

Fib Symposium 2024 Draft Programme as at 10.10.24

Te Pae Christchurch Convention Centre

SATURDAY 11 NOVEMBER

08.30 -17.00 Registration open

	SUNDAY 10 NOVEMBER					
08.00 - 19.00	Registration open					
12.30 - 17.00	Pre-Symposium Seminar: Design of Seismic Resilient Concrete Buildings Presenter: Rick Henry RSVP only					
17.30	Icebreaker Reception in the Exhibition Area					

	MONDAY 11 NOVEMBER				
08.00 - 18.00	Registration & Exhibition open				
08.30	Mihi Whakatau & Opening				
	Keynote Session				
09.30	Keynote 1 fib Model Code 2020: Empowering Sustainable Concrete Solutions with Future-Oriented Standards Agnieszka Bigaj-van Vliet				
10.15	Keynote 2 Design, implementation and monitoring of TMD in Shanghai Center Tower under wind loading Xilin Lu				

11.00	Morning Tea in the Exhibition A	Morning Tea in the Exhibition Area					
	Plenary Session						
11.30	Invited Speaker 1 Future Directions in Seismic Des Alper İlki	Future Directions in Seismic Design, Assessment, and Construction Practices: Insights from the February 2023 Türkiye Earthquake Sequence					
12.00	Invited Speaker 2 Recent achievements and future perspective in Japanese national model code for concrete structures in civil engineering field: introduction of JSCE standard specifications for concrete structures Takumi Shimomura						
12.30	Lunch in the Exhibition Area						
	1A Special Session: Alternative binder systems and novel processing technologies	1B Special Session: Lessons from The 2023 Pazarcik-Elbistan (Turkey) Earthquake Sequence	1C Special Session: NDT/SHM as basis for the condition assessment for reinforced concrete structures	1D New and innovative structural designs	Monitor Presentations The detailed presentation schedule is at the end of the daily programme		
13.30	O1A.1 Alternatives to Portland cement – can we benefit both the environment and human development? John Provis	(13.30) O1B.1 Outline of field investigation results by the Turkey-Japan joint	O1C.1 Assessment of reinforced concrete structures: Exploring the Reliability of NDT/SHM Professor Sylvia Keßler	O1D.1 Lightweight Hollow Core Carbon Reinforced Slab System Steffen Marx	13.30 – 14.30 M1.1E Novel Concrete M1.1F Strengthening and		
13.45		reconnaissance team Koichi Kusunoki (13.47) O1B.2 Seismic performance and	O1C.2 Unmasking Structural Health: A Bold Exploration into the Uncharted Realms of Reliability Assessment in SHM Daniel Kanzler	O1D.2 Implementation of Functionally Graded Concrete (FGC) in New Zealand: Proof of Concept Tests Jade Matravers & Tony Xie	Repair M1.1G Projects and construction		
14.00	O1A.2 The future of cement - the next steps and visions for the future Horst-Michael Ludwig	damage level evaluated with Japanese standards of RC buildings damaged by the 2023 Turkey Earthquake Seitaro Tajiri	O1C.3 Proof-of-Concept of a Bayesian Updating Approach for Corrosion Degrees on the Basis of Crack Measurements	O1D.3 Crack development in non- metallic textile-reinforced concrete members under cyclic loading with regard to serviceability Martin Classen			
		(14.04)	Constantijn Martens				
14.15	O1A.3 Improving the early age characteristics of M-S-H binder Vineet Shah	O1B.3 Collapse of Reinforced Concrete Buildings - Implications from the 2023 Turkey Earthquakes Halil Sezen	O1C.4 Integrated sustainability and quality assurance concepts for subway constructions based	O1D.4 Assessment on Concrete Structure Environmental Performance Potential (CSEPP) of Ultra High Performance Concrete			
		(14.21)	on inspection and monitoring Christian Grosse	Composite Bridges Hui Teng Ng			

14.30	O1A.4 Transforming Gold Mine Tailings into Sustainable Concrete Kushal Ghosh O1A.5 The potential for utilising locally available kaolinitic clays in low-carbon MgO-based binder systems	O1B.4 Analyzing Ground Motion Data for Building Damage Potential Ayhan Irfanoglu (14.38) O1B.5 The Lack of Robustness of Buildings in Turkey and New Zealand Santiago Pujol (14.55)	O1C.5 Detection of damages in prestressed concrete structures using distributed fiber optic sensors Agnieszka Wiater O1C.6 Evaluation of air coupled impact-echo for the non destructive monitoring of concrete structures Aurélia Muller	O1D.5 CO₂ savings through individual void formers in concrete slabs Patrick Forman O1D.6 Experimental study on the flexural behavior of steel-tubed reinforced ultra-high strength concrete columns Nobuaki Hirata	14.30 – 15.30 M1.2E UHPC M1.2F Precast concrete M1.2G Structural performance		
15.00	O1A.6 Development of geopolymer systems using thermally treated bauxite O1B.6 Non-interacting masonry infills as a solution for improving the seismic behavior of infilled O1C.7 D Tendon Approac	O1B.6 Non-interacting masonry infills as a solution for improving the seismic behavior of infilled RC frames: Experimental results Marko Marinkovic (15.12) O1B.7 Expected Cost of the Improved Seismic Resilience	infills as a solution for improving the seismic behavior of infilled RC frames: Experimental results	of using uxite c ash O1B.6 Non-interacting masonry infills as a solution for improving the seismic behavior of infilled RC frames: Experimental results	O1C.7 Detecting Non-Visible Tendon Breaks – A New Approach Using Coda Wave Interferometry Noah Sträter	O1D.7 Study on mechanical properties of a new joint with concrete-filled steel tube keys between shear walls and coupling beams <i>Zhijun Zhou</i>	
15.15	O1A.7 Strength Development of Geopolymer Mortar Incorporating Waste Clay Brick Powder Shaila Sharmin		O1C.8 Intelligent wall- climbing robot with stereo camera for real-time and high-accuracy concrete crack inspection <i>Bing Xiong</i>	O1D.8 Rethinking the seismic design of RC buildings for improved post-earthquake reparability Timothy Sullivan			
15.30	Afternoon Tea in the Exhibition	Area					
	2A Special Session: Nonlinear modeling, seismic assessment, and rehabilitation of reinforced concrete structures (part 1)	2B Special Session: Structural Engineering of 3D concrete printed elements: status and future challenges	2C Special Session: Using natural resources as a cement replacement for a lower carbon concrete	2D Structural health monitoring	Monitor Presentations The detailed presentation schedule is at the end of the daily programme 16.00 – 17.00		
16.00	O2A.1 Seismic upgrading of RC frames as a constrained optimisation problem: a rational solution based on Genetic Algorithms Enzo Martinelli	O2B.1 Sustainable Resilience for 3D Concrete Printed Homes in New Zealand: a three years research government funding overview Giuseppe Loporcaro	O2C.1 Natural pozzolans in Germany <i>Christopher</i> <i>Hoffmann</i>	O2D.1 Prestressed Members Subjected to Prestressing Analysis Using Stress Release Technique Jakub Kralovanec	M2.1E Structural testing M2.1F Concrete mixes M2.1G Alternative reinforcing		
16.15	O2A.2 Seismic Evaluation of Building Inventories using AI, HAZUS, and Shakecast Insung Kim	O2B.2 A structural engineering perspective on extrusion-based 3D concrete printing: from green to solid state Jacques Kruger	O2C.2 Pilot Study on Natural Pozzolans as Cement Replacements for Low- Carbon Concrete Kavishan Ranatunga & Enrique del Rey Castillo	O2D.2 Vibration-Based Damage Detection in a Reinforced Concrete Plane Member Using a Small Exciter Seiji Nagata			

