

Fib Symposium 2024 Draft Programme as at 18.10.24

Te Pae Christchurch Convention Centre

	SATURDAY 11 NOVEMBER
08.30 -	Pagistration onen
17.00	Registration open

	SUNDAY 10 NOVEMBER					
08.00 - 19.00	Registration open					
12.30 - 17.00	Pre-Symposium Seminar: Design of Seismic Resilient Concrete Buildings Presenter: Rick Henry RSVP only					
17.30	Icebreaker Reception in the Exhibition Area					

	MONDAY 11 NOVEMBER					
08.00 - 18.00	Registration & Exhibition onen					
08.30	Mihi Whakatau & Opening					
	Keynote Session					
09.30	Keynote 1 fib Model Code 2020: Empowering Sustainable Concrete Solutions with Future-Oriented Standards Agnieszka Bigaj-van Vliet					
10.15	Keynote 2 Design, implementation and monitoring of TMD in Shanghai Center Tower under wind loading Xilin Lu					

11.00	Morning Tea in the Exhibition Area					
	Plenary Session					
11.30	Invited Speaker 1 Future Directions in Seismic Des	sign, Assessment, and Construction	Practices: Insights from the Feb	ruary 2023 Türkiye Earthquake Seque	ence	
12.00	Invited Speaker 2 Recent achievements and future specifications for concrete struct Takumi Shimomura		nodel code for concrete structu	res in civil engineering field: introduct	tion of JSCE standard	
12.30	Lunch in the Exhibition Area					
	1A Special Session: Alternative binder systems and novel processing technologies	1B Special Session: Lessons from The 2023 Pazarcik-Elbistan (Turkey) Earthquake Sequence	1C Special Session: NDT/SHM as basis for the condition assessment for reinforced concrete structures	1D New and innovative structural designs	Monitor Presentations The detailed presentation schedule is at the end of the daily programme	
13.30 13.45	O1A.1 Alternatives to Portland cement – can we benefit both the environment and human development? John Provis	(13.30) O1B.1 Outline of field investigation results by the Turkey-Japan joint reconnaissance team Koichi Kusunoki	O1C.1 Assessment of reinforced concrete structures: Exploring the Reliability of NDT/SHM Professor Sylvia Keßler O1C.2 Unmasking Structural	O1D.1 Lightweight Hollow Core Carbon Reinforced Slab System Steffen Marx O1D.2 Implementation of	13.30 – 14.30 M1.1E Novel Concrete M1.1F Strengthening and Repair	
		(13.47) O1B.2 Seismic performance and damage level evaluated with	Health: A Bold Exploration into the Uncharted Realms of Reliability Assessment in SHM Daniel Kanzler	Functionally Graded Concrete (FGC) in New Zealand: Proof of Concept Tests Jade Matravers & Tony Xie	M1.1G Projects and construction	
14.00	O1A.2 The future of cement - the next steps and visions for the future Horst-Michael Ludwig	Japanese standards of RC buildings damaged by the 2023 Turkey Earthquake Seitaro Tajiri (14.04) O1B.3 Collapse of Reinforced	O1C.3 Proof-of-Concept of a Bayesian Updating Approach for Corrosion Degrees on the Basis of Crack Measurements Constantijn Martens	O1D.3 Crack development in non- metallic textile-reinforced concrete members under cyclic loading with regard to serviceability Martin Classen		
14.15	O1A.3 Alternate pathways to decarbonize cement & concrete industry Vineet Shah	Concrete Buildings - Implications from the 2023 Turkey Earthquakes Halil Sezen	O1C.4 Integrated sustainability and quality assurance concepts for subway constructions based on inspection and monitoring Christian Grosse	O1D.4 Assessment on Concrete Structure Environmental Performance Potential (CSEPP) of Ultra High Performance Concrete Composite Bridges Hui Teng Ng		

14.30	O1A.4 Transforming Gold	(14.21)	O1C.5 Detection of damages	O1D.5 CO₂ savings through	14.30 – 15.30
	Mine Tailings into Sustainable	O1B.4 Analyzing Ground Motion	in prestressed concrete	individual void formers in concrete	M1.2E UHPC
	Concrete Kushal Ghosh	Data for Building Damage	structures using distributed	slabs Patrick Forman	
		Potential Ayhan Irfanoglu	fiber optic sensors Agnieszka		M1.2F Precast concrete
			Wiater		
14.45	O1A.5 The potential for	(14.38)	O1C.6 Evaluation of air	O1D.6 Experimental study on the	M1.2G Structural
	utilising locally available	O1B.5 The Lack of Robustness of	coupled impact-echo for the	flexural behavior of steel-tubed	performance
	kaolinitic clays in low-carbon	Buildings in Turkey and New	non destructive monitoring	reinforced ultra-high strength	
	MgO-based binder systems	Zealand Santiago Pujol	of concrete structures	concrete columns Nobuaki Hirata	
	Banujan Balaskandan	(14.55)	Aurélia Muller		
15.00	O1A.6 Development of	O1B.6 Non-interacting masonry	O1C.7 Detecting Non-Visible	O1D.7 Study on mechanical	
	geopolymer systems using		Tendon Breaks – A New	properties of a new joint with	
	thermally treated bauxite	infills as a solution for improving	Approach Using Coda Wave	concrete-filled steel tube keys	
	tailings and rice husk ash	the seismic behavior of infilled	Interferometry Noah Sträter	between shear walls and coupling	
	Taehwan Kim	RC frames: Experimental results		beams Zhijun Zhou	
15.15	O1A.7 Strength Development	Marko Marinkovic	O1C.8 Intelligent wall-		
	of Geopolymer Mortar	(15.12)	climbing robot with stereo		
	Incorporating Waste Clay	O1B.7 Expected Cost of the	camera for real-time and	O1D.8 Rethinking the seismic	
	Brick Powder Shaila Sharmin	Improved Seismic Resilience	high-accuracy concrete crack	design of RC buildings for	
		Based on the Data from 2023	inspection Bing Xiong	improved post-earthquake	
		Kahramanmaraş Earthquakes		reparability Timothy Sullivan	
		Cemalettin Donmez			
15.30	Afternoon Tea in the Exhibition	Area			
	2A Special Session: Nonlinear	2B Special Session: Structural	2C Special Session: Using	2D Structural health monitoring	Monitor Presentations
	modeling, seismic	Engineering of 3D concrete	natural resources as a		The detailed presentation
	assessment, and	printed elements: status and	cement replacement for a		schedule is at the end of the
	rehabilitation of reinforced	future challenges	lower carbon concrete		daily programme
	concrete structures (part 1)				16.00 – 17.00
16.00	(16.00-16.17)	O2B.1 Sustainable Resilience for	O2C.1 Natural pozzolans in	O2D.1 Prestressed Members	M2.1E Structural testing
	O2A.1 Seismic Evaluation of	3D Concrete Printed Homes in	Germany Christopher	Subjected to Prestressing Analysis	
	Building Inventories using AI,	New Zealand: a three years	Hoffmann	Using Stress Release Technique	M2.1F Concrete mixes
	HAZUS, and Shakecast Insung	research government funding		Jakub Kralovanec	
	Kim	overview Giuseppe Loporcaro			M2.1G Alternative reinforcing
16.15	/·	O2B.2 A structural engineering	O2C.2 Pilot Study on Natural	O2D.2 Experimental investigation	
	(16.17-16.34)	perspective on extrusion-based	Pozzolans as Cement	using an innovative wireless	
	O2A.2 Evaluation of	3D concrete printing: from green	Replacements for Low-	sensor technique to measure	
	performance metrics for	to solid state Jacques Kruger	Carbon Concrete Kavishan	concrete strains in situ and in real	
	seismic assessment of RC		Ranatunga & Enrique del Rey	time Giorgio Mattarollo & Norbert	
	Frames Adolfo Matamoros		Castillo	Randl	

