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Outline

* Why use computational methods for high-
dimensional flow data?

* Flow clustering algorithms
* FlowSOM

* Dimensionality reduction
* t-SNE, UMAP

* Visualization in flow software



It’s relative!

W h at 1S h lg h - Yesterdays 4-color is now 10-color, which

dimenSional ﬂOW will soon be 12-color...
CyTOF data: usually ~40 markers
data?

Spectral flow cytometry



Example application: 18 color flow cytometry
to evaluate T cell subsets

* Your lab has purchased an 18-color flow
cytometer

* You now want to offer a new T cell panel
(22 antibodies) for immunomonitoring in
clinical trials, and, eventually, clinical
use.

* You would like to be able to parse the
cells into T cell subsets for identification
and quantification

* Minimize subjectivity
* Include the ability to identify unexpected
subsets

* You have decided to employ
computational methods in addition to
traditional gating to help in the analysis.

Special Order Research Product




Why use new computational approaches?

* Increasing numbers of flow channels means increased
complexity.
* Adoption of spectral flow cytometry further increases
complexity!
* More colors allows identification of more cell subsets within
the data.

* That’s a lot of 2x2 plots to look at!

* Increasing numbers of gates leads to increasing chances
of spillage of cell subsets into the wrong gates.

* Gating creates bias that can result in missing
unexpected populations.

* Gating requires some subjective decisions, limiting
reproducibility.

* Computational approaches can result in a less biased,
more reproducible approach to flow cytometry
analysis.
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Basic components of computational analysis

Data cleanup Specific considerations of data to be analyzed

Clustering of data into cell types

ww

Data visualization

R

Inspection of clusters and giving them names

: QP C

Further downstream analysis...



Clustering algorithms help identify cell populations
in a less subjective way than gating

* Clustering helps identify groups
of cells that are similar to each
other.

* Clustering algorithms can "see" all
the cells' features at once; it’s not
limited by 2D hierarchical gating

* Can identify unexpected clusters
that might be missed by usual
gating strategy




Many clustering
algorithms exist

» flowMeans, FlowSOM, PhenoGraph, SPADE3,
SWIFT, DBSCN, HDBSCN, MegaClust, X-
Shift, ADICyt, SamSPECTRAL, FLOCK, FLAME,
FlowDensity, Accense, DEPECHE, kmeans, LDA,
ACDC, Flock2, etc., etc., etc.

« Supervised vs. unsupervised vs. semi-supervised

* How to choose a clustering algorithm?

« Accurate and reproducible

« Similar cell populations are found in different
specimens

» Meets the needs of the problem at hand
» Are others using it?




Comparisons of clustering algorithms

* FlowCAP | challenge compared unsupervised clustering algorithms

Great challenge but lacked high-dimensional data

* Weber LM, Robinson MD. Comparison of clustering methods for high-
dimensional single-cell flow and mass cytometry data. Cytometry A. 2016
Dec;89(12):1084-1096. PMID: 27992111.

Compared 18 clustering algorithms
Used 6 well documented/gated data sets

Evaluated ability to identify major cell populations and single rare cell population,
based on expert gating for comparison

gxcluded doublets, debris, and dead cells and performed asinh transformation on
ata

Used default algorithm parameters where available, and aimed for 40 clusters when
user input was needed



Results from Weber et al.

MULTIPLE POPULATIONS OF INTEREST SINGLE RARE POPULATION OF INTEREST
LEVINE_32DIM LEVINE_13DIM SAMUSIK_01 SAMUSIK_ALL NILSSON_RARE MOSMANN_RARE