16.30	O2A.3 Evaluation of	O2B.3 Current Developments in	O2C.3 Low-Carbon Concrete	O2D.3 openLAB – A large-scale	
	performance metrics for	the Application of Extrusion-	with New Zealand Pozzolans	demonstrator for advancing digital	
	seismic assessment of RC	based 3D Concrete Printing	Cameron Woods	twin developments of bridges	
	Frames Adolfo Matamoros	Pathmanathan Rajeev		Steffen Marx	
16.45	O2A.4 Evaluation of ASCE/SEI	O2B.4 Seismic Performance of	O2C.4 Lime-based Textile	O2D.4 Exploring Bridge Structural	
	41 procedures for assessing	Large-Scale 3D Printed Concrete	Reinforced Mortar with	Response similarities: Data-Driven	
	the seismic vulnerability of an	Panels: An Experimental and	natural fibers: experimental	SHM Through MEMS Clinometer	
	earthquake-damaged	Analytical Study Costantino	tests and mechanical	Clustering over a Network of 25+	
	reinforced concrete wall	Menna	characterization Enzo	Reinforced Concrete Bridges	
	building Laura Lowes		Martinelli	Monica Longo	_
17.00	O2A.5 Non-linear dynamic	O2B.5 Analytical investigation of		O2D.5 Maximizing Predictive	17.00 - 18.00
	analysis of an infilled RC	the structural performance of R		Maintenance Efficiency across	M2.2E Sustainable design
	building for increasing seismic	column with 3D-printed concret		Extensive Infrastructure Networks:	
	hazard levels Samantha	permanent formwork Tarek	Haemin Song	Optimized Approaches Integrating	M2.2F Design codes
	Lisetto	Sabra		Model-driven and Data-driven	
				Solutions in Practical Applications	M2.2G Structural health
				Paola Darò	monitoring
17.15	O2A.6 Experimental	O2B.6 The Contribution Of 3d	O2C.6 Development of	O2D.6 Experimental investigation	
	Assessment of Large-Scale	Printed Lost Formworks to the	wood-geopolymer	using an innovative wireless	
	Anchored FRP-Strengthened	Compressive Capacity Of	composites for masonry	sensor technique to measure	
	RC Shear Controlled Walls	Structural Columns Luis De La	units: Effect of alkaline	concrete strains in situ and in real	
	Subjected to Cyclic Loads	Flor Juncal	solution ratio and wood	time Giorgio Mattarollo & Norbert	
	Aniket Borwankar		type Firesenay Zerabruk	Randl	
			Gigar		_
17.30	O2A.7 Calibration of ACI	O2B.7 A Rapid Reinforcement	O2C.7 Strength and	O2D.7 Health Monitoring During	
	369.1-22 model using the	Technique using FRP and Steel	Permeability of Concrete	Construction of Century Pavilion in	
	nonlinear three-dimensional	Wire Mesh in 3D Printed ECC	using Lithium Slag as a	10th China Flower Expo <i>Zhisheng</i>	
	simulation of instrumented	Beams Manfang Lin	Supplementary	Wei	
	RC structure Adolfo		Cementitious Materials <i>Md</i>		
	Matamoros		Tanvir Ehsan Amin		_
17.45	O2A.8 Seismic assessment	O2B.8 TBC Nick Lane	O2C.8 High-Temperature	O2D.8 Advancements in Digital	
	and nonlinear modeling of		Fracture Behaviour Of One-	Twin Development for Bridges in	
	corroded concrete buildings		part Geopolymer	Germany Steffen Marx	
	Eyitayo Opabola		Incorporating Lead Smelter		
			Slag and Steel Fibre: Digital		
			Image Correlation (DIC)		
	18.00 – 19.30	18.15 – 2	Analysis Nghia Tran	17 20 20 00 Universit	v of Captorbury Structural
	Early Career Networking Event		Roadmap Session	Engineering Lab Tour	y of Canterbury Structural
	Lany Career Networking Event	Net Zero	Roadinap Session		

	TUESDAY 12 NOVEMBER						
08.00- 17.30	Registration & Exhibition open						
	Keynote & Plenary Session						
08.30	Keynote 3 In-the-field Experiences and Resources Outcomes Des Bull	In-the-field Experiences and Research into the Development of Seismic Design Requirements of Concrete Structures in New Zealand: drivers, expectations, and outcomes					
09.15	Preserving the Past, Securing th Adam Thornton	e Future: The Seismic Retrofit of Te	e Matapihi - Wellington Central L	ibrary			
09.35	Enhanced Seismic Resilience: A Brandon McHaffie	Pathway to the Wider Implementa	tion of Dissipative Controlled Ro	ocking in Bridges			
10.00	Morning Tea in the Exhibition A	rea					
	3A Special Session: Nonlinear modeling, seismic assessment, and rehabilitation of reinforced concrete structures (part 2)	3B Special Session: Decarbonisation of the Built Environment	3C Special Session: Seismic strengthening of concrete diaphragms	3D Special Session: Performance Evolution and Control of Concrete Structures	3E Corrosion and impact on structural performance		
10.30	O3A.1 Effects of Loading History on the Behavior of Reinforced Concrete Columns Adolfo Matamoros	O3B.1 Government Action <i>Nick</i> <i>Leggett</i>	O3C.1 Recent progress on seismic strengthening of concrete diaphragms with FRP ties Enrique Del Rey Castillo	 (10.30) O3D.1 Chloride diffusivity and life cycle analysis of typical low- carbon cementitious materials Zhilu Jiang, Chuanqing Fu & Zheng Dong (10.45) O3D.2 Statistic investigation on sulfate ions distribution in concrete by a mesoscale model 	O3E.1 Estimation of the risk of rupture by corrosion of external prestressing tendons injected with cement grout Bruno Godart		
10.45	O3A.2 Calibration of Different Analytical Models for Concrete Coupling Beams And Walls Against Experimental Data for Performance Based Design Jeff Dragovich	O3B.2 Infrastructure Sustainability Rating Scheme Kerry Griffiths	O3C.2 Implications of ongoing research for design of FRP seismic strengthening of diaphragms in New Zealand Rhys Allan Rogers		O3E.2 Experimental and analytical study on the bending capacities of RC beams under non-uniform corrosion Xiaoxu Zhu		
11.00	O3A.3 Updated modeling parameters and acceptance criteria for concrete structural walls Saman Abdullah	O3B.3 Low-carbon Cement and Concrete Chris Johnstone	O3C.3 Multi-layer anchored and unanchored CFRP Shear Strengthening of Reinforced Concrete Diaphragms Aniket Borwankar	Jinyang Feng (10.57) O3D.3 Effect of coarse aggregate on compressive mechanical properties of irradiated concrete Hui Liu	O3E.3 Quantifying the influence of chloride-induced corrosion on the bending moment capacity of a prestressed girder considering different exposure scenarios Karel Van Den Hende		