16.45	(16.34 - 16.51) O2A.3 Evaluation of ASCE/SEI 41 procedures for assessing the seismic vulnerability of an earthquake-damaged reinforced concrete wall building Laura Lowes (16.51-17.08)	O2B.3 Current Developments in the Application of Extrusion-based 3D Concrete Printing Pathmanathan Rajeev O2B.4 Seismic Performance of Large-Scale 3D Printed Concrete Panels: An Experimental and Analytical Study Costantino Menna	O2C.3 Low-Carbon Concrete with New Zealand Pozzolans Cameron Woods O2C.4 Classification and Quantification of Pore Structure of Hempcrete Haemin Song	O2D.3 openLAB – A large-scale demonstrator for advancing digital twin developments of bridges Steffen Marx O2D.4 Exploring Bridge Structural Response similarities: Data-Driven SHM Through MEMS Clinometer Clustering over a Network of 25+ Reinforced Concrete Bridges	
17.00	O2A.4 Non-linear dynamic analysis of an infilled RC building for increasing seismic hazard levels Samantha Lisetto (17.08 – 17.25) O2A.5 Experimental	O2B.5 Analytical investigation on the structural performance of RC column with 3D-printed concrete permanent formwork <i>Tarek Sabra</i>	O2C.5 Development of wood-geopolymer composites for masonry units: Effect of alkaline solution ratio and wood type Firesenay Zerabruk Gigar	Monica Longo O2D.5 Maximizing Predictive Maintenance Efficiency across Extensive Infrastructure Networks: Optimized Approaches Integrating Model-driven and Data-driven Solutions in Practical Applications Paola Darò	17.00 – 18.00 M2.2E Sustainable design M2.2F Design codes M2.2G Structural health
17.15	Assessment of Large-Scale Anchored FRP-Strengthened RC Shear Controlled Walls Subjected to Cyclic Loads Aniket Borwankar	O2B.6 The Contribution Of 3d Printed Lost Formworks to the Compressive Capacity Of Structural Columns Luis De La Flor Juncal	O2C.6 Strength and Permeability of Concrete using Lithium Slag as a Supplementary Cementitious Materials Md Tanvir Ehsan Amin	O2D.6 Vibration-Based Damage Detection in a Reinforced Concrete Plane Member Using a Small Exciter Seiji Nagata	monitoring
17.30	(17.25- 17.42) O2A.6 Calibration of ACI 369.1-22 model using the nonlinear three-dimensional simulation of instrumented RC structure Adolfo Matamoros	O2B.7 A Rapid Reinforcement Technique using FRP and Steel Wire Mesh in 3D Printed ECC Beams Manfang Lin	O2C.7 High-Temperature Fracture Behaviour Of One- part Geopolymer Incorporating Lead Smelter Slag and Steel Fibre: Digital Image Correlation (DIC) Analysis Nghia Tran	O2D.7 Health Monitoring During Construction of Century Pavilion in 10th China Flower Expo Zhisheng Wei	
17.45	(17.42 – 18.00) O2A.7 Seismic assessment and nonlinear modeling of corroded concrete buildings Eyitayo Opabola	O2B.8 TBC Nick Lane		O2D.8 Advancements in Digital Twin Development for Bridges in Germany Steffen Marx	
	18.15 – 19.30 Early Career Networking Event	18.15 – 20. Net Zero R	.00 oadmap Session	17.30 – 20.00 Universit Engineering Lab Tour	y of Canterbury Structural

	TUESDAY 12 NOVEMBER						
08.00- 17.30	Registration & Exhibition open						
	Keynote & Plenary Session						
08.30	Keynote 3 In-the-field Experiences and Recoutcomes Des Bull	In-the-field Experiences and Research into the Development of Seismic Design Requirements of Concrete Structures in New Zealand: drivers, expectations, and outcomes					
09.15	Preserving the Past, Securing the Adam Thornton	e Future: The Seismic Retrofit of Te	Matapihi - Wellington Central L	ibrary			
09.35	Enhanced Seismic Resilience: A Brandon McHaffie	Pathway to the Wider Implementa	tion of Dissipative Controlled Ro	ocking in Bridges			
10.00	Morning Tea in the Exhibition A	rea					
	3A Special Session: Nonlinear modeling, seismic assessment, and rehabilitation of reinforced concrete structures (part 2)	3B Special Session: Decarbonisation of the Built Environment	3C Special Session: Seismic strengthening of concrete diaphragms	3D Special Session: Performance Evolution and Control of Concrete Structures	3E Corrosion and impact on structural performance		
10.30	O3A.1 Effects of Loading History on the Behavior of Reinforced Concrete Columns Adolfo Matamoros	O3B.1 Government Action Nick Leggett	O3C.1 Recent progress on seismic strengthening of concrete diaphragms with FRP ties Enrique Del Rey Castillo	(10.30) O3D.1 Chloride diffusivity and life cycle analysis of typical low-carbon cementitious materials Zhilu Jiang,	O3E.1 Estimation of the risk of rupture by corrosion of external prestressing tendons injected with cement grout Bruno Godart		
10.45	O3A.2 Calibration of Different Analytical Models for Concrete Coupling Beams And Walls Against Experimental Data for Performance Based Design Jeff Dragovich	O3B.2 Infrastructure Sustainability Rating Scheme Kerry Griffiths	O3C.2 Implications of ongoing research for design of FRP seismic strengthening of diaphragms in New Zealand Rhys Allan Rogers	(10.45) O3D.2 Statistic investigation on sulfate ions distribution in concrete by a mesoscale model	O3E.2 Experimental and analytical study on the bending capacities of RC beams under non-uniform corrosion Xiaoxu Zhu		
11.00	O3A.3 Updated modeling parameters and acceptance criteria for concrete structural walls Saman Abdullah	O3B.3 Low-carbon Cement and Concrete Chris Johnstone	O3C.3 Multi-layer anchored and unanchored CFRP Shear Strengthening of Reinforced Concrete Diaphragms Aniket Borwankar	Jinyang Feng (10.57) O3D.3 Effect of coarse aggregate on compressive mechanical properties of irradiated concrete Hui Liu	O3E.3 Quantifying the influence of chloride-induced corrosion on the bending moment capacity of a prestressed girder considering different exposure scenarios Karel Van Den Hende		

