less problems when unmixing – fluor library

Suggestions for additional drop-ins : BV605, BV786, PE-Cy7

The backbone fluor assignment

BackBone fluors

Respect the rules for panel design

- 1. Bright fluors low expression and dim fluors high expression
- 2. Spread: impact on co-expressed markers

Intercalate myeloid markers with lymphoid markers on the same laser line and avoid co-expression across lasers

	UV (3	55 nm)	Violet (405 nm)	Blue (4	88 nm)	YG (56	5 1 nm)	Red	(640 nm)
λnm	Antigen	Fluor	Antigen	Fluor	Antigen	Fluor	Antigen	Fluor	Antigen	Fluor
390	MHC II	BUV395								
			Drop-in	BV421						
400					-					
490	CD8	BUV496			Drop-in	BB515	1			
	CD11c	BUV563	CD11b	BV570			Drop-in	PE	1	
590										
			Drop-in	BV605					-	
	CD127	BUV661	B220	BV650					Drop-in	APC
690					NK1.1	BB700	CD25	PE-Cy5		
									CD4	R718
			Ly6G	BV711						
	F4-80	BUV737								
790			Drop-in	BV785	Ly6-C	RB780	Drop-in	PE-Cy7	L/D	NIR
	CD3	BUV805							CD45	APC/Fire 810

Fluorochrome assignment

- Myeloid markers
- Lymphoid markers
- **Common marker** **
- Drop-in fluorochromes

Front. Immunol., 27 March 2024

Sec. Cancer Immunity and Immunotherapy

Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943

15 parameters (14 surface markers + L/D) 7 custom markers **Drop-ins** 22 parameter panel