11.15	O3A.4 Resurrection of a 13- story earthquake damaged tower building, 66 Oxford Terrace, Christchurch Grant Thomas & Peter Boardman	O3B.4 Large Concrete Products Manufacturing Case Study Jackson MacFarlane	O3C.4 Evaluation and retrofit design practices for concrete diaphragms in the U.S., using FRP as a seismic strengthening solution Garrett Hagen & Aniket Borwankar	 (11.09) O3D.4 A novel crack detection equipment for existing concrete structures and its validation testing <i>Ruilin Wang</i> (11.21) O3D.5 New Opportunities for Single-Photon Sensing in Civil Engineering <i>Jinyi Liu</i> (11.33) O3D.6 Impact resistance performance of freeze-thaw damaged RC columns under different axial compression ratios <i>Xiguang Liu</i> (11.48) O3D.7 Re-simplified calculation methods for bending bearing capacities of corroded RC beams <i>Chao Jiang & Deng-Feng Shang</i> 	O3E.4 Effects of Severe Chloride-Induced Corrosion with Spalling on the Structural Performance of RC Structures in Marine Environments: An Experimental Study Kyle Didacus Cabatit
11.30	O3A.5 Experimental study on the FRP ties used in precast diaphragm strengthening subjected to incompatible rotation of the floor support beam Mohammad Sadegh Salimian Rizi		O3C.5 Collapse of a reinforced concrete building with insufficient diaphragm and discussion on diaphragm strengthening for avoiding such failures <i>Alper</i> <i>İlki</i>		O3E.5 Corrosion effects on the prestressing force of post- tensioned cables due to lack of mortar injection Emma Ghini
11.45	O3A.6 Seismic retrofit of non- ductile reinforced concrete frame buildings Zaid Al- Sadoon	Open Discussion	Open Discussion		O3E.6 Corrosion effects on the bending moment-curvature diagram of post-tensioned concrete beams Emma Ghini
12.00	Lunch & Poster Session in the E	xhibition Area			
	4A Special Session: Concrete bridge performance in flood/cyclones	4B Resilient and low-damage seismic design	4C Mechanics, analysis, and design	4D Special Session: Fatigue of Concrete in an Experimental- Virtual-Lab	4E Codes, standards, & guidelines
13.00	O4A.1 Performance of Concrete Bridges in Cyclone Induced Floods in Queensland Australia Wayne Roberts	O4B.1 Low damage seismic isolation of the Parahaki Bridge Oliver de Lautour	O4C.1 A mechanics-based approach for modelling dowel cracking in RC beams Yuguang Yang	O4D.1 Wake-up call for creep dimensioning: The case of cyclic loading Bianca Kern	O4E.1 Service life design of concrete structures considering Belgian production and climate: developing a full-probabilistic calibration as ERC proposal for Belgium Sam Coppens
13.15	O4A.2 Performance of the New Zealand's bridge stock during Cyclone Gabrielle Jonathan Watkins	O4B.2 Integral seismic performance of self-centering concrete wall structures incorporating innovative low- damage infill walls <i>Hao Wu</i>	O4C.2 Towards a reliability- based design concept for concrete discontinuity regions using strut-and-tie models Kito Luyten	O4D.2 The effect of concrete moisture on the fatigue resistance of HPC under uniaxial and triaxial loading <i>Martin</i> <i>Markert</i>	O4E.2 Robustness of code formulae for development and splice length of reinforcing bars Dorian Borosnyoi-Crawley