11.15	O3A.4 Resurrection of a 13- story earthquake damaged tower building, 66 Oxford Terrace, Christchurch Grant Thomas & Peter Boardman	O3B.4 Large Concrete Products Manufacturing Case Study Jackson MacFarlane	O3C.4 Evaluation and retrofit design practices for concrete diaphragms in the U.S., using FRP as a seismic strengthening solution Garrett Hagen & Aniket Borwankar	O3D.4 A novel crack detection equipment for existing concrete structures and its validation testing Ruilin Wang (11.21) O3D.5 New Opportunities for Single-Photon Sensing in Civil Engineering Jinyi Liu (11.33) O3D.6 Impact resistance performance of freeze-thaw damaged RC columns under different axial compression ratios Xiguang Liu (11.48) O3D.7 Re-simplified calculation methods for bending bearing capacities of corroded RC beams Chao Jiang & Deng-Feng Shang	O3E.4 Effects of Severe Chloride-Induced Corrosion with Spalling on the Structural Performance of RC Structures in Marine Environments: An Experimental Study Kyle Didacus Cabatit
11.30	O3A.5 Experimental study on the FRP ties used in precast diaphragm strengthening subjected to incompatible rotation of the floor support beam Mohammad Sadegh Salimian Rizi		O3C.5 Collapse of a reinforced concrete building with insufficient diaphragm and discussion on diaphragm strengthening for avoiding such failures Alper ilki		O3E.5 Corrosion effects on the prestressing force of posttensioned cables due to lack of mortar injection Emma Ghini
11.45	O3A.6 Seismic retrofit of non- ductile reinforced concrete frame buildings Zaid Al- Sadoon	Open Discussion	Open Discussion		O3E.6 Corrosion effects on the bending moment-curvature diagram of post-tensioned concrete beams Emma Ghini
12.00	Lunch & Poster Session in the Ex	xhibition Area			
	4A Special Session: Concrete bridge performance in flood/cyclones	4B Resilient and low-damage seismic design	4C Mechanics, analysis, and design	4D Special Session: Fatigue of Concrete in an Experimental-Virtual-Lab	4E Codes, standards, & guidelines
13.00	O4A.1 Performance of Concrete Bridges in Cyclone Induced Floods in Queensland Australia Wayne Roberts	O4B.1 Low damage seismic isolation of the Parahaki Bridge Oliver de Lautour	O4C.1 A mechanics-based approach for modelling dowel cracking in RC beams Yuguang Yang	O4D.1 Wake-up call for creep dimensioning: The case of cyclic loading Bianca Kern	O4E.1 Service life design of concrete structures considering Belgian production and climate: developing a full-probabilistic calibration as ERC proposal for Belgium Sam Coppens
13.15	O4A.2 Performance of the New Zealand's bridge stock during Cyclone Gabrielle Jonathan Watkins	O4B.2 Integral seismic performance of self-centering concrete wall structures incorporating innovative low-damage infill walls Hao Wu	O4C.2 Towards a reliability- based design concept for concrete discontinuity regions using strut-and-tie models Kito Luyten	O4D.2 The effect of concrete moisture on the fatigue resistance of HPC under uniaxial and triaxial loading Martin Markert	O4E.2 Robustness of code formulae for development and splice length of reinforcing bars Dorian Borosnyoi-Crawley

13.30	O4A.3 Enhancing Bridge Resilience: Lessons Learned from Cyclone Gabrielle's Impact on New Zealand's North Island Sabina Piras	O4B.3 Residual drift-based seismic vulnerability assessment of RC bridges Shaowei Wu	O4C.3 Spring models for the design of fastening systems: Requirements and challenges Sebastian Geiger	O4D.3 Moisture-induced damage mechanisms in high-strength concrete due to compressive fatigue loading Mohamed Abubakar Ali	O4E.3 Validation of Various Australian Standard Concrete Code (As3600) Shrinkage Prediction Models George Fanourakis
13.45	O4A.4 Challenges and adaptations of Auckland Bridges recovery Gang Yu	O4B.4 Enhancing seismic and climate resilience of existing buildings through low-damage external exoskeletons Simone D'Amore	O4C.4 Numerical investigation of anchorage mechanism of rebar hook using 3D-RBSM Navoda Abeygunawardana	O4D.4 DEM-Based Analysis of Fatigue-Induced Damage Using a Cycle-Jump Technique Sebastian Rybczynski	O4E.4 A Practical Design Method for Increasing Shear Resistance In Existing Concrete Sections Using Post Tensioned Bars Chris Ross
14.00	O4A.5 New Zealand rail bridge flood damage and recovery - case study of Rangitata River bridge MSL57 Liam Coleman	O4B.5 Strain ageing effects in reinforcing bars subjected to earthquake damage Koshin Okamura	O4C.5 A novel analytical model to determine the composite action between concretes cast at different times: experimental validation Jules Smits	O4D.5 Experimental investigation and incremental modeling of the load sequence effect in plain concrete under mode II loading Henrik Becks	O4E.5 Bridging the gap between shear strength design models with apparent contradictory initial hypotheses Antoni Cladera
14.15	O4A.6 Innovative Bridge Deck-to-Pier Connections for Improved Tsunami Resilience Rosie Pagel	O4B.6 Study of A Novel Precast RC Shear Wall with Replaceable Self-Centering Energy-Dissipation Components Huanjun Jiang	O4C.6 Load-bearing behavior of prestressed concrete towers with dry horizontal and vertical joints based on warping theory Max Götze	O4D.6 Influence of different microfibers on the flexural fatigue characteristics of high-strength concrete Niklas Schäfer	O4E.6 New Guidelines for Maintenance of Existing Post- tensioned Prestressed Concrete Bridges Hiroshi Mutsuyoshi
14.30	Open Discussion	O4B.7 Penalty Method for Optimisation of Reinforced Concrete Structures in Serviceability and Ultimate Limit State Jeff Larsen	O4C.7 Global resistance methods on the design with nonlinear finite element analysis of hybrid fiber reinforced industrial pavement supported on piles Joaquim Barros	O4D.7 Does the fatigue resistance really decrease with higher concrete strength? Nadja Oneschkow	O4E.7 Research on experimental similarity criterion and snowdrifts on two-span single-pitch roofs Qingwen Zhang
14.45	Open Discussion	O4B.8 Modeling and seismic response of self-centering reinforced concrete frames with viscous dampers Fanfu Bu	O4C.8 Enhancing the bearing capacity of concrete slabs through the load redistribution capacities of masonry walls Shana Van Hout	O4D.8 Shifted experimental S-N curves for fatigue verification of structures to consider different bond conditions Lukas Heußner	O4E.8 Fire resistance of group of fasteners with focus on concrete cone failure Hitesh Lakhani