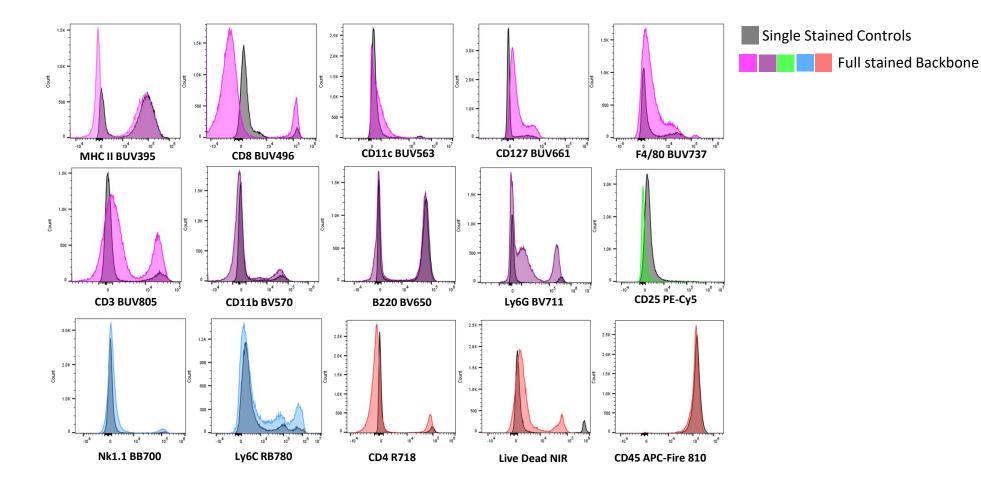
Backbone

Steps for panel evaluation

Panel evaluation

>The backbone panel clearly resolves major immune cells subsets

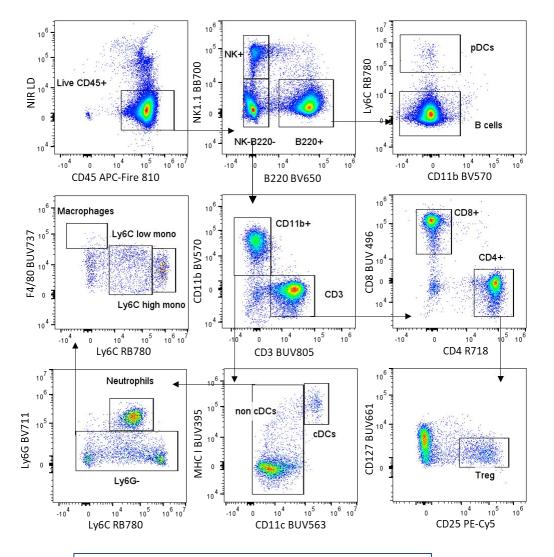
- The backbone panel must have minimal impact on the resolution of the drop-in fluorochromes
- The drop-in fluors must have minimal impact on the backbone resolution

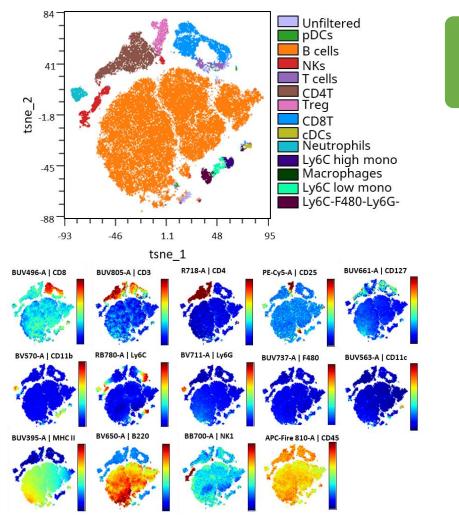


Backbone panel N x N plots – unmixing evaluation

Comparison of single stained controls with fully stained backbone sample

Panel evaluation

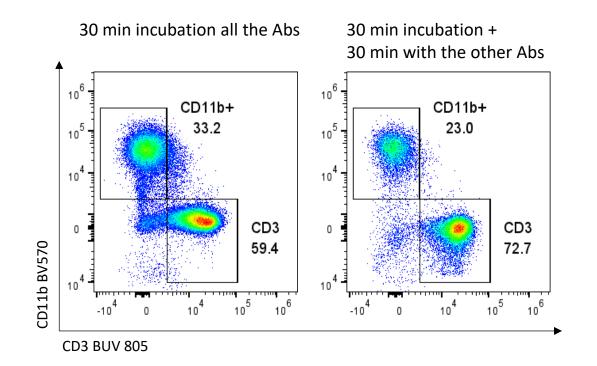

© 2024 Memorial Sloan Kettering Cancer Center, et al. All rights reserved.


Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy

Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943

Backbone panel: manual and unsupervised analysis

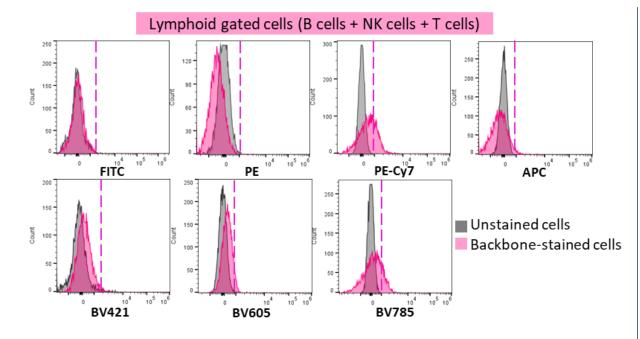
Panel evaluation

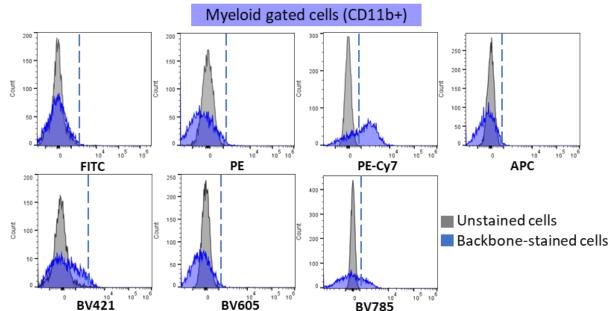

Sample: spleen cells from C57B6/N mice

Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy

Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943

CD3 signal is improved by increasing the incubation time

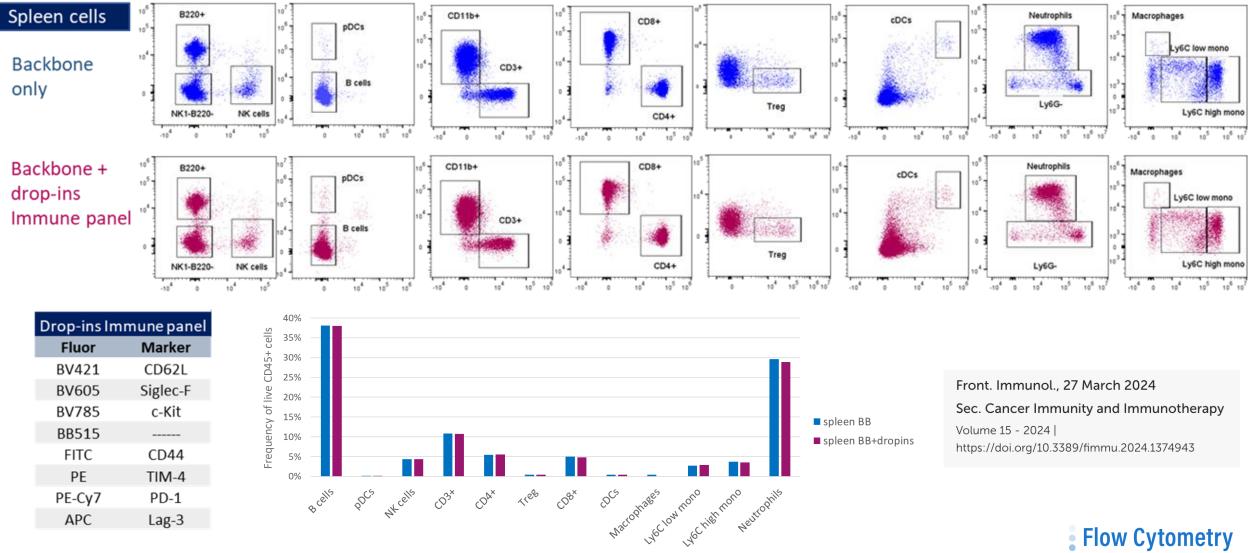



Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943

Impact of the backbone panel on the drop-in fluorochromes

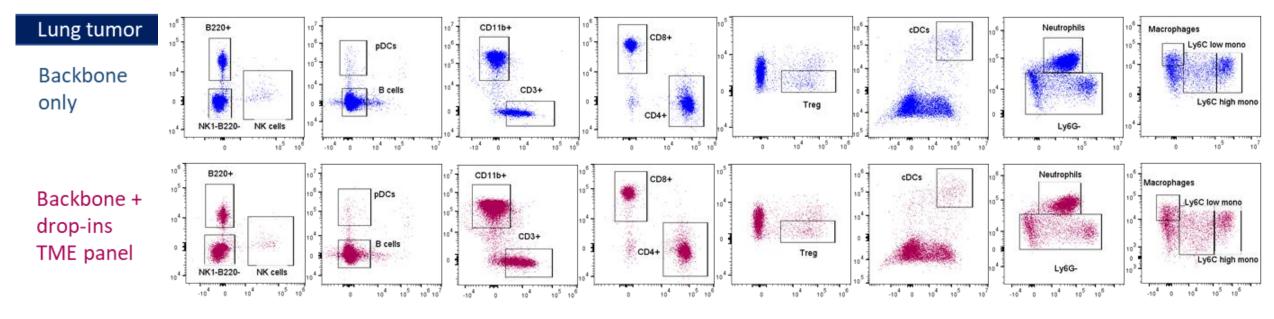
Panel evaluation

Unstained and fully stained sample: C57B6/N mice splenocytes **Single stained controls for the drop-in fluorochromes:** splenocytes were stained with CD4 for each individual fluorochrome