A.4 Challenges and aptations of Auckland idges recovery <i>Gang Yu</i> A.5 New Zealand rail idge flood damage and covery - case study of angitata River bridge MSL57	O4B.4 Enhancing seismic and climate resilience of existing buildings through low-damage external exoskeletons Simone D'Amore O4B.5 Strain ageing effects in reinforcing bars subjected to earthquake damage Koshin	O4C.4 Numerical investigation of anchorage mechanism of rebar hook using 3D-RBSM Navoda Abeygunawardana O4C.5 A novel analytical model to determine the	O4D.4 DEM-Based Analysis of Fatigue-Induced Damage Using a Cycle-Jump Technique Sebastian Rybczynski	O4E.4 A Practical Design Method for Increasing Shear Resistance In Existing Concrete Sections Using Post Tensioned Bars Chris Ross
idge flood damage and covery - case study of ngitata River bridge MSL57	reinforcing bars subjected to	-		
am Coleman	Okamura	composite action between concretes cast at different times: experimental validation Jules Smits	O4D.5 Experimental investigation and incremental modeling of the load sequence effect in plain concrete under mode II loading Henrik Becks	O4E.5 Bridging the gap between shear strength design models with apparent contradictory initial hypotheses Antoni Cladera
A.6 Innovative Bridge eck-to-Pier Connections for proved Tsunami Resilience usie Pagel	O4B.6 Study of A Novel Precast RC Shear Wall with Replaceable Self-Centering Energy-Dissipation Components Huanjun Jiang	O4C.6 Load-bearing behavior of prestressed concrete towers with dry horizontal and vertical joints based on warping theory Max Götze	O4D.6 Influence of different microfibers on the flexural fatigue characteristics of high- strength concrete Niklas Schäfer	O4E.6 New Guidelines for Maintenance of Existing Post- tensioned Prestressed Concrete Bridges Hiroshi Mutsuyoshi
pen Discussion	O4B.7 Penalty Method for Optimisation of Reinforced Concrete Structures in Serviceability and Ultimate Limit State Jeff Larsen	O4C.7 Global resistance methods on the design with nonlinear finite element analysis of hybrid fiber reinforced industrial pavement supported on piles Joaquim Barros	O4D.7 Does the fatigue resistance really decrease with higher concrete strength? Nadja Oneschkow	O4E.7 Research on experimental similarity criterion and snowdrifts on two-span single-pitch roofs Qingwen Zhang
	O4B.8 Modeling and seismic response of self-centering reinforced concrete frames with viscous dampers Fanfu Bu	O4C.8 Enhancing the bearing capacity of concrete slabs through the load redistribution capacities of masonry walls Shana Van Hout	O4D.8 Shifted experimental S-N curves for fatigue verification of structures to consider different bond conditions Lukas Heußner	O4E.8 Fire resistance of group of fasteners with focus on concrete cone failure <i>Hitesh</i> Lakhani
per	n Discussion	Deptimisation of Reinforced Concrete Structures in Serviceability and Ultimate Limit State Jeff Larsen O4B.8 Modeling and seismic response of self-centering reinforced concrete frames with	Optimisation of Reinforced Concrete Structures in Serviceability and Ultimate Limit State Jeff Larsennonlinear finite element analysis of hybrid fiber reinforced industrial pavement supported on piles Joaquim BarrosDiscussionO4B.8 Modeling and seismic response of self-centering reinforced concrete frames with viscous dampers Fanfu BuO4C.8 Enhancing the bearing capacity of concrete slabs through the load redistribution capacities of masonry walls Shana Van	Optimisation of Reinforced Concrete Structures in Serviceability and Ultimate Limit State Jeff Larsennonlinear finite element analysis of hybrid fiber reinforced industrial pavement supported on piles Joaquim BarrosO4D.7 Does the fatigue resistance really decrease with higher concrete strength? Nadja OneschkowDiscussion04B.8 Modeling and seismic response of self-centering reinforced concrete frames with viscous dampers Fanfu Bu04C.8 Enhancing the bearing capacity of concrete slabs through the load redistribution capacities of masonry walls Shana Van04D.8 Shifted experimental S-N curves for fatigue verification of structures to consider different bond conditions Lukas Heußner

	5A Special Session: Sustainable Structural Strengthening	5B Shear analysis and design	5C Concrete durability	5D Special Session: Post- installed connections	5E Experimental tests on structural members
15.30	O5A.1 Rehabilitation of a prestressed concrete bridge using UHPC Professor Jan Vitek	O5B.1 The Canadian shear design provisions for UHPFRC reinforced and prestressed members Evan Bentz	O5C.1 Understanding the behavior of concrete blocks exposed to 20 years of marine environment with accelerated laboratory experiments <i>Mickael Saillio</i>	 (15.30) O5D.1 Seismic C2 performance of post-installed fasteners in tension: Low-strength undercut anchor compared to other anchor types Dorian Borosnyoi- Crawley (15.45) O5D.2 Tensile behaviour of post-installed fasteners in early age concrete with and without steel fibres Tilak Pokharel (16.00) O5D.3 Fire Design of Post- installed Anchors with EN1992- 4 and EOTA TR082 Raymond Chong (16.15) O5D.4 Fatigue resistance of anchors in concrete under shear load with lever arm Thilo Froehlich (16.30) O5D.5 The Australian journey for harmonising design, prequalification and installation of fastenings into concrete with international practice Jessey Lee (16.45) 	O5E.1 Experimental and numerical study on long-span retard-bonded-prestressed RC frame with openings Yang Zhang
15.45	O5A.2 Light UHPFRCC jacketing with recycled steel fibres Marta Del Zoppo	O5B.2 Influence of Compressive Membrane Action on Shear Capacity of RC Members without Shear Reinforcement Annkathrin Sinning	O5C.2 Corrosion Resistance of Self-Healing Concrete Using Alkaliphilic Bacteria Nami Ishizaki		O5E.2 Experimental Investigation of Key Structural Parameters for Structural Design of 3D-Printed Concrete Henrik Brøner Jørgensen
16.00	O5A.3 A stochastic programming approach for budget allocation to structural strengthening and post- earthquake buildings repair in seismic areas Simona Mancini	O5B.3 Rigid Plastic Upper Bound Shear Capacity Model for RC Members without and with Very Small Amounts of Shear Reinforcement Frederik Autrup	O5C.3 Theoretical prediction of chloride profile based on probabilities of particle movement and its application to real data from existing bridges Peter Paulík		O5E.3 Large-Scale Experiments of Voided Shear Walls with Pre- Walls Boyan Mihaylov
16.15	O5A.4 Treatment of Uncertainties In The Semi- Probabilistic Design Of Precast Concrete Structures With Reclaimed Elements Ben Matthews	O5B.4 Shear capacity of RC slabs without shear reinforcement. A review of the available literature and Code provisions <i>Ioannis Prionas</i>	O5C.4 Application of Digital Image Correlation (DIC) Method to Evaluate the Water Absorption in Different Qualities of Concrete Muhammad Usman		O5E.4 Experimental survey on corroded reinforced concrete and prestressed concrete beams Alberto Meda
16.30	O5A.5 Strengthening concrete members with cementitious composites Giorgio Mattarollo & Norbert Randl	O5B.5 Analytical model for punching shear assessment due to column removal incorporating dynamic effects Juan Sagaseta	O5C.5 Concrete Technology, Durability and Sustainability in the Department of Transport and Main Roads Queensland Australia Wayne Roberts		O5E.5 Experimental and Numerical Investigation on Uniaxial Compressive Performance of Hollow Circular High-strength Precast CFST Piles Clarissa Jasinda
16.45	O5A.6 The restoration of steel-reinforced concrete structures with high- performance textile- reinforced mortars Melanie Groh	O5B.6 Punching shear behaviour of flat slab systems: Experimental investigations on flat slab cutouts with external loading conditions Matthias Kalus & Martin Classen	O5C.6 Reevaluating the Significance of Concrete Cover Depth in Mitigating Carbonation-Induced Corrosion Damage Sylvia Keßler		O5E.6 Analyzing structural behavior of prestressed continuous beams with tendon breakage tested in combination of bending, torsion and shear Joonas Tulonen

