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Background and aims. Traditional ionizable lipid screening for mRNA lipid nanoparticles (mRNA-LNPs) relies on resource-intensive trial-and-error experiments. While machine learning approaches have offered promise in accelerating the development of mRNA-LNPs, their applications are limited by small datasets.

Methods. To address the challenges posed by limited data, we developed FormulationLNP, a model integrating a chemical language model with multi-task learning to predict two key properties of mRNA-LNPs: the in vivo delivery efficiency and apparent pKa. For model development, we constructed the largest ionizable lipid structure dataset to date (~16,000 lipids) and compiled datasets for both target properties (Figure 1A). An ionizable lipid-tailored chemical language model was pre-trained with SMILES enumeration to learn comprehensive lipid representations (Figure 1B). Given the strong correlation between apparent pKa and in vivo delivery efficiency (1), a multi-task learning architecture was implemented to simultaneously fine-tune both prediction tasks (Figure 1C). 

	
	
	In vivo delivery efficiency
	
	Apparent pKa

	Model
	
	ROC-AUC
	
	ROC-AUC

	LightGBM-RDKit
	
	0.855±0.027
	
	0.856±0.054

	DNN-ECFP6
	
	0.852±0.033
	
	0.855±0.038

	[bookmark: _Hlk182917078]AttentiveFP
	
	0.794±0.023
	
	0.680±0.129

	ChemBERTa
	
	0.837±0.038
	
	0.819±0.038

	FormulationLNP (Ours)
	
	0.862±0.037
	
	0.867±0.032


[image: ]Results. FormulationLNP, trained with 5-fold data augmentation, showed excellent performance across 10 repeated experiments. It achieved ROC-AUC scores of 0.862±0.037 and 0.867±0.032 for in vivo delivery efficiency and apparent pKa, respectively, outperforming other baseline models (Table 1). Ablation studies revealed that pre-training contributed the most to model performance, while multi-task learning enhanced predictions for both tasks simultaneously. The model also exhibited strong generalization capability, achieving predictive accuracies of 0.882 and 0.758 on external test sets for in vivo delivery efficiency and apparent pKa, respectively. Furthermore, key ionizable lipid substructures associated with in vivo behavior were identified, offering valuable insights for rational ionizable lipid design.



Figure 1. The workflow of this study.
Table 1. Comparisons of models developed by different algorithms.


Conclusion. In conclusion, by integrating pre-training, data augmentation and multi-task learning, FormulationLNP effectively addressed the challenge of small mRNA-LNP datasets. This approach provides a powerful tool for predicting the in vivo behavior of mRNA-LNPs and will greatly accelerate the design and optimization of LNP delivery systems.

References: (1) Patel P., Ibrahim NM., Cheng K. Trends Pharmacol Sci. 2021:448–60.
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