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Batch effects in flow cytometry

Batch-related variability in marker intensities are inherent to flow cytometry.

Some major contributions to these batch-effect induced intensity shifts include:

* Changes in selection of antibody markers and reagent concentrations
* Operator technique

* Changes in instrument intensity calibration

Human operator-defined gates can adjust for this variability, but the process is time-
consuming and potentially prone to bias.

Batch effects can make it difficult to identify and measure subtle phenotypes.



Batch shifts in flow cytometry data
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* We can visualise the batch effect by plotting channel pairs.
* The shifts are non-linear - affecting some cell populations more than others.

* [tisimportant to not ‘over-align’ the samples, which may remove biological signal.



Batch alignment methods

There exist a number of algorithms for batch alignment of flow cytometry samples:

1) CytoNorm

2) CytofBatchAdjust

3) (iMUBAC ) Multibatch data integration Casanova
4) CyCombine

« Methods #1 and #2 require inclusion of a technical replicate across batches for comparison
— very often not possible in real world datasets.

e Success of deep learning is due to ability to generalize over noisy, high-dimensional data -
demonstrated in: images, video, audio, signal processing.

* We have developed a deep learning batch alignment method. Does not require technical
replicate.

* Working to validate it against a range of experimental artifacts.



Deep learning vs. Machine Learning?
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What can we do with Machine Learning?
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What can we do with Machine Learning?
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* Can we use learn the cell marker distributions in an unsupervised manner?
e Can we use a trained ML model to process flow cytometry data for us?



Autoencoder models for batch alignment
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We train an autoencoder to remove batch effects
from flow cytometry data. We call our model
‘FlowCoder’.

1. We train a model using Sample A.

2. Then feed in other samples (e.g. Sample B or C)
and reconstruct them.

3. The reconstructed data is reconstructed using the
latent space features from Sample A.



Batch alighment experiment
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*Experiment designed and performed by Dillon Hammiill



Batch normalisation experiment

Antibody Panel 1 Panel 2 Panel 3 * Experiments were run using 3 flow
CD3 FITC 200 200 300 panels.
CD25 PE 400 400 400
D8 100 400 400 * The panels used the same antibody-
D44 PacBlue 100 200 200 marker pairs, but the concentration of
pp—— 200 c00 c00 the marker dye was varied between
panels.
CD19 BV510 600 800 800
gD PerCP 200 800 800 « Normally, we don’t have ground truth —
IgM AF700 100 100 600 so this ‘synthetic batch effect’ dataset is
NK1.1 APC 200 400 600 a useful test case for evaluating batch
Ly6C PECy7 200 200 400 normalization algorithms.
B220 BUV737 300 600 800
CD4 AF700 200 300 600
LD APC Cy7 400 600 800
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Batch alignment results
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 FlowCoder outputs a batch-corrected FCS data file — compatible with traditional analysis

workflows.
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Batch alignment results

Before alignment (blue=Panel 1, orange = Panel3)
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After alignment (blue=Panel 1, orange = Panel3)
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* We can use a per-channel histogram to estimate how well the alignment has worked.



High-dimensional alighment metrics

« A UMAP plot projects high dimensional data onto a low dimensional representation

 We compare UMAP plots of the same sample measured across different batches

Before alignment After alignment

B Sample from Batch A
B Sample from Batch B

UMAP Dimension 2

UMAP Dimension 1

« UMAP is a useful visualisation, but we also need a way to quantify batch alignment. We
need to ensure this metric considers correlations across channel dimensions
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High-dimensional alighment metric

* We begin by filling the entire marker space with uniform voxels (i.e. n-dimensional gates).
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We generate a matrix of size 3" where n = number of flow channels.

We then count the number of cells inside each ‘voxel” within this high-dimensional space —

phenotype 'signature’.
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High-dimensional alighment metrics

 We generate a distance heatmap, by looking at absolute difference between all our samples.

a) Without normalisation b) CyCombine normalised c) FlowCoder normalised
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 The distance between the same mouse sample (across batches) is reduced in b) and c).



Metrics for batch alignment in high-dimensions

a) Without normalisation b) CyCombine normalised c) FlowCoder normalised

= Mouse 1

Mousa 1- Mouse ]

Mouse 2 Mouse 2 - Mouse 2

Batch A | mouses Mouse 3 Mouse 3
Mouse 4 Mouse 4 Mouse 4

b Mouse 5 Mousa 5 Mouse 5

— Mouse 1 " 8 Mouse 1- Mause 1

Mouse 2 E Mouse 2 Mouse 2

BatCh B | mMouses N % Mouse 3 Mouse 3
Mouse 4 o Mouse 4 Mouse 4

= Mouse 5 - E. Mouse 5 Mouse 5

— Mouse 1 Ul?.l Mouse 1 Mouse 1

Mouse 2 N Mouse 2 Mouse 2

BﬂtCh C Mouse 3 Mouse 3 - Mouse 3
Mouse 4 Mouse 4 Mouse 4

— Mouse 5 Mouse 5 Maouse 5

= = N m on S o T 1 T oo O O o Y ot T S " o T B o B Lt B o

(iR @ [:T] /7 @ [ L ] 7 a [:1] V] @ @ @ 4
R I R - = N B S S T b T T B B T - S N T T A T
= = =2 = = = 3 3 = = =] > 3 3 3 =) 3 3 3 3 3
L= 2 [=} =, = L=} (=] = o (=] =] = L=} =} [=} (=] = =] =, =
= E = E E = £ £ E E T O EEEZ E E ZE E

* In this dataset, our ‘FlowCoder’ model is more effective at removing batch effects than other
methods.



Using batch-alignment on real-world clinical datasets

 We are currently evaluating our ML alignment methods on public datasets.

Cell
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High-dimensional alighment metrics

e After alignment, we
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Stratification of patients by infection severity
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Summary

e Batch-alignment models offer new opportunities for comparing data across
experiments. e.g. More accurate comparison of data from different labs participating
in a large study?

* Aligned flow data enables automated workflows, such as fixed gate positions - saves
time and also removes a potential source of bias.

* The known strengths of Deep Learning models (i.e. able to handle large
dimensionality and their robustness to noise) bring new capabilities to flow
cytometry analysis.

 We aim to develop an automated pipeline for identifying subtle phenotypes in high
dimensional flow data.



Thank you for listening

* Thanks to Assoc. Prof. Dan Andrews and all the members of the Andrews group.
* Thanks to Dillon Hammill for supplying synthetic batch effect dataset.

e Thanks to ANU and JCSMR.
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