17.00	O5A.7 Compressive tests on slender RC columns retrofitted with Fibre/Textile Reinforced Concrete Giorgio Mattarollo	O5B.7 Finite element modeling of punching shear behavior of concrete slabs with shear reinforcement Marianna Polak	O5C.7 Limit of Chloride Ion Concentration on Corrosion of Steel Bar in PAE-Based Polymer Cement Mortar Kandai Fujishima	O5D.6 Design and construction aspects of shear-friction applications (concrete overlays) using the EOTA TR O66 Suman Narayan	O5E.7 Study on the combined effect of grout compressive strength and rebar embedment variation in a grouted mechanical coupler Emanuele Naccini & Sam Adshead
17.15	O5A.8 Strengthening of Existing Multi-span Bridges for Widening Using FRP Techniques Larry Qi Yang & Yasuto Nakamura	05B.8 Basis for a Simplified Topology Optimisation Strategy for Reinforced Concrete Beams Based on Inclined Stirrups <i>Iyad</i> <i>Ahmed</i>	O5C.8 Investigation on bond failure mechanism of corroded rebars in concrete by X-ray CT method Kanta Kozuka	(16.55) OSD.7 Retrofitting Concrete Structures with Post-installed Rebars in New Zealand: Design methods and Compliance pathways Samuel Caloba Aguiar (17.05) OSD.8 Influence of different modelling approaches on the predicted concrete edge failure of fasteners Johannes Holder (17.20) OSD.9 Repair and Strengthening of Concrete Bridges with Post-installed Anchors Nick Benham & Jonathan Watkins	O5E.8 Experimental study on the maximum punching capacity of slab-column connections Jaroslav Halvonik
18.00-					
18.00- late	Fib Symposium Gala Dinner				

		,	WEDNESDAY 13 NOVEMBER			
08.00- 17.30	Registration & Exhibition open					
	Keynote Session					
08.30	Keynote 4 The future of design standards Steve Denton	 has simplification become unafference 	ordable?			
09.15	Keynote 5 Models and Standards for Simu Laura Lowes	Models and Standards for Simulating the Earthquake Response of Flexure-Controlled Reinforced Concrete Walls for Design and Evaluation				
10.00	Morning Tea in the Exhibition A	rea				
	6A Special Session: Seismic strengthening of concrete structures using Fibre Reinforced Polymers (FRP)	6B Special Session: Circular Economy approach in making Concrete Structures Sustainable	6C Special Session: Peer Exchange for Resilient-Eco & Socially-Sustainable bridges and structures (PxRESS-1)	6D Seismic design and retrofit	6E Low-carbon concrete and innovative materials	
10.30	O6A.1 The Italian Experience – The increasing use of FRP strengthening solutions after recent earthquakes Ciro Del Vecchio	(10.30) O6B.1 The circular economy and bridges: proposals to take this forward John Hilton	O6C.1 Bridging the Gap Between Risk and Resilience Ben Baty	O6D.1 How healthy are Japanese piles and foundation members? Susumu Kono	O6E.1 Approach to Find Suitable CO ₂ Capturing Amines for the Prevention of Steel Corrosion in Carbonation Environment of Cement-Based Materials Ryosuke Saito	
10.45	O6A.2 The Turkish Experience – Resilience in a newly industrializing country through FRP strengthening Alper İlki	(10.55) O6B.2 Circular Design Framework for Concrete Bridges Jamil Khan	O6C.2 Reducing the environmental impact of bridges using a common LCA framework <i>Emily Lorenz</i>	O6D.2	O6E.2 Addressing the Implementation Challenges of a Performance-Based Approach for Sustainable Concrete: Insights from the Swiss approach Fabrizio Moro	
11.00	O6A.3 Seismic strengthening with FRP in the US - current state of design guidelines and path forward <i>Ravi Kanitkar</i>	(11.20) O6B.3 Steel reuse for the transition of the construction industry to a circular economy Kaveh Andisheh & Fanqin Meng	O6C.3 The 200-year Bridge: Resilient, Economical, Environmentally & Socially Sustainable Steven Nolan	O6D.3 Behaviour of Reinforced Concrete Encased Steel Lattice Elements under Cyclic Loading Amir Moshref	O6E.3 Enhancing mechanical properties of recycled aggregate concrete prepared with waste soaking solution from acetic acid pre-soaking treatment Wiracha Thaue	
11.15	O6A.4 Whole-of-Building Approach to Improve Seismic Retrofits of Reinforced	(11.40)	O6C.4 Key Focus Areas to Assure the Longevity of Resilient and Sustainable	O6D.4 Damage states and fragility curves for lightly reinforced concrete walls Priyana Rajbhandari	O6E.4 Life Cycle Assessment of an Innovative Fireproof and Thermal Insulating Geopolymer Konstantina Oikonomopoulou	

	Concrete Buildings in New Zealand Santiago Pujol	O6B.4 A Qualitative Sustainability Assessment of	Concrete Structures in Australia Scott Munter		
11.30	Open Discussion	Peka Peka to Ōtaki (PP2Ō) Expressway Project Bridges using a Circular Design Framework Laura Chen	O6C.5 Future Proofing Concrete Infrastructure through Climate Resilient Composite Technologies Omar Alajarmeh	O6D.5 Preliminary Study on Lateral Response of Lightly Reinforced Concrete Non- Rectangular Walls Tian-hua Deng	O6E.5 Design of high-strength and high-elastic modulus strain-hardening cementitious composites: Towards prestressed structures Long Liang
11.45			O6C.6 Project Case Study: Repair of Gisborne Port Breakwater Utilizing GFRP Rebar Peter Renshaw	O6D.6 Butterfly-shaped wooden Estone blocks for seismic retrofitting Yuji Ishikawa	O6E.6 Properties of calcined clays in cementitious systems Horst-Michael Ludwig
12.00	Lunch in the Exhibition Area				
	7A Strengthening and repair	7B Projects and construction methods	7C Composite materials and alternative reinforcing	7D Precast and prestressed concrete	7E Mechanics, analysis, and design
13.00	O7A.1 External Biopolymer Layers for Effective Crack Sealing on Cementitious Substrates Didier Snoeck	O7B.1 New Nowra Bridge, NSW, Australia - Incremental Launch Design Wayne Juno	O7C.1 Cyclic Testing of Carbon Fiber-Reinforced Polymer- Reinforced Concrete Columns Yiqiu Lu	O7D.1 Experimental Study on Anchorage Designs' Influence on Shear Capacity of Looped Wire Rope Connections between Wall-Elements in the Same Plane Henrik Brøner Jørgensen	O7E.1 A New Panel Element Tester for the Investigation of Reinforced Concrete Behavior under Non-proportional Load Paths Elias Merhi
13.15	O7A.2 Effect of Adhesive on Effective Bond Length of EB FRP-RC Beams Hewawasam Haggallage Nadeeshani Haggalla	O7B.2 Seismic Strengthening of Concrete Reservoirs Lewis Thomas	O7C.2 Experimental investigations of bent basalt fiber composite tendons for prestressing graded concrete components David Nigl	O7D.2 Safe Working Load of Strand Lifting Eyes for Precast Concrete Construction Hossein Askarinejad & John Marshall	O7E.2 Crack width calculation – nonlinear FE-analysis compared to analytical calculation Christing Krenn
13.30	O7A.3 Integrating An External Post-Tension Strengthening System Into An Existing Box Girder Bridge Using Ultra High Performance Fibre Reinforced Concrete Blisters Chris Ross	O7B.3 Construction of Natural Draught Cooling Tower at Ohaaki Geothermal Power Station Jeff Marchant	O7C.3 Confinement model for GFRP spirally confined concrete columns Ernesto Hernandez	O7D.3 SH94 Homer Tunnel Avalanche Shelter <i>Peter</i> <i>Routledge</i>	O7E.3 Evaluation of corner crack widths in dapped-end connections and knee beam- column joints Boyan Mihaylov
13.45	O7A.4 Local Strengthening of Poorly Executed Plain Tunnel Linings: Design And Construction Features Marco di Prisco	O7B.4 Aerial demolition method for prestressed concrete bridges above intersections with heavy traffic Shinsuke Watanabe	O7C.4 Fatigue Behavior of Lightweight Concrete Bridge Deck Slabs Reinforced with GFRP (Glass Fiber Reinforced Polymer) Bars Agnieszka Wiater	O7D.4 Experimental Research on Ultimate Bearing Capacity for Local Component of Prestressed Concrete Containment Vessel Dabing Gao	O7E.4 Energy based Calculation of Crack Widths and required Reinforcement for Crack Control Ekkehard Fehling

