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ABSTRACT 
GTT-Technologies’ ChemApp for Python was developed to provide a powerful, easy to use interface 
to ChemApp for a programming language highly popular with scientists and engineers. It is used, for 
instance, by GTT to develop program modules such as the CALPHAD Optimizer for the FactSage 
software, by customers to move from interactive FactSage calculations to perform versatile scripting 
with Python, and by GTT and its partners in research projects in the area of materials informatics. 
Computational thermochemistry is fundamental for advancing sustainable metallurgy and creating 
new alloy compositions for engineering applications. Materials informatics involves handling vast 
amounts of data and complex workflows.  
GTT’s approach uses ChemApp for Python and the FactSage thermodynamic databases to design 
recyclable alloys from the start, incorporating a higher percentage of scraps while aiming to simplify 
the workflows to simulate material design steps. Challenges arise due to recycling scraps, 
introducing more elements for consideration. CALPHAD-based databases accurately cover 
materials from primary metallurgy, but additional data for minority and critical elements is crucial for 
precise computational modelling. 
GTT combines machine learning-based ab-initio databases with traditional CALPHAD databases to 
cover the complete chemical space with appropriate accuracy. The design of a hardfacing alloy 
through a high-throughput materials informatics approach is used as a demonstrator of the current 
possibilities. 

INTRODUCTION 
ChemApp is a thermochemical software library which enables the user to perform thermochemical 
calculations across a wide spectrum of applications by providing a programmable interface to 
perform complex equilibrium calculation techniques for multicomponent, multiphase chemical 
systems. It is based on Gunnar Eriksson’s SOLGASMIX code, which was further developed into 
ChemSage (Eriksson and Hack, 1990), and became a widely used program for the calculation of 
complex chemical equilibria.  
Since 1996, ChemApp has been available as a product and is not only used as a module for custom 
program development in research and industry, but also as an add-on to third-party software 
(Petersen and Hack, 2007). The wide range of application areas is supported by the amount of 
thermochemical data available for ChemApp. In particular, all thermochemical data accessible 
through FactSage (Bale et al, 2016) can be used with ChemApp by exporting a subset of the data 
for a particular chemical system from one or more databases to a data-file.   
Initially, ChemApp was used primarily with programming languages such as FORTRAN, C/C++, 
Basic, and Object Pascal/Delphi. In the last years however, Python became more and more a 
programming language of choice for scientists and engineers, especially for scripting and prototyping 
tasks. It was thus decided to develop an interface to ChemApp in the form of a Python package to 
make ChemApp accessible to a larger group of users and applications. 

CHEMAPP FOR PYTHON 

Design goals 
ChemApp for Python provides several augmentations and additional components that allow for ease 
of use and increased productivity. Special care was taken to help new users getting started with the 
packages, without taking away from the accessibility of the raw API to the calculation core, which, 
due to the potential intricate nature of the calculations to perform, is also frequently used. Therefore, 
the package contains a basic module, which provides a direct link to the ChemApp subroutines, very 
similar to the well-established C/C++ and Fortran interfaces. 
An addition to ChemApp for Python is the friendly module, which is exclusive to ChemApp for Python. 
It strives to simplify the process of setting up and running calculations, making it accessible to users 
with all levels of expertise. 
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Furthermore, a set of helper functions and classes are part of ChemApp for Python that allow for 
collaboration and combination with various typical components of the Python ecosystem, such as 
pymatgen (Ong et al, 2013), for instance by providing a compatible class for managing and 
manipulating chemical compositions. 
Additionally, a technical necessity shapes a number of decisions regarding the implementation of 
ChemApp for Python. Since the ChemApp calculation kernel is very strictly procedural, it is 
unfeasible to keep state in a manner like how Python usually does, by reference-counting of objects 
and shallow copying. Therefore, an abstraction of result objects is introduced, which bridges the 
conceptual differences sufficiently well. 

For most applications, including the high-throughput calculations introduced in this study, Python is 
not used for its performance, but rather for its flexibility of use. Nonetheless, performance is a critical 
feature of every software, and in a way a matter of sustainability, too. Therefore, ChemApp for Python 
strives to be as thin of a layer as possible, which, especially given the discrepancies in software 
architecture, is a challenging task. 

Implementation details 
The underlying ChemApp library is designed with the so-called TQ-Interface, for which all separate 
dimensions of a thermochemical system loaded from a data-file have to be addressed using an 
internal index. These indexes exist for phases, system components (which in most cases are the 
elements of the thermochemical system), but also phase constituents, which are generally phase 
model-specific countable entities such as species in a gas phase, or certain stoichiometric 
compositions for which individual modelling data exists. 