15.00

Afternoon Tea in the Exhibition Area

	5A Special Session: Sustainable Structural Strengthening	5B Shear analysis and design	5C Concrete durability	5D Special Session: Post- installed connections	5E Experimental tests on structural members	
15.30	O5A.1 Rehabilitation of a prestressed concrete bridge using UHPC Professor Jan Vitek	O5B.1 The Canadian shear design provisions for UHPFRC reinforced and prestressed members Evan Bentz	O5C.1 Understanding the behavior of concrete blocks exposed to 20 years of marine environment with accelerated laboratory experiments Mickael Saillio	(15.30) O5D.1 Seismic C2 performance of post-installed fasteners in tension: Low-strength undercut anchor compared to other anchor types Dorian Borosnyoi-Crawley (15.45) O5D.2 Tensile behaviour of post-installed fasteners in early age concrete with and without steel fibres Tilak Pokharel (16.00) O5D.3 Fire Design of Post-installed Anchors with EN1992-4 and EOTA TR082 Raymond Chong (16.15) O5D.4 Fatigue resistance of anchors in concrete under shear load with lever arm Thilo Froehlich (16.30) O5D.5 The Australian journey for harmonising design, prequalification and installation of fastenings into concrete with international practice Jessey Lee	O5E.1 Experimental and numerical study on long-span retard-bonded-prestressed RC frame with openings Yang Zhang	
15.45	O5A.2 Light UHPFRCC jacketing with recycled steel fibres Marta Del Zoppo	O5B.2 Influence of Compressive Membrane Action on Shear Capacity of RC Members without Shear Reinforcement Annkathrin Sinning	O5C.2 Corrosion Resistance of Self-Healing Concrete Using Alkaliphilic Bacteria Nami Ishizaki		(15.45) O5D.2 Tensile behaviour of	O5E.2 Experimental Investigation of Key Structural Parameters for Structural Design of 3D-Printed Concrete Henrik Brøner Jørgensen
16.00	O5A.3 A stochastic programming approach for budget allocation to structural strengthening and postearthquake buildings repair in seismic areas Simona Mancini	O5B.3 Rigid Plastic Upper Bound Shear Capacity Model for RC Members without and with Very Small Amounts of Shear Reinforcement Frederik Autrup	O5C.3 Theoretical prediction of chloride profile based on probabilities of particle movement and its application to real data from existing bridges Peter Paulík		O5E.3 Large-Scale Experiments of Voided Shear Walls with Pre-Walls Boyan Mihaylov	
16.15	O5A.4 Treatment of Uncertainties In The Semi- Probabilistic Design Of Precast Concrete Structures With Reclaimed Elements Ben Matthews	O5B.4 Shear capacity of RC slabs without shear reinforcement. A review of the available literature and Code provisions loannis Prionas	O5C.4 Application of Digital Image Correlation (DIC) Method to Evaluate the Water Absorption in Different Qualities of Concrete Muhammad Usman		O5E.4 Experimental survey on corroded reinforced concrete and prestressed concrete beams Alberto Meda	
16.30	O5A.5 Strengthening concrete members with cementitious composites Giorgio Mattarollo & Norbert Randl	O5B.5 Analytical model for punching shear assessment due to column removal incorporating dynamic effects Juan Sagaseta	O5C.5 Concrete Technology, Durability and Sustainability in the Department of Transport and Main Roads Queensland Australia Wayne Roberts		OSE.5 Experimental and Numerical Investigation on Uniaxial Compressive Performance of Hollow Circular High-strength Precast CFST Piles Clarissa Jasinda	
16.45	O5A.6 The restoration of steel-reinforced concrete structures with high-performance textile-reinforced mortars Melanie Groh	O5B.6 Punching shear behaviour of flat slab systems: Experimental investigations on flat slab cutouts with external loading conditions Matthias Kalus & Martin Classen	O5C.6 Reevaluating the Significance of Concrete Cover Depth in Mitigating Carbonation-Induced Corrosion Damage Sylvia Keßler		O5E.6 Analyzing structural behavior of prestressed continuous beams with tendon breakage tested in combination of bending, torsion and shear Joonas Tulonen	

