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k-means — simple clustering algorithm

DBSCAN — more advanced clustering algorithm

NB — Naive Bayes classifier model

GMM — Gaussian Mixture Model clustering algorithm

LSTM — Long Short-Term Memory Neural Network algorithm
CNN - Convolutional Neural Network

RNN — Recurrent Neural Network

LR — Logistic Regression classifier

DT — Decision Tree
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MACHINE LEARNING IS A

FIELD OF STUDY THAT

GIVES COMPUTERS THE . :

ABILITY TO LEARN . ’ = '
WITHOUT EXPLICITLY ‘ | | | ‘
BEING PROGRAMMED :

- Arthur Samuel, 1959
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MACHINE LEARNING WILL BE EVERYWHERE
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The trend to incorporate ML capabilities into new and existing security
products will continue apace. According to an April 2016 Gartner
report:

By 2018, 25% of security products used for detection will have some form of
machine learning built into them.

By 2018, prescriptive analytics will be deployed in at least 10% of UEBA products to
automate response to incidents, up from zero today.

Gartner Core Security, The Fast-Evolving State of Security Analytics, April, 2016, Report ID: G00298030 accessed
at https://hs.coresecurity.com/gartnerreprint-2017
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- Big Data
- Large collections of Spam, malware,

= Cloud Computing Power

- Possible to consume over
100,000 CPU/GPU cores
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Labels + human training
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NEURAL NETWORK

- Works like a human brain — useful connections
remain, others dropped
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‘Eye roundness’?
‘pupil roundness’?

‘Ears hanging?’

‘Tongue visible’?
‘Tongue width’?
‘Tongue length’?

‘Nostrils open’?
‘Nostrils size’?




‘Ears hanging’ = 0.0

‘Eye roundness’ = 0.5
‘pupil roundness’ = 0.1

‘Ears hanging’ = 0.1

‘Eye roundness’ = 0.
‘pupil roundness’ = 0.

‘Nostrils open’ = 0.2
‘Nostrils size’ = 0.1
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‘Tongue length’ = 0.4 ‘Tongue length’ = 0.0
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5 GENERATIONS OF ML FOR CYBERSECURITY ([.:;N

Generational Factors

Runtime
Features

Datasets R: Cloud training / local prediction

Human Interaction
Goodness of Fit

F: Medium features (~100,000)

D: Medium samples (~100M)

D: Mostly human labeled / some heuristic
H: Largely uninterpretable

G: Misleading FP rate / Overfit

R: Models learn from local training
F: Large features (>3M)
D: Online learning

NEFFMER ADMARCED
HESE&HGH FHEGTY RMIERGY

H: Model explains strategy & gets feedback

G: Model fits current and future inputs

RO RO

R: Cloud only training / prediction

F: Small features (~1,000)

D: Small samples (~1M)

D: Hand picked and human labeled

H: Easily interpretable

G: High FPs / Underfit / Easy to bypass
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R: Cloud enhanced models

F: Large features (~3M)

D: Large samples (~1B)

D: Largely heuristic labeled

H: Some interpretability with visualization
G: Fit appropriately / accuracy metrics
generalize

R: Unsupervised local training

F: Unlimited with semi-supervised
discovery and data collection

D: Active learning

H: Human input optional

G: Model identifies and adapts to
concept drift