RUNTIME RUNTIME RUNTIME RUNTIME RUNTIME RUNTIME

MEAN F1 HH:MM:S5 MEAN F1 HH:MM:SS MEAN F1 HH:MM:SS MEAN F1 HH:MM:SS F1 HH:MM:SS FI HH:MM:SS

ACCENSE 0.494 00:05:32 0.358 00:04:48 0.517 00:06:21 0.502 00:05:32 0.445 00:06:11 0.021 00:04:37
ClusterX 0.682 01:57:02 0.474 03:50:51 0.571 01:52:09 0.603 02:02:08 0.132 00:29:00 0.004 01:56:13
DensVM 0.660 08:30:13 0.448 08:11:09 0.239 07:34:49 0.496 07:55:14 0.153 03:19:36 0.004 07:55:34
FLOCK 0.727 00:03:43 0.379 00:00:29 0.608 00:00:35 0.631 00:14:28 0.089 00:00:08 0.102 00:01:06
flowClust NA NA 0.416 02:59:27 0.612 06:04:13 0.610 11:56:58 0.461 04:20:24 0.080 03:32:41
flowMeans 0.769 02:34:01 0.518* 00:04:09 0.625 04:13:12 0.653 02:03:17 0.488 00:01:06 0.104 00:03:57
flowMerge NA NA 0.247 07:45:41 0.452 09:56:25 0.341 03:21:40 0.111 09:41:02 0.159 11:06:45
flowPeaks 0237 00:05:19 0215 (0:00:21 (0.0553 000705 0323 00:16:39 D016 O0:00:08 0.001 00:02:18
FlowSOM 0.780" 00:00:41 0.495 00:00:15 0.707* 00:00:19 0.702% 00:02:13 0.447 00:00:08 0.665 00:02:14
FlowSOM_pre 0.502 00:00:35 0.422 00:00:10 0.583 00:00:14 0.528 00:02:08 0.447 00:00:03 0.665 00:01:32
immunoClust 0.413 03:20:51 0.308 02:57:27 0.552 01:35:10 0.523 02:06:40 0.371 00:06:57 0.563 01:51:23
k-means 0.420 00:00:13 0.435 00:00:04 0.650 00:00:05 0.590 00:00:26 0.243 00:00:01 0.103 00:00:11
PhenoGraph 0.563 00:37:00 0.468 00:12:09 0.671 00:05:55 0.653 05:30:35 0.229 00:01:58 0.498 00:43:43
Rclusterpp 0.605 01:13:04 0.465 00:17:54 0.637 00:08:32 0.613 00:14:05 0.360 00:00:17 0.737 02:12:32
SamsSPECTRAL 0.512 04:24:05 0.253 00:24:01 0.263 00:34:42 0.138 00:39:26 0.088 00:01:52 0.618 03:42:28
SPADE NA NA 0.127 00:04:46 0.169 00:03:02 0.130 00:53:39 0.180 00:00:52 0.027 00:12:12
SWIFT 0.177 02:27:39 0.179 01:07:03 0.202 02:19:30 0.208 02:50:08 0.390 00:11:26 0.484 00:34:34
X-shift 0.691 04:45:26 0.470 00:48:17 0.679 00:24:54 0.657 03:48:27 0.531* 00:04:37 0.802° 03:18:20

Results show the mean F1 score for data sets with multiple cell populations of interest, and F1 score for data sets with a single rare cell population of interest; as well as runtimes.
For each data set, the best-performing method is indicated with a star (*), and the top five methods are displayed in bold. Runtimes are not precisely comparable between methods due
to differences in subsampling, number of processor cores, and hardware specifications (Supporting Information Tables 51 and S4); however they are included in order to provide users
with information about order-of-magnitude differences. MA = not available, due to errors or non-completion (Supporting Information Table S1}.

Weber LM, Robinson MD. Cytometry A. 2016 Dec;89(12):1084-1096. PMID: 27992111



Another comparison study

* LiuX, Song W, Wong BY, Zhang T, FlowMeans ot o
Yu S, Lin GN , Dlng X. A (N. clusters) L2A ® ® FlOV‘SOM Phenograph
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FlowSOM:

* Introduced in 2015 (Van Gassen et al.)
* Finds clusters in an unsupervised way

e Software package does clustering and
visualization

* Cluster types can be applied to new cases
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 Computationally fast Ol LI s f,
e Can be run on most computers S I s SR | S
* Widely adopted (cited by >1260 papers) YoYoro) %M
* Disadvantages EOPO® ||

* Might miss very small populations @ED® || "o

e Uses lots of computer memory

Cytometry Pt A, Volume: 87, Issue: 7, Pages: 636-645, First published: 08 January 2015, DOI: (10.1002/cyto.a.22625)



How does FlowSOM work?