O5A.8 Strengthening of Existing Multi-span Bridges for Widening Using FRP Techniques Larry Qi Yang O5B.8 Basis for a Simplified Topology Optimisation Strategy for Reinforced Concrete Beams Based on Inclined Stirrups Iyad Ahmed O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT methods and Complete Rebars in New Zealand: Design methods and Complete Rebars in New Zealand: Design methods and Complete Structures with Post-installed Rebars in New Zealand: Design methods and Complete Structures with Post-installed Rebars in New Zealand: Design methods and Complete Structures with Post-installed Rebars in New Zealand: Design methods and Complete Structures with Post-installed Rebars i	17.00	O5A.7 Compressive tests on slender RC columns retrofitted with Fibre/Textile Reinforced Concrete Giorgio Mattarollo	O5B.7 Finite element modeling of punching shear behavior of concrete slabs with shear reinforcement Marianna Polak	O5C.7 Limit of Chloride Ion Concentration on Corrosion of Steel Bar in PAE-Based Polymer Cement Mortar Kandai Fujishima	(16.45) O5D.6 Design and construction aspects of shear-friction applications (concrete overlays) using the EOTA TR O66 Suman Narayan	O5E.7 Study on the combined effect of grout compressive strength and rebar embedment variation in a grouted mechanical coupler Emanuele Naccini & Sam Adshead
Solid Citati Processing	17.15	Existing Multi-span Bridges for Widening Using FRP	Topology Optimisation Strategy for Reinforced Concrete Beams Based on Inclined Stirrups <i>Iyad</i>	failure mechanism of corroded rebars in concrete by X-ray CT	O5D.7 Retrofitting Concrete Structures with Post-installed Rebars in New Zealand: Design methods and Compliance pathways Samuel Caloba Aguiar (17.05) O5D.8 Influence of different modelling approaches on the predicted concrete edge failure of fasteners Johannes Holder (17.20) O5D.9 Repair and Strengthening of Concrete Bridges with Post-installed	the maximum punching capacity of slab-column

18.00-

late

Fib Symposium Gala Dinner

	WEDNESDAY 13 NOVEMBER					
08.00- 17.30	Registration & Exhibition open					
	Keynote Session					
08.30	Keynote 4 The future of design standards Steve Denton	 has simplification become unafform 	ordable?			
09.15	Keynote 5 Models and Standards for Simu Laura Lowes	lating the Earthquake Response of	f Flexure-Controlled Reinforced Cor	ncrete Walls for Design and Evalua	tion	
10.00	Morning Tea in the Exhibition A	rea				
	6A Special Session: Seismic strengthening of concrete structures using Fibre Reinforced Polymers (FRP)	6B Special Session: Circular Economy approach in making Concrete Structures Sustainable	6C Special Session: Peer Exchange for Resilient-Eco & Socially-Sustainable bridges and structures (PxRESS-1)	6D Seismic design and retrofit	6E Low-carbon concrete and innovative materials	
10.30	O6A.1 The Italian Experience - The increasing use of FRP strengthening solutions after recent earthquakes Ciro Del Vecchio	(10.30) O6B.1 The circular economy and bridges: proposals to take this forward John Hilton	O6C.1 Bridging the Gap Between Risk and Resilience Ben Baty	O6D.1 How healthy are Japanese piles and foundation members? Susumu Kono	O6E.1 Approach to Find Suitable CO ₂ Capturing Amines for the Prevention of Steel Corrosion in Carbonation Environment of Cement-Based Materials Ryosuke Saito	
10.45	O6A.2 The Turkish Experience - Resilience in a newly industrializing country through FRP strengthening Alper İlki	(10.55)	O6C.2 Reducing the environmental impact of bridges using a common LCA framework Emily Lorenz	O6D.2 Behaviour of Reinforced Concrete Encased Steel Lattice Elements under Cyclic Loading Amir Moshref	O6E.2 Addressing the Implementation Challenges of a Performance-Based Approach for Sustainable Concrete: Insights from the Swiss approach Fabrizio Moro	
11.00	O6A.3 Seismic strengthening with FRP in the US - current state of design guidelines and path forward Ravi Kanitkar	O6B.2 Circular Design Framework for Concrete Bridges Jamil Khan	O6C.3 The 200-year Bridge: Resilient, Economical, Environmentally & Socially Sustainable Steven Nolan	O6D.3 Damage states and fragility curves for lightly reinforced concrete walls Priyana Rajbhandari	O6E.3 Enhancing mechanical properties of recycled aggregate concrete prepared with waste soaking solution from acetic acid pre-soaking treatment Wiracha Thaue	
11.15	O6A.4 Whole-of-Building Approach to Improve Seismic Retrofits of Reinforced Concrete Buildings in New Zealand Santiago Pujol	(11.20) O6B.3 Steel reuse for the transition of the construction industry to a circular economy Kaveh Andisheh & Fanqin Meng	O6C.4 Key Focus Areas to Assure the Longevity of Resilient and Sustainable Concrete Structures in Australia Scott Munter	O6D.4 Preliminary Study on Lateral Response of Lightly Reinforced Concrete Non- Rectangular Walls Tian-hua Deng	O6E.4 Life Cycle Assessment of an Innovative Fireproof and Thermal Insulating Geopolymer Konstantina Oikonomopoulou	

11.30	Open Discussion	(11.40) O6B.4 A Qualitative Sustainability Assessment of	O6C.5 Future Proofing Concrete Infrastructure through Climate Resilient Composite Technologies Omar Alajarmeh	O6D.5 Butterfly-shaped wooden Estone blocks for seismic retrofitting Yuji Ishikawa	O6E.5 Design of high-strength and high-elastic modulus strain-hardening cementitious composites: Towards prestressed structures Long Liang
11.45		Peka Peka to Ōtaki (PP2Ō) Expressway Project Bridges using a Circular Design Framework Laura Chen	O6C.6 Project Case Study: Repair of Gisborne Port Breakwater Utilizing GFRP Rebar Peter Renshaw		O6E.6 Properties of calcined clays in cementitious systems Horst-Michael Ludwig
12.00	Lunch in the Exhibition Area				
	7A Strengthening and repair	7B Projects and construction methods	7C Composite materials and alternative reinforcing	7D Precast and prestressed concrete	7E Mechanics, analysis, and design
13.00	O7A.1 External Biopolymer Layers for Effective Crack Sealing on Cementitious Substrates Didier Snoeck	O7B.1 New Nowra Bridge, NSW, Australia - Incremental Launch Design Wayne Juno	O7C.1 Cyclic Testing of Carbon Fiber-Reinforced Polymer- Reinforced Concrete Columns Yiqiu Lu	O7D.1 Experimental Study on Anchorage Designs' Influence on Shear Capacity of Looped Wire Rope Connections between Wall-Elements in the Same Plane Henrik Brøner Jørgensen	O7E.1 A New Panel Element Tester for the Investigation of Reinforced Concrete Behavior under Non-proportional Load Paths Elias Merhi
13.15	O7A.2 Effect of Adhesive on Effective Bond Length of EB FRP-RC Beams Hewawasam Haggallage Nadeeshani Haggalla	O7B.2 Seismic Strengthening of Concrete Reservoirs Lewis Thomas	O7C.2 Experimental investigations of bent basalt fiber composite tendons for prestressing graded concrete components David Nigl	O7D.2 Safe Working Load of Strand Lifting Eyes for Precast Concrete Construction Hossein Askarinejad & John Marshall	O7E.2 Crack width calculation – nonlinear FE-analysis compared to analytical calculation Christina Krenn
13.30	O7A.3 Integrating An External Post-Tension Strengthening System Into An Existing Box Girder Bridge Using Ultra High Performance Fibre Reinforced Concrete Blisters Chris Ross	O7B.3 Construction of Natural Draught Cooling Tower at Ohaaki Geothermal Power Station Jeff Marchant	O7C.3 Confinement model for GFRP spirally confined concrete columns Ernesto Hernandez	O7D.3 SH94 Homer Tunnel Avalanche Shelter Peter Routledge	O7E.3 Evaluation of corner crack widths in dapped-end connections and knee beam-column joints Boyan Mihaylov
13.45	O7A.4 Local Strengthening of Poorly Executed Plain Tunnel Linings: Design And Construction Features Marco di Prisco	O7B.4 Aerial demolition method for prestressed concrete bridges above intersections with heavy traffic Shinsuke Watanabe	O7C.4 Fatigue Behavior of Lightweight Concrete Bridge Deck Slabs Reinforced with GFRP (Glass Fiber Reinforced Polymer) Bars Agnieszka Wiater	O7D.4 Experimental Research on Ultimate Bearing Capacity for Local Component of Prestressed Concrete Containment Vessel Dabing Gao	O7E.4 Energy based Calculation of Crack Widths and required Reinforcement for Crack Control Ekkehard Fehling