14.00	O7A.5 Simplified Computation Model for Rc Elements Strengthened with Cfrps On Low Stiffness Adhesives Arkadiusz Kwiecien	O7B.5 Integration of industrial robots for sustainable and efficient production of concrete elements with advanced formwork towards industry 4.0 <i>Peter Gappmaier</i>	O7C.5 Numerical investigation of the seismic performance of bridge piers made of titanium alloy reinforced ultra-high performance concrete (TARUHPC) Jorge Atusparia	O7D.5 Leak-tightness functional failure study of prestressed concrete containment vessels under thermal-pressure coupling conditions Lujie Zhuang	O7E.5 Integrating 3D Modelling and Non-linear Numerical Simulations in Concrete Additive Manufacturing Jiri Rymes
14.15	O7A.6 Design and construction of slab replacement work between the Kaga and Katayamazu Interchange Go Yokota	O7B.6 Incrementally Launched Concrete and Steel Bridges - Case Studies and New Developments Tony Simmonds	O7C.6 CFRP Prestressing in bridge girders of I and U sections Gyorgy Balazs	O7D.6 Validation of CSCT strain-based shear failure criteria for prestressed concrete members without shear reinforcement <i>Minkook</i> <i>Park</i>	O7E.6 Effect of bond on the shear capacity of reinforced concrete beams: Comparison of different FE-models Johannes Holder
14.30	O7A.7 Transformation of singular joint deformations into multiple cracks in carbon- reinforced concrete pavements Maximilian Weiß	O7B.7 Case study on using a Launching Gantry to Erect Precast Segmental Concrete Box Girders in a Built-up Industrial Environment. Adrien Krempp	O7C.7 Failure Modes of Bent FRP Anchor with Shallow Embedment Junrui Zhang	O7D.7 Standardization of Precast Concrete Beams for Road Bridge Decks Culpa António	O7E.7 AI Based Surrogate Model for Nonlinear Modelling of Reinforced Concrete Structures Jiri Rymes
14.45	O7A.8 Concrete repair and retrofitting of columns without mechanical anchorage, an analytical and experimental study Tom Molkens	O7B.8 Mitigating Stormwater Pollution with Permeable Concrete Adrianna Hess	O7C.8 Time-Dependent Behavior of FRP-Reinforced Concrete: A Comprehensive Numerical Investigation Yilin Wang	O7D.8 Numerical study on axial capacity of steel-plate grouted connections with shear keys Xinyu Hu	O7E.8 Use of distributed fibre optic sensing to measure structural behaviour in reinforced concrete direct tension specimens Jacob Yager
15.00	Afternoon Tea in the Exhibition	Area			
	Plenary Session				
15.30	nvited Speaker 5 Acceleration strategies to increase the early strength of concrete Horst-Michael Ludwig				
16.15	nvited Speaker 6 Towards a green concrete future: a New Zealand perspective Allan Scott				
17.00	Symposium Closing				
18.00- late	Concrete NZ Gala Dinner				