Sample_1.fcs J J Sample_s.fcsj

* Creates a self-organizing /
* Compensate and transform L | Makeri | | .. [ Markera |}
I

l I la p (SO M ) Read Input * Concatenate and scale the data Cell 1
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L. Sample 1

* Creates a minimal . Taise
spanning tree graph CISJOIONEI'Y Yor )

d| . Train a self organizing map

g | manual gating | 00“0:00 S®DG 'YeY X )
(mostly for 5 ttt OBPP 00ee
2 e Connect the nodes of the SOM in @ @ @ @ @ 6 . .

a minimal spanning tree
¢ Result comparable to SPADE

visualization)

J

~

* Applies a “consensus
clustering” algorithm to [
1 . clustering 3
organize the nodes into

larger clusters OBDD || %
CICICICHIFRS

N\ / ‘
%®
%G
"

Cytometry Pt A, Volume: 87, Issue: 7, Pages: 636-645, First published: 08 January 2015, DOI: (10.1002/cyto.a.22625)



Generating the self-organizing map (SOM)

* The map consists of “nodes” that are
iteratively moved around until the
clusters of similar cells are mapped
out.

* The number of nodes is chosen to be
greater than the number of real
clusters we expect to find (nodes are
grouped into clusters in the final
step).

* The greater the number of nodes, the
greater the “purity” of cells in a node.

e More nodes are needed to be able to
identify small populations.
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https://en.wikipedia.org/wiki/Self-organizing_map



Plots generated using the
SOMs can give insight into the
heterogeneity of the data

e “Star charts” demonstrate the relative
marker expression intensity of each node.

* Heterogeneity in nodes can prompt
closer inspection (e.g., with standard 2D

plots)

* Other plots are also possible (labels
found by traditional gating, relative
number of cells in each node, etc.)

: B CD19 (PE-Cy5)
Example: a node with NKT cells B CD3 (PE-Cy7)
B TCRyd (APC)
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Low expression for High NK1/1 B NK1/1 (PE)
other markers expression B GFP (FITC)
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, es: 636-645, First published: 08 January 2015, DOI: (10.1002/cyto.a.22625



Another use for SOM nodes data: supervised

machine learning

* Supervised machine learning generally
requires reducing flow data to
population level representations, like
FlowSOM data, that can be passed to a
classifier (CNN, random forest, etc.)

* Examples:

* Identifying B cell neoplasms by machine
learning (Zhao M et al. Cytometry A. 2020
Oct;97(10):1073-1080)

 |dentifying MDS (Duetz C et al. Cytometry
A. 2021 Aug;99(8):814-824.)

tube 1 tube 2
input
size: 3x36
4x4 conv, 32 4x4 conv, 32
3x3 conv, 48 3x3 conv, 48
2x2 conv, 64 2x2 conv, 64
output
size: 3x30
global max pool global max pool
output
size: 3x1
concatenation
output
size: 1x196

fully connected 64

fully connected 32

predictions: 9

tube 3

m

4x4 conv, 32
3x3 conv, 48

2x2 conv, 64

global max pool

Zhao M et al. Cytometry A. 2020 Oct;97(10):1073-1080



Minimal spanning trees provide another way
to visualize how nodes relate to each other

» Nodes that are most like oI 2
one another are linked to GPOQ G M
each other. OEP® o
QOO SO

* Loops are not allowed.



Nodes are grouped into larger clusters (or
“metaclusters”)

One metacluster

* The nodes themselves are
grouped into metaclusters
using a consensus hierarchical
clustering algorithm.

* Marker expression patterns
can be inspected to give names
to clusters (e.g., neutrophil,
eosinophil).

Duetz C et al. Cytometry A. 2021 Aug;99(8):814-824



Practical considerations in
applying FlowSOM

* Optimize the preanalytical variables
* Minimize batch-to-batch variability
* Use calibration controls

* Preprocessing data
* Remove non-viable cells, doublets, etc.
* Apply compensations.
* Transform data using logicle, asinh, etc.
* Have enough (and the right kind of) data to represent the full
range of immunophenotypes
* Consider combining data files from different batches

* Computation is not instantaneous
* Development of a software pipeline or use of a commercial
package can help.
e Consider running the algorithm multiple times.

* Good place to get started: Quintelier K et. Analyzing high-
dimensional cytometry data using FlowSOM. Nat Protoc. 2021
Aug;16(8):3775-3801. PMID: 34172973.




How does one know
the clusters are real?