14.00	O7A.5 Simplified Computation Model for Rc Elements Strengthened with Cfrps On Low Stiffness Adhesives Arkadiusz Kwiecien	O7B.5 Integration of industrial robots for sustainable and efficient production of concrete elements with advanced formwork towards industry 4.0 Peter Gappmaier	O7C.5 Numerical investigation of the seismic performance of bridge piers made of titanium alloy reinforced ultra-high performance concrete (TARUHPC) Jorge Atusparia	O7D.5 Leak-tightness functional failure study of prestressed concrete containment vessels under thermal-pressure coupling conditions Lujie Zhuang	O7E.5 Integrating 3D Modelling and Non-linear Numerical Simulations in Concrete Additive Manufacturing Jiri Rymes
14.15	O7A.6 Design and construction of slab replacement work between the Kaga and Katayamazu Interchange Go Yokota	O7B.6 Incrementally Launched Concrete and Steel Bridges - Case Studies and New Developments Tony Simmonds	O7C.6 CFRP Prestressing in bridge girders of I and U sections Henrik	O7D.6 Validation of CSCT strain-based shear failure criteria for prestressed concrete members without shear reinforcement Minkook Park	O7E.6 Effect of bond on the shear capacity of reinforced concrete beams: Comparison of different FE-models Johannes Holder
14.30	O7A.7 Transformation of singular joint deformations into multiple cracks in carbon-reinforced concrete pavements Maximilian Weiß	O7B.7 Case study on using a Launching Gantry to Erect Precast Segmental Concrete Box Girders in a Built-up Industrial Environment. Adrien Krempp	O7C.7 Failure Modes of Bent FRP Anchor with Shallow Embedment Junrui Zhang	O7D.7 Standardization of Precast Concrete Beams for Road Bridge Decks Culpa António	O7E.7 AI Based Surrogate Model for Nonlinear Modelling of Reinforced Concrete Structures Jiri Rymes
14.45	O7A.8 Concrete repair and retrofitting of columns without mechanical anchorage, an analytical and experimental study <i>Tom Molkens</i>	O7B.8 Mitigating Stormwater Pollution with Permeable Concrete Adrianna Hess	O7C.8 Time-Dependent Behavior of FRP-Reinforced Concrete: A Comprehensive Numerical Investigation Yilin Wang	O7D.8 Numerical study on axial capacity of steel-plate grouted connections with shear keys Xinyu Hu	O7E.8 Use of distributed fibre optic sensing to measure structural behaviour in reinforced concrete direct tension specimens Jacob Yager
15.00	Afternoon Tea in the Exhibition Area				
	Plenary Session				
15.30	Invited Speaker 5 Acceleration strategies to incre Horst-Michael Ludwig	ase the early strength of concrete			
16.00	Invited Speaker 6 Towards a green concrete future: a New Zealand perspective Allan Scott				
16.30	Symposium Closing				
40.00					
18.00- late	Concrete NZ Gala Dinner				