The problem space is typically defined by several degrees of freedom that are determined by the 
dimensionality of the thermochemical system, e.g. the number of linearly independent system 
components, and the number of boundary conditions determined by the Gibbs phase rule. 
Despite having its advantages, the setup of calculations using indexes can be improved to increase 
user-friendliness. ChemApp for Python thus implements an interface that allows for the use of names 
of phases, system components, and phase constituents, thus increasing maintainability of the code 
significantly. Furthermore, some of the TQ-Interface functions use string literals. These have all been 
encapsulated into Python enumeration types, which allow for their type-checking by modern ’linters’, 
which help to prevent coding errors by highlighting semantic and stylistic problems in the source 
code. As of the management of errors, failure modes of the ChemApp calculations are properly 
encapsulated into Python exceptions to allow for typical pythonic try-except idioms. 

Despite these improvements, the procedural architecture of the ChemApp library and its inability to 
communicate the internal calculation state continuously are a big problem when trying to produce 
recreatable results. This means that the calculation path to a solution may be different depending on 
previous results and calculations, which can be helpful if calculations are similar and therefore the 
‘proximity’ can be used as an advantage. However, it can be also detrimental to performance if, for 
instance, a randomized input parameter space is employed, for which the final conditions of a 
calculation are very dissimilar. It is computationally impossible to infer which of those cases is more 
likely to occur for a given calculational sequence without a deep understanding of the specific 
calculations. 

ChemApp for Python in its entirety is written in Cython (Behnel et al, 2011), resulting in an elegant 
and efficient wrapping of the ChemApp library, as well as a statically compiled, performance-
enhanced, fully C-compiled Python package.  
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In the design of ChemApp for Python, the developers tried to achieve a balance between the addition 
of ‘verbose’ commands that are close to natural language, and descriptions which are brief and clear. 
One example is the group of user-friendly class functions to retrieve specific results (Figure 1).  

 
Having a consistent and concise, but at the same time clear way to retrieve result values was a main 
goal of the development. 
Within the scope of this type of application, the efficiency of high-throughput computations is 
significantly enhanced by adopting a 'fail early' approach, which can be quickly implemented in 
Python. The ‘brute force’ of using nested iterations on certain compositions has to be organized in a 
way so that the most significant criteria can be evaluated first, and in case of failing validation, the 
nested iterations can be skipped. In Figure 2, an abbreviated example approach highlights how this 
approach removes a (potentially large) chunk of compositions that are known to fail the criteria later.  

ChemApp calculations can produce vast amounts of reasonably informative data, but it is crucially 
important to be able to navigate these results. Therefore, a balance must be found between stored 
and discarded results. As some of the results aren't simple to recover without redoing a calculation, 

def critical_cost_reached(B, Mo, Ti): 

    # this assumes a global dictionary 'cost' exists with the cost of each 

    # element. The value 30 is arbitrarily chosen 

    return cost[B] + cost[Mo] + cost[Ti] >= 30 
 

for B in B_range: 

    for Mo in Mo_range: 

        for Ti in Ti_range: 
            # when cost for B, Mo, Ti reaches a certain threshold, skip 

            # the rest of the loop because it's going to be too expensive 

            if critical_cost_reached(B, Mo, Ti): 

                # skip the rest of the loop 
                continue 

            # otherwise, continue to sample the rest alloying elements  

            for Cr in Cr_range: 

                ... 
 

    

                 

            
            

 

    

        
            

                        

                         

Figure 2. Slightly modified example of an early failing iteration of the calculation scheme, where 
injecting an additional condition early to omit certain iterations increases overall performance. 

# set the amount of O2 in the gas phase of stream #2 to 'A' 
casc.set_IA_pc("#2", "gas_ideal", "O2", A) 

 

# calculate without printing results 

casc.calculate_eq(print_results=False) 
 

# get the amount for each phase constituent in the gas (as list) 

amount_of_pcs_in_gas = casc.get_eq_A_pcs_in_ph("GAS") 

 
# set the status of SLIQ phase as ENTERED 

cats.set_status_ph("SLIQ#1", Status.ENTERED) 

 
 Figure 1. Example calls for functions that ChemApp for Python provides. Notice that a few 
abbreviations are being used. These are used throughout the package, making the developer 
experience fully consistent. The ‘caec’ and ‘casc’ objects are abbreviated class names, with their full 
names being ChemApp.EquilibriumCalculation and ChemApp.StreamCalculation, respectively. 



5 

a satisfactory amount of data needs to be stored to validate against all criteria. Typically, when using 
ChemApp for Python, a Python object that collects all obtainable results can be generated after each 
calculation. However, depending on the size of the thermochemical system (e.g. number of system 
components and phases), this object can reach sizes of a few megabytes per calculation relatively 
easily, which affects performance and agility of any further analysis. If enough consideration of later-
applied criteria can be carried out beforehand, it may be more reasonable to only fetch those required 
results and omit the generation of the full object. The caveat for that strategy is obviously a loss of 
possible further evaluations that would require more information. As many strategies of data 
warehousing in industrial processes prioritize to keep as much data as possible, simply storing all 
result objects may be more feasible, and ChemApp for Python provides routines to serialize into 
common database compatible formats to address this need. 

