Impact of structural difference in Fructans from *Polygonatum cyrtonema* on anti-inflammatory activity

Qin Yuan^{a,b,1}, Wen Liu^{a,b,1}, Huakai Wu^c, Hongyi Li^{a,b}, Yi Chen^{a,b}, Mingju Shui^a, Yi Ding^d, Ding-Tao Wu^{e,*}, Shengpeng Wang^{a,b,*}

^a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China

^b Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China

^c Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd, Zhangzhou 363000, China

Emangenoù 1 ien 12e 11aang 1 narmaeeanear eo. Eia, Emangenoù 505000, enr

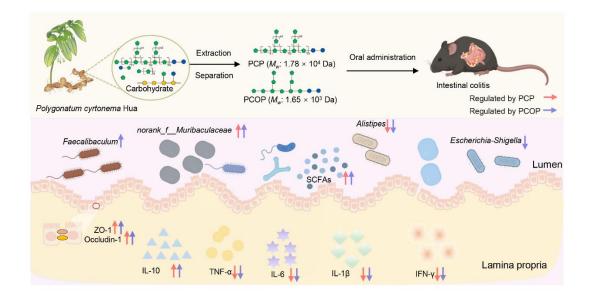
^d Guangzhou Institute for Drug Control, Guangzhou 510160, China

^e Institute for Advanced Study, Chengdu University, Chengdu 610106, China

*Corresponding authors:

E-mail address: wudingtao@cdu.edu.cn (D.T. Wu); swang@um.edu.mo (S. Wang)

¹These authors contributed equally to this work.


Introduction: Polysaccharides are recognized as the major active ingredients in *Polygonatum cyrtonema* Hua and possess diverse benefits.

Objectives: In this study, we aimed to investigate the structure-activity relationship of *Polygonatum cyrtonema* polysaccharides (PCP) and oligosaccharides (PCOP).

Methods: The structures of PCP and PCOP were characterized through molecular weight detection, molecular morphology, methylation analysis, and NMR analysis. Subsequently, we employed a DSS-induced colitis model and *Caenorhabditis elegans* (*C. elegans*) model to assess the anti-inflammatory efficacy of PCP and PCOP.

Results and Discussion: PCP and PCOP showed similar glycosidic linkages, consisting of a \rightarrow 1)- β -Fruf(2 \rightarrow residue backbone. However, they differed significantly in molecular weight, with PCP at 1.78 × 10⁴ Da and PCOP at 1.65 × 10³ Da. Our findings showed that PCP and PCOP could protect the intestinal barrier and regulate short-chain fatty acid levels. Notably, PCOP effectively alleviated colitis symptoms and regulated the inflammatory factors better than PCP. Additionally, PCOP also increased the relative abundance of *Faecalibaculum* apart from the *norank_f_Muribaculaceae* in colitis mice compared to PCP. Overall, these results suggest that the molecular weight of PCP and PCOP significantly affect their

anti-inflammatory effects, providing a foundation for the development and application of *Polygonatum cyrtonema* glycans as therapeutics or functional foods.