* Options
Blindl heel : leoritl

e Try multiple clustering algorithms to see
whether the same clusters are
recurrently found

* Try re-running the clustering algorithm
(with a different random number seed)

* Visually inspect the clustering using
standard 2x2 plots

* Apply dimensionality reduction
algorithms to visualize (more to follow)




Dimensionality reduction can help in
visualizing the overall data distribution

* For high-dimensional flow data, this can help us get the big picture without all the 2x2
scatter plots.

* Dimensionality reduction maps the data to a lower dimensionality (usual two-dimensions
for plotting) embedding, manifold, or topology.

* Popular dimensionality reduction algorithms:
* PCA (principal component analysis)
* t-SNE (t-distributed stochastic neighbor embedding)
* UMAP (uniform manifold approximation and projection)

* Dimensionality reduction does not necessary result in clusters.
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van Dongen JJ et al. Leukemia. 2012 Sep;26(9):1908-75. PMID: 22552007.



What is t-SNE?

* Developed in 2008.

* Maps high-dimensional data to clusters in two-
dimensions

 Calculates probability distributions of cells being
close to each other in high-dimensional space.

* |t then tries to distribute cells in 2D space by

moving cells until similar probability distributions
are achieved.

 Dissimilar clusters are (generally) farther apart

* Available in some commercial
flow cytometry software

https://www.oreilly.com/content/an-illustrated-
introduction-to-the-t-sne-algorithm/



UNIFORM MANIFOLD

UMAP VA UMAP

APPROXIMATION & PROJECTION

* Reduces high-dimensional data to two-
d|men5|ona| representathnS Bone marrow involved by CLL

* Better preserves relationships between (86% of cellularity)
cells and clusters

* "Embeddings" can be saved and used 15
again with data from new samples
--> cell populations will show up in the _—
expected locations g s

* Recommended tutorial: https://umap-
learn.readthedocs.io/en/latest/basic usag
e.html ~10 0 10 20



https://umap-learn.readthedocs.io/en/latest/basic_usage.html
https://umap-learn.readthedocs.io/en/latest/basic_usage.html
https://umap-learn.readthedocs.io/en/latest/basic_usage.html

UMAP: Pros and cons

* Pros:

e Can apply the same manifold to
new cases, out-of-the-box

* Canrepresent large-scale
relationships between data
somewhat better than t-SNE

e Cons

* Plots data along a manifold, not
necessarily in clusters
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Example gating using UMAP

e UMAP calculated
using™*:

+ FSC-H NS ’ - :

e SSC-H E .| .y ’ g N § N

* sKappa ““- b 4 o B

* sLambda go — ; g :
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Comparing t-SNE and UMAP
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Basic implementation

Computer on local network looks for new FCS files on -
file server. ]

With new FCS file, run UMAP and clustering

algorithms.

LUMAP _v-4 . LMAP vy

Create new FCS with UMAP and/or t-SNE coordinates '
and cluster labels added as additional channels. sk -]

Compare clustering and embedding/manifold with )
standard software and gating SRR B N NLELELR LRI N
] 0K 100K 150K 200K 260K

UMAP x-A 0 UMAP x




Plotting results of unsupervisea.zlsiaring
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Example application: 18 color flow cytometry
to evaluate T cell subsets

* Your lab has purchased a new 18-color
flow cytometer

* You now want to offer a new T cell panel
(22 antibodies) for immunomonitoring in
clinical trials, and, eventually, clinical
use.

* You would like to be able to parse the
cells into T cell subsets for identification
and quantification

* Minimize subjectivity
* Include the ability to identify unexpected
subsets

Special Order Research Product

* You have decided to employ
computational methods in addition to
traditional gating to help in the analysis.



Additional considerations

Comparing cases

* Combine cases into one data set and create
embeddings | =

* Create embeddings and apply to additional cases
How many cells do | really need?
What kind of computer power do | need?
e Should I hire a data scientist?
* Establish a pipeline

* Additional software packages
e Bioconductor

* Scanpy

d SeU rat b . &L 4 @ | 1 —— e

e pathML .
T e—

* Who will sign the report?



Summary

UMAP projection

* High-dimensional flow cytometry is 200000 - ' Ly . T
becoming more commonplace and . \ '
presents challenges for analysis by
standard gating.
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125000

* Clustering algorithms, like FlowSOM, can 100000 - /
help detect cell clusters in an unsupervised, 75000 1 L
less biased manner. 50000 | .Q )
* Dimensionality reduction algorithms, oo ,
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