

20-

Multiple myeloma: Diagnosis, Prognosis and Monitoring by Imaging Flow Cytometry

A/Prof Kathy Fuller

UWA School of Biomedical Sciences

Translational Cancer Pathology Laboratory

Disclosures

Patents: "Improvements in or relating to cell analysis" (WO/2019/079851) (PCT/AU2018/051148)

- Australia (Standard) Patent AU2018355889
- Japan (Standard) Patent JP2020524028
- USA (Standard) Patent US20200232019
- Europe (Standard) Patent EP2018870567

Research Collaborations:

- Amnis (since 2019)
 - Agreement loan instrument and Technology exchange
- > Cytek Biosciences
- Luminex Corporation (complete)
- Sysmex Corporation / FAJS (complete)

Assessment of blood cancers

Morphology

Genetics

t(15;17)(q22;q12)

FISH: Dual fusion

Phenotyping

CD9, CD13, CD33, CD117 pos; CD34, HLA-DR neg

381 bp 376 bp 345 bp

Slide courtesy Prof Wendy Erber

Cytek Amnis ImageStreamX mkll

A technique that combines the high-throughput power of flow cytometry with the cellular localisation information provided by immunofluorescence microscopy.

AMNIS ImageStreamX mkll

- 5 excitation lasers, 10 fluorescent parameters (including scatter) and brightfield
- Imaging at 20x, 40x, 60x magnification with extended depth of field (EDF)

ISXmkII: magnification and EDF

"Multimag"

Select the magnification in relation to the size of the cell of interest and the level of resolution required for image analysis

- 20x: 120 μm wide, 8 μm depth of field
- 40x: 60 µm wide, 4 µm depth of field
- 60x: 40 µm wide, 2.5 µm depth of field

Extended Depth of Field (EDF)

Enables accurate spot count analysis

No EDF

With EDF

Time delay integration (TDI)

TDI CCD

- Excite fluorescence over the entire height of the detector
- Light is detected in the first pixel row and transferred to the pixel below in exact synchrony with the velocity of the cell as it goes streaming by
- Light is integrated over the entire height of the detector to achieve high photonic sensitivity
- Images don't streak or blur and maintain 0.5um per pixel resolution

File Edit View Window Help	Z_P	RESEN~1_Graphics_ANIMAT~1_TD5D	1D~1[1].MOV	
Laser	Core	CCD	Image Database	
	•			

IDEAS analysis – the best of both worlds

Image analysis using masks

Flow cytometry gate strategy

Feature calculations

1e6

4

IDEAS analysis – the best of both worlds

А

Single cells Sytox AADvanced+ (diploid cells) Q 0.8 In-focus 0.2 20 40 60 80 100 0 1e3 1e4 1e5 500 1e3 1.5e3 2e3 Gradient RMS_M01_Brightfield Sytox AADvanced intensity Area_M01 **D** _{1e7} E F CD19-BV480 intensity 162 163 164 163 164 CD19+ B-cells 70 -70 CD19- CD3+ T-cells CD19+ CD3- B-cells 60 -60 -2-spot 2-spot 50 -50 e 40 -[€] 40 -30 -§ 30 -1-spo 1-sp CD3+ T-cell E 20 -E 20 -3-500 10 --1e4 -1e4 -1e30 1e3 1e4 1e5 1e6 1e7 2 3 4 5 2 3 0 1 Vysis CEP12-SO spot count CD3-AF647 intensity Vysis CEP12-SO spot count (560-595nm) (560-595nm) G Vysis CEP12 Sytox AADvanced CD19-BV480

В

С

Image analysis using masks

Flow cytometry gate strategy

> Feature calculations

IDEAS analysis – the best of both worlds

Image analysis using masks

Flow cytometry gate strategy

Feature calculations

IDEAS analysis – the best of both worlds

Image analysis using masks

Flow cytometry gate strategy

Feature calculations

Immuno-flowFISH

	Brightfield	CD19-BB515	Vysis CEP1	Hoechst	CD3-AF647	Overlay
306						
789	Ø		<u>_</u>	$\langle Q \rangle$	0	٨
	0	*		۲		

Chronic lymphocytic leukaemia (CLL) +12

Sytox ADDvanced CD5-BB515 Brightfield Vysis CEP12 CD19-BV480 CD3-AF647 Overlay 259 ۲ \mathcal{O} • • Sytox ADDvanced Brightfield CD5-BB515 Overlay Vysis CEP12 CD19-BV480 CD3-AF647 4419 Brightfield Vysis CEP12 Sytox ADDvanced CD19-BV480 CD3-AF647 CD5-BB515 Overlay 1851 6 5 6 <u>C</u>:: . Sytox ADDvanced CD5-BB515 Overlay Brightfield Vysis CEP12 CD19-BV480 CD3-AF647 1828 ۰. Brightfield Vysis CEP12 Sytox ADDvanced CD19-BV480 CD3-AF647 CD5-BB515 Overlay 6201 14 - 1

