
Application of deep learning for better batch 

effect removal allows detection of subtle cellular 
phenotypes from large flow datasets

ACS2024

23/10/2024

Dr. Ben Mashford
(ANU School of Computing & John Curtin School of Medical Research)



Batch effects in flow cytometry

• Batch-related variability in marker intensities are inherent to flow cytometry.

• Some major contributions to these batch-effect induced intensity shifts include: 

• Changes in selection of antibody markers and reagent concentrations

• Operator technique 

• Changes in instrument intensity calibration

• Human operator-defined gates can adjust for this variability, but the process is time-
consuming and potentially prone to bias.

• Batch effects can make it difficult to identify and measure subtle phenotypes.



Batch shifts in flow cytometry data

• We can visualise the batch effect by plotting channel pairs.

• The shifts are non-linear - affecting some cell populations more than others.

• It is important to not ‘over-align’ the samples, which may remove biological signal.

Batch A sample Batch B sample



Batch alignment methods

• There exist a number of algorithms for batch alignment of flow cytometry samples:

1) CytoNorm
2) CytofBatchAdjust
3) (iMUBAC ) Multibatch data integration Casanova
4) CyCombine

• Methods #1 and #2 require inclusion of a technical replicate across batches for comparison 
– very often not possible in real world datasets.

• Success of deep learning is due to ability to generalize over noisy, high-dimensional data - 
demonstrated in: images, video, audio, signal processing.

• We have developed a deep learning batch alignment method. Does not require technical 
replicate. 

• Working to validate it against a range of experimental artifacts.
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Deep learning vs. Machine Learning?
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What can we do with Machine Learning?
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What can we do with Machine Learning?

• Can we use learn the cell marker distributions in an unsupervised manner?
• Can we use a trained ML model to process flow cytometry data for us? 



Autoencoder models for batch alignment

We train an autoencoder to remove batch effects 
from flow cytometry data. We call our model 
‘FlowCoder’.

1. We train a model using Sample A. 

2. Then feed in other samples (e.g. Sample  B or C) 
and reconstruct them.  

3. The reconstructed data is reconstructed using the 
latent space features from Sample A.



Batch alignment experiment

*Experiment designed and performed by Dillon Hammill



Batch normalisation experiment

Antibody Panel 1 Panel 2 Panel 3

CD3 FITC 200 200 300

CD25 PE 400 400 400

CD8 100 400 400

CD44 PacBlue 100 400 400

CD62L BV605 400 600 600

CD19 BV510 600 800 800

IgD PerCP 200 800 800

IgM AF700 100 100 600

NK1.1 APC 200 400 600

Ly6C PECy7 200 200 400

B220 BUV737 300 600 800

CD4 AF700 200 300 600

LD APC Cy7 400 600 800

• Experiments were run using 3 flow 
panels.

• The panels used the same antibody-
marker pairs, but the concentration of 
the marker dye was varied between 
panels.

• Normally, we don’t have ground truth – 
so this ‘synthetic batch effect’ dataset is 
a useful test case for evaluating batch 
normalization algorithms.



Panel 3

Batch alignment results

• FlowCoder outputs a batch-corrected FCS data file – compatible with traditional analysis 
workflows.

Panel 3 sample – batch normalisedPanel 1 sample Panel 3 sample



Batch alignment results
Before alignment (blue=Panel 1, orange = Panel3)

After alignment (blue=Panel 1, orange = Panel3)

• We can use a per-channel histogram to estimate how well the alignment has worked.



High-dimensional alignment metrics

• A UMAP plot projects high dimensional data onto a low dimensional representation

• We compare UMAP plots of the same sample measured across different batches

Sample from Batch A

Sample from Batch B
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• UMAP is a useful visualisation, but we also need a way to quantify batch alignment. We 
need to ensure this metric considers correlations across channel dimensions 



High-dimensional alignment metric

• We generate a matrix of size 3n where n = number of flow channels.
• We then count the number of cells inside each ‘voxel’ within this high-dimensional space – 

phenotype 'signature’.

• We begin by filling the entire marker space with uniform voxels (i.e. n-dimensional gates).

2

2 31

3

2

2 31

3

2

2 31

3



High-dimensional alignment metrics

• We generate a distance heatmap, by looking at absolute difference between all our samples.

• The distance between the same mouse sample (across batches) is reduced in b) and c).



Metrics for batch alignment in high-dimensions

• In this dataset, our ‘FlowCoder’ model is more effective at removing batch effects than other 
methods.



Using batch-alignment on real-world clinical datasets

• We are currently evaluating our ML alignment methods on public datasets.

• Here, we compare the flow 
phenotypes of patients from 
different COVID infection categories.



High-dimensional alignment metrics

• After alignment, we 
project each sample into 
16-dimensional space 
and generate a list of cell 
voxel occupancies.

• Here we illustrate the 
concept, (showing only 3 
of those dimensions).



Stratification of patients by infection severity

• We use a flow sample from a healthy 
volunteer as our reference.

• The Euclidian distance between 2 samples 
(e.g. target - healthy) gives us an 
informative metric.

• Using this method, we see stratification of 
patients - aligns with observed infection 
severity.



Summary

• Batch-alignment models offer new opportunities for comparing data across 
experiments. e.g. More accurate comparison of data from different labs participating 
in a large study?

• Aligned flow data enables automated workflows, such as fixed gate positions - saves 
time and also removes a potential source of bias.

• The known strengths of Deep Learning models (i.e. able to handle large 
dimensionality and their robustness to noise) bring new capabilities to flow 
cytometry analysis.

• We aim to develop an automated pipeline for identifying subtle phenotypes in high 
dimensional flow data.



Thank you for listening

• Thanks to Assoc. Prof. Dan Andrews and all the members of the Andrews group.

• Thanks to Dillon Hammill for supplying synthetic batch effect dataset. 

• Thanks to ANU and JCSMR.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Deep learning vs. Machine Learning?
	Slide 6: What can we do with Machine Learning?
	Slide 7: What can we do with Machine Learning?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