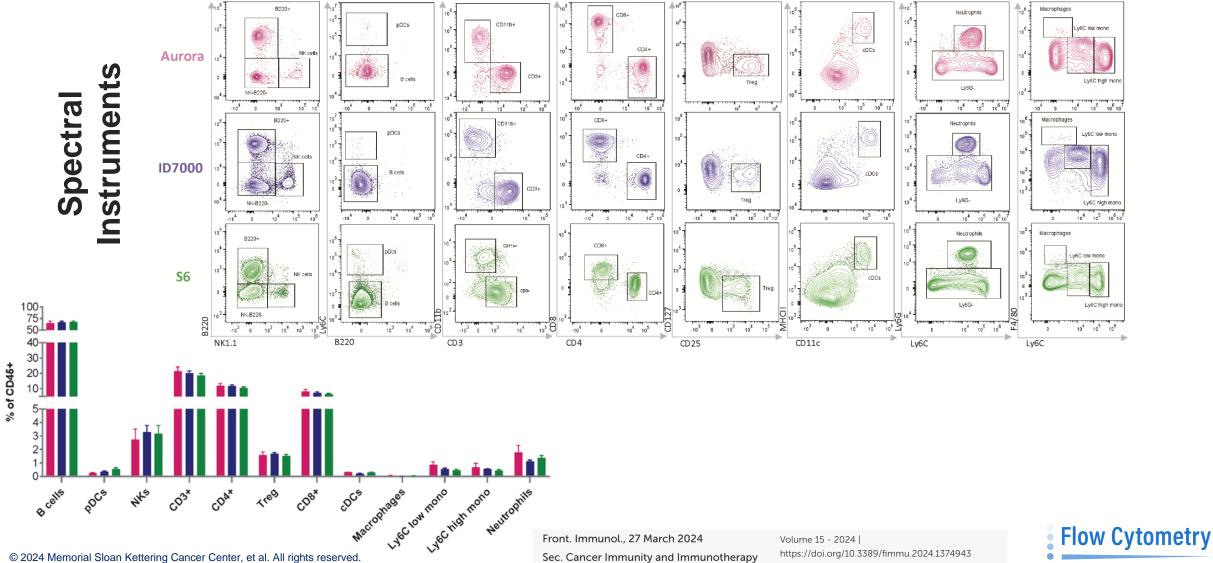


 $\ensuremath{\mathbb{C}}$ 2024 Memorial Sloan Kettering Cancer Center, et al. All rights reserved.

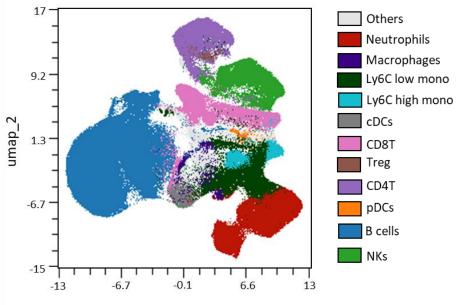
Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943



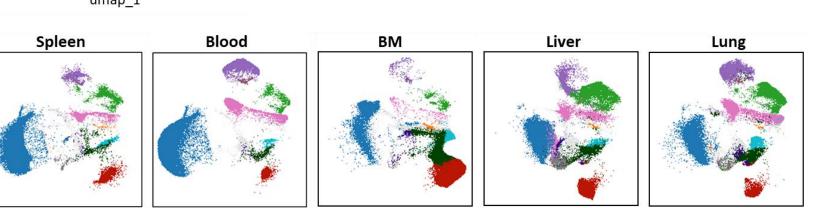
The addition of drop-ins does not impact the backbone resolution on spleen samples


Core Facility

The addition of drop-ins does not impact the backbone resolution on KRAS-driven lung adenocarcinoma