MONITOR PRESENTATIONS Monday 11 November

Session 1

	Session 1					
	1.1E Novel Concrete	1.1F Strengthening and Repair	1.1G Projects and construction			
13.30	M1.1E.1 Reactivity of dehydrated cement pastes to be re-used into cement-based systems Christian Paglia	M1.1F.1 Importance of Mortar Skin Characteristics in Concrete Surface Layer in Analysis of Delamination Behavior between FRP Sheet and Concrete Mitsuhiko Ozaki	M1.1G.1 Botany Rail Duplication – Innovative Methods for Bridge Construction Miho Mihov			
13.40	M1.1E.2 How is Carbon Nanotube liquid additive technology improving concrete durability, design life and providing a sustainable alternative? Tasha Eagle	M1.1F.2 Seismic strengthening of frame structures with web-type plate Qingxia Yue, Shurong Li & Xin Zhang	M1.1G.2 CRL Karanga-a-Hape Underground Railway Station John Mitchell			
13.50	M1.1E.3 Enhancing geopolymer composites with miscanthus fibers: an investigation of thermal behavior, mechanical strength, and microstructural characteristics Hussein Nasreddine	M1.1F.3 Seismic upgrading of RC frames as a constrained optimisation problem: a rational solution based on Genetic Algorithms Enzo Martinelli	M1.1G.3 Central Plant and Tunnel Project - Designing for resilience and the future Yin Lao			
14.00	M1.1E.4 Study on Self Curing of Concrete Using Highly Concentrated Aqueous Solution as Mixing Water Kenji Harada	M1.1F.4 Modelling the impact of steel corrosion on the long-term shear strength in RC structures: the CCCM perspective <i>Antoni Cladera</i>	M1.1G.4 The Design of the Bridges for two grade- separated rail crossings for The Parkes Special Activation Precinct Enabling Works Nebojsa Ravic			
14.10	M1.1E.5 Effect of environmental conditions on shrinkage-induced cracking of 3D-printed mortar Dengyu You	M1.1F.5 Pull-out and bond performance of deformed bars in concrete subjected to freeze-thaw cycles after steel corrosion Ryuhei Hayakawa	M1.1G.5 Advanced formwork systems - design and construction aspects Florian Dieterle & Barry Pike			
14.20	Q&A	Q&A	Q&A			
	1.2E UHPC	1.2F Precast concrete	1.2G Structural performance			
14.30	M1.2E.1 HPC and UHPC with reduced climate footprint based on alkali-activated material Alexander Wetzel	M1.2F.1 Simplified Approaches for the Structural Analysis of Precast Concrete Sandwich Panels Ehab Hamed	M1.2G.1 Enhancing Impact Resistance in Nuclear Power Plant Structures: A Comprehensive Study on Reinforced Concrete Panels Hyukjun Ahn			
14.40	M1.2E.2 Engineering Properties and Optimal Design of Ultra-High Performance Alkali-Activated Concrete Yifei Cui	M1.2F.2 Numerical investigation on shear capacity of truss connectors for precast concrete sandwich panels Jiayin Yu	M1.2G.2 Bending response of the GFRP-reinforced concrete pontoon deck with cutout Shahrad Ebrahimzadeh			
14.50	M1.2E.3 Analytical studies on the flexural behaviors of UHPC composite sandwich panels under different connector configurations Feng Xiong	M1.2F.3 Decreasing environmental and increasing economic impact within the prefabricated industry – Automated design and production of structurally optimised concrete components Peter Gappmaier	M1.2G.3 Improved design by synergized soil-structure interaction Julia Ober			
15.00	M1.2E.4 Full-scale test and finite element analysis of RBP-UHPC variable section cantilever beam He Linyi	M1.2F.4 Buckling of prestressed concrete bridge girders V.N Heggade	M1.2G.4 Effect and mechanism of diaphragms on girder performance of simply supported T-girder bridge Chengxu Yu			
15.10	M1.2E.5 Development and Potential of using UHPFRC for Infrastructure in Thailand Ralf Winterberg	M1.2F.5 Ultimate Load Capacity of Unbonded Prestressed Concrete Beams Reinforced with Enlarged Section Considering Secondary Stress Chenchen Wei	M1.2G.5 Evaluating Seismic Inertia Demand of Precast Concrete Diaphragms: A US-NZ Comparison Tingting Yu			
15.20	Q&A	Q&A	Q&A			
	connector configurations Feng Xiong	optimised concrete components Peter Gappmaier	M1.2G.4 Effect and mechanism of diaphragms on girde			

	Session 2				
	2.1E Structural testing	2.1F Concrete mixes	2.1G Alternative reinforcing		
16.00	M2.1E.1 Experimental investigation on seismic performance of prefabricated pile-slab bridge bent Xinyan Jiang	M2.1F.1 Comparative Experimental Investigation on Mechanical Properties of Innovative Ultra Lightweight Structural Concrete Jamshid Esmaeili & Hossein Farahi Gargari	M2.1G.1 Tailored fiber placement for load path oriented reinforcements in textile reinforced concrete Kira Heins		
16.10	M2.1E.2 Experimental Investigation on Shear Behaviour of Prestressed Bridge Girders Viktor Borzovič	M2.1F.2 Influence of Mechanically Treated Recycled Concrete Aggregates and Curing Method on Recycled Aggregate Concrete Konstantina Oikonomopoulou	M2.1G.2 Lime-based Textile Reinforced Mortar with natural fibers: experimental tests and mechanical characterization Enzo Martinelli		
16.20	M2.1E.3 Tests on Special Anchors for Rc Frames With Structural As Well As Non-Structural Masonry Infills To Resist Seismic Loads Matthias Roik	M2.1F.3 The Improvement of Permeable Concrete Mix Design Method with regards to Void Ratio Kento Tsuboi	M2.1G.3 Effect of Age on Reverse-Cycle Performance of Hybrid Fibre Reinforced Concrete Beam-Columns Erik Bernard		
16.30	M2.1E.4 Experimental study on beam-column-slit slab joint to achieve proper failure mode of existing RC frame structures <i>Yilin Lu</i>	M2.1F.4 Use of Finite Element Thermal Modelling to Verify CIRIA 766 Requirements on Complex Structures Inam Khan	M2.1G.4 Characterisation of the Alkaline Resistance of Fibre Reinforcement Strands Produced in a Dynamic Fibre Winding Process for 3D Concrete Printing Tom Rothe		
16.40	M2.1E.5 Design and Implementation of an UHPC Post Tensioning Anchorage Blister using Full Scale Prototype Testing Sean Whelan	M2.1F.5 Evaluation on bond splitting failure of reinforced concrete with 3D image analysis for aggregate spatial distribution Katsufumi Hashimoto	M2.1G.5 Numerical investigation of the bond-slip behavior between ultra-high-performance concrete and titanium alloy bars Heider Mendoza		
16.50	Q&A	Q&A	Q&A		
		QQA	ago. :		
	2.2E Sustainable design	2.2F Design codes	2.2G Structural health monitoring		
17.00					
17.00 17.10	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self-Compacting Concrete (SCC) for the Precasting industry:	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor		
	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self-Compacting Concrete (SCC) for the Precasting industry: Using the Equivalent Mortar Method Lara Saad M2.2E.2 Improving the quality of Recycled Concrete Aggregate (RCA) using Thermo mechanical treatment	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections of reinforced concrete elements <i>Marco Roosen</i> M2.2F.2 Review of NZ code modelling and deemed to satisfy provision based on Full Probabilistic Analysis (FPA) <i>Inam Khan</i> M2.2F.3 Analysis of fastenings in concrete using spring models: Requirements for finite-element based modelling <i>Sebastian Geiger</i>	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor Measurement Takahiro Kyutoku M2.2G.2 A Computer Vision and Infrared Thermography Based Debonding Damage Inspection Method for		
17.10	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self-Compacting Concrete (SCC) for the Precasting industry: Using the Equivalent Mortar Method Lara Saad M2.2E.2 Improving the quality of Recycled Concrete Aggregate (RCA) using Thermo mechanical treatment Vithushanthini Arulkumar M2.2E.3 Embodied carbon over the life cycle of reinforcing steels: Carbon emissions associated with Modules A1-A3 Product and A4-A5 Construction stages	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections of reinforced concrete elements <i>Marco Roosen</i> M2.2F.2 Review of NZ code modelling and deemed to satisfy provision based on Full Probabilistic Analysis (FPA) <i>Inam Khan</i> M2.2F.3 Analysis of fastenings in concrete using spring models: Requirements for finite-element based	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor Measurement Takahiro Kyutoku M2.2G.2 A Computer Vision and Infrared Thermography Based Debonding Damage Inspection Method for Building Facades Linyuan Ma M2.2G.3 Management of Prestressed Concrete Bridges Damaged by Salt Attack with Severe Corrosion of PC		
17.10 17.20	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self-Compacting Concrete (SCC) for the Precasting industry: Using the Equivalent Mortar Method Lara Saad M2.2E.2 Improving the quality of Recycled Concrete Aggregate (RCA) using Thermo mechanical treatment Vithushanthini Arulkumar M2.2E.3 Embodied carbon over the life cycle of reinforcing steels: Carbon emissions associated with Modules A1-A3 Product and A4-A5 Construction stages Andrew Wheeler M2.2E.4 Functions of green roofs in sustainable urban	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections of reinforced concrete elements Marco Roosen M2.2F.2 Review of NZ code modelling and deemed to satisfy provision based on Full Probabilistic Analysis (FPA) Inam Khan M2.2F.3 Analysis of fastenings in concrete using spring models: Requirements for finite-element based modelling Sebastian Geiger M2.2F.4 The limitations of the Concrete Capacity Design (CCD) Method in calculating the breakout area Michael	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor Measurement Takahiro Kyutoku M2.2G.2 A Computer Vision and Infrared Thermography Based Debonding Damage Inspection Method for Building Facades Linyuan Ma M2.2G.3 Management of Prestressed Concrete Bridges Damaged by Salt Attack with Severe Corrosion of PC Cables Osada Koji M2.2G.4 Characterizing Bridge Distress with Advanced		

