

Introduction to Artificial Intelligence for CyberSecurity Applications

Rob Collins
Director – Sales Engineering, APAC

GLOSSARY

- k-means simple clustering algorithm
- DBSCAN more advanced clustering algorithm
- NB Naïve Bayes classifier model
- GMM Gaussian Mixture Model clustering algorithm
- LSTM Long Short-Term Memory Neural Network algorithm
- CNN Convolutional Neural Network
- RNN Recurrent Neural Network
- LR Logistic Regression classifier
- DT Decision Tree

MACHINE LEARNING IS A FIELD OF STUDY THAT GIVES COMPUTERS THE ABILITY TO LEARN WITHOUT EXPLICITLY BEING PROGRAMMED

- Arthur Samuel, 1959

MACHINE LEARNING WILL BE EVERYWHERE

MACHINE LEARNING WILL BE EVERYWHERE

The trend to incorporate ML capabilities into new and existing security products will continue apace. According to an April 2016 Gartner report:

- By 2018, 25% of security products used for detection will have some form of machine learning built into them.
- By 2018, prescriptive analytics will be deployed in at least 10% of UEBA products to automate response to incidents, up from zero today.

TWO THINGS CAME TOGETHER TO ENABLE AI

Big Data

 Large collections of Spam, malware, exploits, network traffic, user behaviors

Cloud Computing Power

 Possible to consume over 100,000 CPU/GPU cores

SUPERVISED

SUPERVISED PROCESS

NEURAL NETWORK

 Works like a human brain – useful connections remain, others dropped

Visualization: Mark Borg

5 GENERATIONS OF ML FOR CYBERSECURITY OARPA

Generational Factors

- Runtime
- Features
- Datasets
- **Human Interaction**
- · Goodness of Fit

DARPA's Three Al Waves:

DESCRIBE

CATEGORIZE

EXPLAIN

- R: Cloud training / local prediction
- F: Medium features (~100,000)
- D: Medium samples (~100M)
- D: Mostly human labeled / some heuristic
- H: Largely uninterpretable
- G: Misleading FP rate / Overfit

- R: Models learn from local training
- F: Large features (>3M)
- D: Online learning
- H: Model explains strategy & gets feedback
- G: Model fits current and future inputs

- R: Cloud only training / prediction
- F: Small features (~1,000)
- D: Small samples (~1M)
- D: Hand picked and human labeled
- H: Easily interpretable
- G: High FPs / Underfit / Easy to bypass

- R: Cloud enhanced models
- F: Large features (~3M)
- D: Large samples (~1B)
- D: Largely heuristic labeled
- H: Some interpretability with visualization
- G: Fit appropriately / accuracy metrics generalize

- R: Unsupervised local training
- F: Unlimited with semi-supervised discovery and data collection
- D: Active learning
- H: Human input optional
- G: Model identifies and adapts to concept drift

QUESTIONS — AND — ANSWERS