MONITOR PRESENTATIONS Monday 11 November Session 1					
13.30	M1.1E.1 Reactivity of dehydrated cement pastes to be re-used into cement-based systems <i>Christian Paglia</i> M1.1E.2 How is Carbon Nanotube liquid additive	M1.1F.1 Importance of Mortar Skin Characteristics in Concrete Surface Layer in Analysis of Delamination Behavior between FRP Sheet and Concrete Mitsuhiko Ozaki	M1.1G.1 Botany Rail Duplication – Innovative Methods for Bridge Construction Miho Mihov		
13.40	technology improving concrete durability, design life and providing a sustainable alternative? Tasha Eagle	M1.1F.2 Seismic strengthening of frame structures with web-type plate <i>Qingxia Yue</i> , <i>Shurong Li & Xin Zhang</i>	M1.1G.2 CRL Karanga-a-Hape Underground Railway Station John Mitchell		
13.50	M1.1E.3 Enhancing geopolymer composites with miscanthus fibers: an investigation of thermal behavior, mechanical strength, and microstructural characteristics Hussein Nasreddine	M1.1F.3 A Challenge of Kilometers and Centimeters - Corrosion Assessment and Repair of a 59-Story Building Joseph Klein	M1.1G.3 Central Plant and Tunnel Project - Designing for resilience and the future Yin Lao		
14.00	M1.1E.4 Study on Self Curing of Concrete Using Highly Concentrated Aqueous Solution as Mixing Water Kenji Harada	M1.1F.4 Modelling the impact of steel corrosion on the long-term shear strength in RC structures: the CCCM perspective Antoni Cladera	M1.1G.4 The Design of the Bridges for two grade- separated rail crossings for The Parkes Special Activation Precinct Enabling Works Nebojsa Ravic		
14.10	M1.1E.5 Effect of environmental conditions on shrinkage-induced cracking of 3D-printed mortar Dengyu You	M1.1F.5 Pull-out and bond performance of deformed bars in concrete subjected to freeze-thaw cycles after steel corrosion Ryuhei Hayakawa	M1.1G.5 Advanced formwork systems - design and construction aspects Florian Dieterle & Barry Pike		
14.20	Q&A	Q&A	Q&A		
	1.2E UHPC	1.2F Precast concrete	1.2G Structural performance		
14.30	M1.2E.1 HPC and UHPC with reduced climate footprint based on alkali-activated material <i>Alexander Wetzel</i>	M1.2F.1 Simplified Approaches for the Structural Analysis of Precast Concrete Sandwich Panels Ehab Hamed	M1.2G.1 Enhancing Impact Resistance in Nuclear Power Plant Structures: A Comprehensive Study on Reinforced Concrete Panels Hyukjun Ahn		
14.40	M1.2E.2 Engineering Properties and Optimal Design of Ultra-High Performance Alkali-Activated Concrete Yifei Cui	M1.2F.2 Numerical investigation on shear capacity of truss connectors for precast concrete sandwich panels <i>Jiayin Yu</i>	M1.2G.2 Bending response of the GFRP-reinforced concrete pontoon deck with cutout Shahrad Ebrahimzadeh		
14.50	M1.2E.3 Analytical studies on the flexural behaviors of UHPC composite sandwich panels under different connector configurations <i>Feng Xiong</i>	M1.2F.3 Decreasing environmental and increasing economic impact within the prefabricated industry – Automated design and production of structurally optimised concrete components Peter Gappmaier	M1.2G.3 Improved design by synergized soil-structure interaction Julia Ober		
15.00	M1.2E.4 Full-scale test and finite element analysis of RBP-UHPC variable section cantilever beam <i>He Linyi</i>	M1.2F.4 Buckling of prestressed concrete bridge girders V.N Heggade	M1.2G.4 Effect and mechanism of diaphragms on girder performance of simply supported T-girder bridge <i>Chengxu Yu</i>		
15.10	M1.2E.5 Development and Potential of using UHPFRC for Infrastructure in Thailand Ralf Winterberg	M1.2F.5 Ultimate Load Capacity of Unbonded Prestressed Concrete Beams Reinforced with Enlarged Section Considering Secondary Stress Chenchen Wei	M1.2G.5 Evaluating Seismic Inertia Demand of Precast Concrete Diaphragms: A US-NZ Comparison <i>Tingting Yu</i>		
15.20	Q&A	Q&A	Q&A		

Session 2					
	2.1E Structural testing	2.1F Concrete mixes	2.1G Alternative reinforcing		
16.00	M2.1E.1 Experimental investigation on seismic performance of prefabricated pile-slab bridge bent <i>Xinyan Jiang</i>	M2.1F.1 Comparative Experimental Investigation on Mechanical Properties of Innovative Ultra Lightweight Structural Concrete Jamshid Esmaeili & Hossein Farahi Gargari	M2.1G.1 Tailored fiber placement for load path oriented reinforcements in textile reinforced concrete <i>Kira Heins</i>		
16.10	M2.1E.2 Experimental Investigation on Shear Behaviour of Prestressed Bridge Girders Viktor Borzovič	M2.1F.2 Influence of Mechanically Treated Recycled Concrete Aggregates and Curing Method on Recycled Aggregate Concrete Konstantina Oikonomopoulou	M2.1G.2 Bond interaction mechanism of nano-silica deposited carbon textiles with cementitious composites Sung-gul Hong		
16.20	M2.1E.3 Tests on Special Anchors for Rc Frames With Structural As Well As Non-Structural Masonry Infills To Resist Seismic Loads <i>Matthias Roik</i>	M2.1F.3 The Improvement of Permeable Concrete Mix Design Method with regards to Void Ratio Kento Tsuboi	M2.1G.3 Effect of Age on Reverse-Cycle Performance of Hybrid Fibre Reinforced Concrete Beam-Columns Erik Bernard		
16.30	M2.1E.4 Experimental study on beam-column-slit slab joint to achieve proper failure mode of existing RC frame structures <i>Yilin Lu</i>	M2.1F.4 Use of Finite Element Thermal Modelling to Verify CIRIA 766 Requirements on Complex Structures Inam Khan	M2.1G.4 Characterisation of the Alkaline Resistance of Fibre Reinforcement Strands Produced in a Dynamic Fibre Winding Process for 3D Concrete Printing Tom Rothe		
16.40	M2.1E.5 Design and Implementation of an UHPC Post Tensioning Anchorage Blister using Full Scale Prototype Testing Sean Whelan	M2.1F.5 Evaluation on bond splitting failure of reinforced concrete with 3D image analysis for aggregate spatial distribution Katsufumi Hashimoto	M2.1G.5 Numerical investigation of the bond-slip behavior between ultra-high-performance concrete and titanium alloy bars <i>Heider Mendoza</i>		
16 50	00.4	0 00	0 2.4		
16.50	Q&A	Q&A	Q&A		
-10.50	Q&A 2.2E Sustainable design	Q&A 2.2F Design codes	Q&A 2.2G Structural health monitoring		
17.00					
	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self- Compacting Concrete (SCC) for the Precasting industry :	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor		
17.00	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self- Compacting Concrete (SCC) for the Precasting industry : Using the Equivalent Mortar Method Lara Saad M2.2E.2 Improving the quality of Recycled Concrete Aggregate (RCA) using Thermo mechanical treatment	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections of reinforced concrete elements <i>Marco Roosen</i> M2.2F.2 Review of NZ code modelling and deemed to satisfy provision based on Full Probabilistic Analysis	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor Measurement <i>Takahiro Kyutoku</i> M2.2G.2 A Computer Vision and Infrared Thermography Based Debonding Damage Inspection Method for		
17.00 17.10	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self- Compacting Concrete (SCC) for the Precasting industry : Using the Equivalent Mortar Method Lara Saad M2.2E.2 Improving the quality of Recycled Concrete Aggregate (RCA) using Thermo mechanical treatment Vithushanthini Arulkumar M2.2E.3 Embodied carbon over the life cycle of reinforcing steels: Carbon emissions associated with Modules A1-A3 Product and A4-A5 Construction stages	 2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections of reinforced concrete elements <i>Marco Roosen</i> M2.2F.2 Review of NZ code modelling and deemed to satisfy provision based on Full Probabilistic Analysis (FPA) <i>Inam Khan</i> M2.2F.3 Analysis of fastenings in concrete using spring models: Requirements for finite-element based 	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor Measurement Takahiro Kyutoku M2.2G.2 A Computer Vision and Infrared Thermography Based Debonding Damage Inspection Method for Building Facades Linyuan Ma M2.2G.3 Management of Prestressed Concrete Bridges Damaged by Salt Attack with Severe Corrosion of PC		
17.00 17.10 17.20	2.2E Sustainable design M2.2E.1 Incorporation of Excavation Soil Sands in Self- Compacting Concrete (SCC) for the Precasting industry : Using the Equivalent Mortar Method Lara Saad M2.2E.2 Improving the quality of Recycled Concrete Aggregate (RCA) using Thermo mechanical treatment Vithushanthini Arulkumar M2.2E.3 Embodied carbon over the life cycle of reinforcing steels: Carbon emissions associated with Modules A1-A3 Product and A4-A5 Construction stages Andrew Wheeler M2.2E.4 Functions of green roofs in sustainable urban	2.2F Design codes M2.2F.1 Evaluation of the shear-effective area according to Model Code 2020 for non-rectangular cross-sections of reinforced concrete elements <i>Marco Roosen</i> M2.2F.2 Review of NZ code modelling and deemed to satisfy provision based on Full Probabilistic Analysis (FPA) <i>Inam Khan</i> M2.2F.3 Analysis of fastenings in concrete using spring models: Requirements for finite-element based modelling <i>Sebastian Geiger</i> M2.2F.4 The limitations of the Concrete Capacity Design (CCD) Method in calculating the breakout area <i>Michael</i>	2.2G Structural health monitoring M2.2G.1 Studies on Characteristics of Natural Frequency of Deteriorated Bridges Using Microtremor Measurement Takahiro Kyutoku M2.2G.2 A Computer Vision and Infrared Thermography Based Debonding Damage Inspection Method for Building Facades Linyuan Ma M2.2G.3 Management of Prestressed Concrete Bridges Damaged by Salt Attack with Severe Corrosion of PC Cables Osada Koji M2.2G.4 Characterizing Bridge Distress with Advanced		