POSTER PRESENTATIONS

Poster Session: Tuesday 12 November 12.00 – 13.00

No.	Poster Title	Presenter
P.01	A Case Study of Sustainability Certification for Constructional Steels	Ladin Camci
P.02	A review of methodologies relating to Shrinkage, Tensile Strength and Young's Modulus development comparison in early age cementitious concrete curing	Matthew Montgomery
P.03	Ageing Concrete Hydraulic Structures in a Seismically Active Environment	Mohammad Okhovat
P.04	An Experimental Study on Internal Curing of Ultra High Performance Concrete Using Lightweight Scoria Sand	Jamshid Esmaeili & Meysam Aghapour
P.05	An Experimental Study on Interpretation of Core Test Results for Assessment of Concrete In-Situ Strength	Hossein Askarinejad
P.06	Application of +/-45 Degree Bidirectional FRP to Improve Shear Transfer Capacity Across Slab-to-Wall Concrete Connections	Mustafa Mashal
P.07	Application to the Danish test of a bond law deduced from a short RC tie	Maurizio Taliano
P.08	Blind simulation competitions on the assessment of the predictive performance of FEM-based approaches for the design of FRC structures	Joaquim Barros
P.09	Comparative Lifecycle Assessment of SFRC and Conventional RC Structural Slabs	Gideon Asare
P.10	Conformity Assessment Model for the Supply and Installation of Post-Tensioning Systems in Concrete Structures in Australia and New Zealand	Peter Tonkin
P.11	Contemporary Design And Construction Of Post Tensioned Structures	Dave Sharp, Andrew Cathcart & Timothy Peters
P.12	Cracking Assessment Methodologies for RC Walls Analysis	Mohsen Shabankareh & Mark Foo
P.13	Design for deconstruction of concrete hollow core slabs, an experimental study.	Tom Molkens
P.14	Design of buried arch structures for earthquake effects, to Australian and New Zealand codes	Doug Jenkins
P.15	Elimination of Tilts in Multi-Story Buildings Using an Experimental Information-Analytical System and Digital Twins	Iurii Kaliukh
P.16	Enhancement of hydration and stabilization of cement clinkers using chemically modified TiB2 nanosheets	Vikash Kumar Singh
P.17	Evaluation Method of Shear Capacity at Slab-Web Interface in Hybrid Beam System	Ravi Singh
P.18	Evaluation of areal corrosion rate distribution for reinforced concrete plane members using non-invasive polarization resistance method	Toshinori Kanemitsu
P.19	Evaluation of Building Height Effect on RC Wall Systems' Response	Mohsen Shabankareh & Mark Foo
P.20	Experimental study on mechanical properties of reinforced concrete transfer beam with openings	Shurong Li
P.21	Experimental Study on the Anchorage Designs' Influence on the Shear Capacity of Looped Wire Rope Connections between Perpendicular Wall-Elements	Henrik Brøner Jørgensen
P.22	Fire Performance of Hybrid Fiber Reinforced Self-Consolidating Concrete with Recycled Ground Glass Pozzolan	Nur Yazdani
P.23	First application of use of prestressed CFRP lamellas to strengthen roof slab of building in Slovakia	Peter Kotes
P.24	Fracture Mechanism Evaluation of Lap Splice under Tension Utilizing 3D-RBSM	Naoshi Ueda

P.25	Implementation Of A Low Carbon Approach For Hydraulic Concretes	Nicolas Bagneux
P.26	Incremental sequentially linear analysis to trace post-peak snap-backs for concrete	Chenjie Yu
P.27	Innovative structural instrumentation solutions for the monitoring of remote New Zealand civil infrastructure	Mike Lusby
	Mass transport properties of recycled aggregate concrete under the coupling effect of chloride ion erosion and freeze-thaw	
P.28	cycles	Zihao Yu
P.29	Maximum Foreseeable Loss Assessment of Bridge Assets In Eastern Canada	Dario Pietra
P.30	Numerical study on assembled monolithic subway station sidewall joints with pre-grouted section steel insertion	Tianbo Hu
P.31	Propagation of Errors in Post-crack Performance Assessment of FRC Using the ASTM C1609/C1609M Beam Test	Erik Bernard
P.32	Properties of concrete containing graphite at high temperatures for thermal energy storage	In-Hwan Yang
P.33	Repair of heavily damaged walls by replacement of concrete and reinforcing steel	Gonzalo Muñoz
P.34	Seismic behavior of masonry buildings with or without rigid reinforced concrete floor diaphragms	Tomislav Kišiček
P.35	Seismic Capacities of Prestressed Concrete Beam with Circular Openings	Makoto Maruta
P.36	The Influence of Concrete Modulus of Elasticity on Integral Bridge Behaviour	Sarah Skorpen
P.37	Victoria Bridge Strengthening and Refurbishment	Eoin O'Donovan& Chris Ross