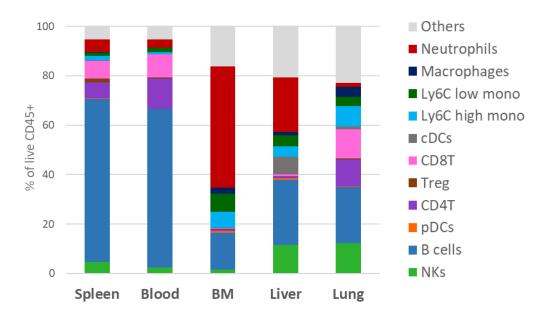

	Drop-ins	TME panel
Samples: dissociated lungs from C57Bl6/N mice injected with KrasG12C/+; Trp53fl/fl lung cells.	Fluor	Marker
	BV421	PDPN
	BV605	Epcam
	BV785	
	BB515	Lag-3
Front. Immunol., 27 March 2024	FITC	
Sec. Cancer Immunity and Immunotherapy Volume 15 - 2024 https://doi.org/10.3389/fimmu.2024.1374943	PE	
	PE-Cy7	PD-1
	APC	CD31
© 2024 Memorial Sloan Kettering Cancer Center, et al. All	debte as second	

The backbone panel performs across different spectral cytometers



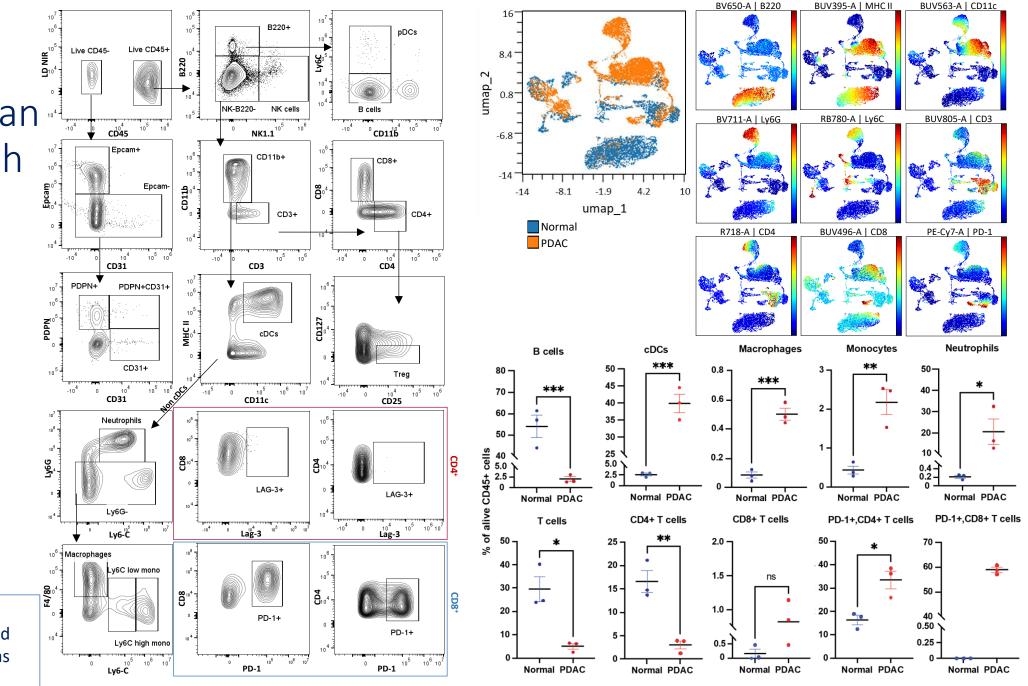
Core Facility

The backbone is organ agnostic



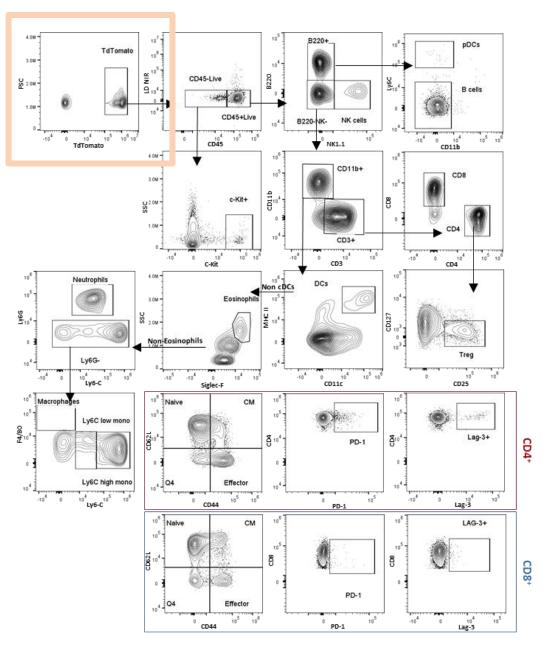
umap_1

Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943



The backbone can be used with complex tumor samples

Drop-ins TME panel				
Fluor	Marker			
BV421	PDPN			
BV605	Epcam			
BV785				
BB515	Lag-3			
FITC				
PE				
PE-Cy7	PD-1			
APC	CD31			


Samples: pancreatic ductal adenocarcinoma (PDAC) and normal dissociated pancreas from C57BI6/N

The backbone performs with highly expressed TdTomato cells

Drop-ins Immune panel TdTomato					
Fluor	Marker				
BV421	CD62L				
BV605	Siglec-F				
BV785	c-Kit				
BB515					
FITC	CD44				
PE					
PE-Cy7	PD-1				
APC	Lag-3				
TdTomato	TdTomato				

Sample: splenocytes from tdT+ HSC-Scl-Cre-ERT C57BI6/N mouse

Front. Immunol., 27 March 2024 Sec. Cancer Immunity and Immunotherapy Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1374943