CD3 CD5 CD19 antibodies, CEP12 FISH probe

45% CD19+CD5+ CLL cells with +12

Hui et al. *Methods* 2018

FISH probe "spot count" accuracy

Analysis: Peak mask (Bright 17.5) for Vysis CEP12-SpectrumOrange probe fluorescence and Spot Count feature calculation

CD3+CD5+ T cells

1-spot

-1 0 1

2

3

10

CD19+CD5+ CLL

Brightfield 1843	Vysis CEP12	Sytox ADDvanced	CD19-BV480	CD3-AF647	CD5-BB515	Overlay
8	4	0	\bigcirc		0	۲
Brightfield	Vysis CEP12	Sytox ADDvanced	CD19-BV480	CD3-AF647	CD5-BB515	Overlay
Cee	<u>t</u> :	di:	0		(j)	6

Hui et al. Methods 2018

Multiple myeloma

Plasma cell neoplasm in the bone marrow Clonal expansion of terminally differentiated B-cells Disseminated with circulating disease

Primary abnormalities

- Trisomies (odd numbered chromosomes)
- Translocations of the *IgH* locus (14q32)

Secondary abnormalities

• Amplification and deletions

Risk Category	Cytogenetic Abnormalities
Standard Risk	Trisomy 3, 5, 7, 9, 11, 15 ,19, 21 t(6;14); t(11;14)
High Risk	t(4;14); t(14;16); t(14;20) del(17p); amp(1q21)

Grzasko et al. Haematol Oncol 2013

Immuno-flowFISH myeloma study

Aim of this study was to determine whether primary and secondary chromosomal abnormalities could be detected by "immuno-flowFISH"

- Primary and secondary abnormalities in bone marrow
- Secondary alterations (gain(1q) and del(17p)) could be detected in rare circulating plasma cells

Method

- > 100 bone marrow (BM) or blood (PB) samples from 67 myeloma patients
- Red cell lysis (BM) or Ficoll mononuclear cell separation (PB)
- Immunophenotyped with CD3-BV510, CD19-BV480, CD38-AF647, CD138-AF647, CD319-AF647
- Nuclei stained with SytoxAADvanced

Bone marrow: primary and secondary abnormalities

Erber at al. Journal of Human Genetics 2023

Bone marrow: t(11;14) *IGH::MYEOV* translocation

CD138 CD38 antibodies, t(11;14)(q13;q32) IGH-MYEOV dual fusion probe

1R1G2F balanced translocation

Bone marrow: t(4;14) *IGH::FGFR3* translocation

CD138 CD38 antibodies, t(4;14)(q13;q32) *IGH-FGFR3* dual fusion probe

A **2R3G0F** trisomy 14 B **1R1G2F** balanced translocation

Hui at al. Journal of Clinical Pathology 2023

Bone marrow: del(17p)

CD138 CD38 antibodies, C17, 17p12 probes

A 14 del(17p) B monosomy 17 C trisomy 17

Mincherton at al. International Journal of Laboratory Hematology 2024

Summary

Bone marrow

- Primary and secondary abnormalities were detectable in BM of multiple myeloma
- Hyperdiploidy: most common abnormality was trisomy of chromosomes 5, 9, and 15
- IGH::FGFR3 and IGH::MYEOV translocations were detected: balanced and unbalanced
- Chromosome 1: most common abnormality was 3 FISH spots with the 1q21 locus probe, indicating trisomy 1 or gain(1q)
- Chromosome 17: one 17p FISH signal and two for C17 or del(17p); one FISH spot for both 17p and C17 probes (monosomy 17); three for both 17p13 and C17 (trisomy 17); and 1 or 2 copies of 17p and 4 for C17 (possible tetrasomy 17 with concurrent del(17p))

Blood

- Circulating plasma cells were present in all samples tested
- Plasma cells comprised 0.01- 0.55% of cells
- Secondary abnormalities detected included "dual hit" with gain(1q21) and del(17p) in separate cells and in 1 case within the same cell

Acknowledgements

Multiple myeloma patients

Prof Wendy Erber, Dr Henry Hui, Dr Stephanie Lam, Dr Hun Chuah, Dr Hasib Sidiqi, Dr Jacques Malherbe, Dr Jason Stanley, Tom Mincherton, Sarah Clarke, Matthew Harms, James McQuillan

Haematologists at Sir Charles Gairdner Hospital, Royal Perth Hospital, Fiona Stanley Hospital, Hollywood Private Hospital and PathWest Laboratory Medicine