POSTER PRESENTATIONS Poster Session: Tuesday 12 November 12.00 – 13.00			
No.	Poster Title	Presenter	
P.01	A Case Study of Sustainability Certification for Constructional Steels	Ladin Camci	
P.02	A review of methodologies relating to Shrinkage, Tensile Strength and Young's Modulus development comparison in early age cementitious concrete curing	Matthew Montgomery	
P.03	Ageing Concrete Hydraulic Structures in a Seismically Active Environment	Mohammad Okhovat	
P.04	An Experimental Study on Internal Curing of Ultra High Performance Concrete Using Lightweight Scoria Sand	Jamshid Esmaeili & Meysam Aghapour	
P.05	An Experimental Study on Interpretation of Core Test Results for Assessment of Concrete In-Situ Strength	Hossein Askarinejad	
P.06	Application of +/-45 Degree Bidirectional FRP to Improve Shear Transfer Capacity Across Slab-to-Wall Concrete Connections	Mustafa Mashal	
P.07	Application to the Danish test of a bond law deduced from a short RC tie	Maurizio Taliano	
P.08	Blind simulation competitions on the assessment of the predictive performance of FEM-based approaches for the design of FRC structures	Joaquim Barros	
P.09	Comparative Lifecycle Assessment of SFRC and Conventional RC Structural Slabs	Gideon Asare	
P.10	Conformity Assessment Model for the Supply and Installation of Post-Tensioning Systems in Concrete Structures in Australia and New Zealand	Peter Tonkin	
P.11	Contemporary Design And Construction Of Post Tensioned Structures	Dave Sharp, Andrew Cathcart & Timothy Peters	
P.12	Cracking Assessment Methodologies for RC Walls Analysis	Mohsen Shabankareh & Mark Foo	
P.13	Design for deconstruction of concrete hollow core slabs, an experimental study.	Tom Molkens	
P.14	Design of buried arch structures for earthquake effects, to Australian and New Zealand codes	Doug Jenkins	
P.15	Enhancement of hydration and stabilization of cement clinkers using chemically modified TiB2 nanosheets	Vikash Kumar Singh	
P.16	Evaluation Method of Shear Capacity at Slab-Web Interface in Hybrid Beam System	Ravi Singh	
P.17	Evaluation of areal corrosion rate distribution for reinforced concrete plane members using non-invasive polarization resistance method	Toshinori Kanemitsu	
P.18	Evaluation of Building Height Effect on RC Wall Systems' Response	Mohsen Shabankareh & Mark Foo	
P.19	Experimental study on mechanical properties of reinforced concrete transfer beam with openings	Shurong Li	
P.20	Experimental Study on the Anchorage Designs' Influence on the Shear Capacity of Looped Wire Rope Connections between Perpendicular Wall-Elements	Henrik Brøner Jørgensen	
P.21	Fire Performance of Hybrid Fiber Reinforced Self-Consolidating Concrete with Recycled Ground Glass Pozzolan	Nur Yazdani	
P.22	First application of use of prestressed CFRP lamellas to strengthen roof slab of building in Slovakia	Peter Kotes	
P.23	Fracture Mechanism Evaluation of Lap Splice under Tension Utilizing 3D-RBSM	Naoshi Ueda	

P.24	Implementation Of A Low Carbon Approach For Hydraulic Concretes	Nicolas Bagneux
P.25	Incremental sequentially linear analysis to trace post-peak snap-backs for concrete	Chenjie Yu
P.26	Innovative structural instrumentation solutions for the monitoring of remote New Zealand civil infrastructure	Mike Lusby
P.27	Mass transport properties of recycled aggregate concrete under the coupling effect of chloride ion erosion and freeze-thaw cycles	Zihao Yu
P.28	Maximum Foreseeable Loss Assessment of Bridge Assets In Eastern Canada	Dario Pietra
P.29	Numerical study on assembled monolithic subway station sidewall joints with pre-grouted section steel insertion	Tianbo Hu
P.30	Propagation of Errors in Post-crack Performance Assessment of FRC Using the ASTM C1609/C1609M Beam Test	Erik Bernard
P.31	Properties of concrete containing graphite at high temperatures for thermal energy storage	In-Hwan Yang
P.32	Repair of heavily damaged walls by replacement of concrete and reinforcing steel	Gonzalo Muñoz
P.33	Seismic behavior of masonry buildings with or without rigid reinforced concrete floor diaphragms	Tomislav Kišiček
P.34	Seismic Capacities of Prestressed Concrete Beam with Circular Openings	Makoto Maruta
P.35	Strut-and-tie models compatible with failure mechanisms using graphic statics	Jihyun Kim & Sung-gul Hong
P.36	The above-standard tilts elimination in the high-rise buildings using an experimental information-analytical system and digital twins	lurii Kaliukh
P.37	The Influence of Concrete Modulus of Elasticity on Integral Bridge Behaviour	Sarah Skorpen
P.38	Victoria Bridge Strengthening and Refurbishment	Eoin O'Donovan& Chris Ross