Future improvements

- Improve CD3 resolution
 Swap fluor (BUV805)
 Alternatively use TCRαβ
- Develop backbone panel for intracellular staining
- Develop human backbone panel
- Explore autofluorescence extraction to improve resolution

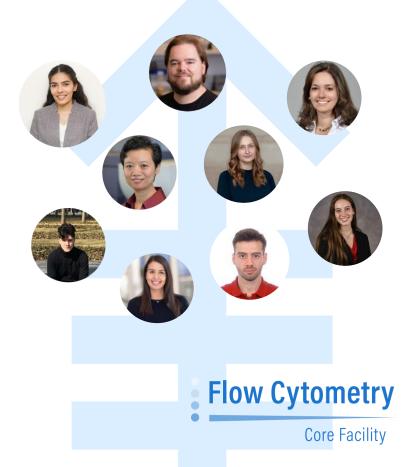
Summary

- The backbone panel is reliable for profiling immune cells from hematopoietic and non-hematopoietic organs, as well as tumors with complex immune microenvironments.
- The backbone panel maintains its resolution across different spectral flow cytometers.
- The panel is validated to incorporate up to seven other fluorochromes and can be associated with bright fluorescent proteins, such as tdTomato.
- A robust backbone that can be customized with pre-tested drop-in fluorochromes not only saves time and resources, but also brings consistency and standardization, making it a valuable solution for immuno-oncology researchers.

Acknowledgements

Ines Maestre

Matthew G. Wereski Shoron Mowla Wenbin Xiao **Ross Levine**


Margaret C. Kennedy Scott Lowe

Luciana Kimmal (**Thermofisher**) Anthony Carcio (**Sony**) Wences Castillo (**BD**) Diana Vesely (**Biolegend**) Mark Edinger (**Cytek**)

Ana Longhini (Scientific Manager)

The FCCF Team

Building Flow Cytometry tools to improve research

Rui Gardner

Director, Flow Cytometry Core Facility

gardnerr@mskcc.org

Questions?

@flowMSKCC

Core Facility

Memorial Sloan Kettering Cancer Center