LEVERAGING THE PYTHON ECOSYSTEM 
A major advantage of using ChemApp for Python for process modeling is the strength of the Python 
ecosystem that allows for easy data transformations. An example of such a strong incorporation of 
established data pipelines and the ease of inputting and outputting into adequate formats and plots 
is illustrated for a simple LD converter process, which can be modelled in a short amount of time. 
The code for this example can be found online (ChemApp Examples Repository, 2024). 
In this example, a specific aspect of the LD converter process of a hot iron melt is illustrated, namely 
the removal of carbon from the liquid phase by oxygen blowing. In real processes, the composition 
of the liquid metal varies, with the appropriate amount of oxygen and the reaction enthalpy being the 
technically interesting results. In Figure 3, an easy way to interact with an externally provided table 
of input values is illustratively shown to indicate the low threshold that is needed to combine external 
data sources with ChemApp for Python. Noteworthy is that the friendly interface performs all 
necessary conversions and datatype management issues internally. 

 
 

import pandas as pd 

 

# content of the hotmetal.csv file: 

# > ID,mass,T,Fe,C,Si,Mn,P,S 
# > 0,97.09,1306.1,94.88,4.01,0.54,0.43,0.109,0.019 

# > 1,99.12,1361.6,94.71,4.28,0.51,0.39,0.096,0.02 

#  ... 

 
# read the input data from a CSV file 

input_data = pd.read_csv("hotmetal.csv").set_index("ID") 

 

for ID, composition in input_data.iterrows(): 
    total_mass, T, Fe, C, Si, Mn, P, S = composition 

    casc.set_IA_pc("#1", "Fe_bcc(s)", "Fe_bcc(s)", Fe) 

    casc.set_IA_pc("#1", "C_Graphite(s)", "C_Graphite(s)", C) 

    casc.set_IA_pc("#1", "Si_solid(s)", "Si_solid(s)", Si) 
 

 
                 
Figure 3. A simple way to include external data sources into a Python script, and subsequently into a 
ChemApp calculation. The code is abbreviated and does not show a fully working example, but 
simply highlights the few lines of code it takes to import values from a csv file for use as parameters 
to ChemApp calls. 
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All calculations, but especially large-dimension calculations benefit a lot from easy exploratory 
plotting and interaction with reduced data. In Figure 4, a brief example is shown that again highlights 
the construction of specific data views from a CalculationResultObject and its properties. 

HIGH-THROUGHPUT SCREENING USING CHEMAPP FOR PYTHON: A 
WORKFLOW FOR THERMODYNAMICALLY-INFORMED DECISION MAKING 
High-throughput screening (HTS) is a powerful approach in materials science that facilitates the 
rapid evaluation of numerous material candidates under varying process conditions. Using 
ChemApp for Python, researchers can systematically explore a wide range of materials and process 
parameters to make informed decisions. The decision-making process follows a number of steps to 
narrow down the initial compositional space to a reduced number of candidates for a more thorough 
examination. This approach is demonstrated below using a simplified example of a high-temperature 
alloy selection process in the Fe-Cr-Co metallic system.   

Step 1: Collect Data 
The first step in HTS involves gathering comprehensive data on the materials of interest and their 
associated process conditions. This data collection includes identifying the state-of-the-art materials 
and the specific conditions under which these materials will be processed. Key factors to consider 
are the chemical composition, phase stability, and potential reactions of the materials under certain 
conditions. 

Example: The alloy system Fe-Cr-Co exhibits the sigma phase over a large composition 
range. The sigma phase is known to cause embrittlement at high temperatures and is not 
desired. 

Step 2: Analyse 
Once the data is collected, the next step is to translate the requirements for the material and the 
process into computable criteria. This involves defining the thermodynamic properties and 
constraints that are critical for the application. For instance, desired properties such as phase 
stability, reaction enthalpies, and Gibbs free energy changes are converted into specific criteria that 
can be analysed computationally. 

Example: The compositional space for the Fe-Cr-Co system is generated based on the 
literature/plant data as shown in Table 1. The equilibrium calculations will be performed for a 

# create a DataFrame with the columns: A, Amount Fe-liq, Carbon content,  

# wt% C, dH 

carbon_content_in_Fe_liq = pd.DataFrame( 
    columns=["A", "Amount Fe-liq", "Carbon content", "wt% C", 

"dH"]).set_index("A") 

for ID in input_data.index: 

   # iterate over the dictionary of calculated result objects 
    for amount_O2, calc_res in converter_results[ID].items(): 

        # the total phase amount 

        amount_feliq = calc_res.phs["Fe-liq"].A 

        # the total enthalpy change 
        dH = calc_res.dH 

        # the phase constituent amount 

        amount_c = calc_res.phs["Fe-liq"].scs["C"].A 

        # calculate carbon content 
        wp_c = amount_c / amount_feliq * 100 
 
Figure 4.  Using pandas’ DataFrames, a table is filled with data specific to a query of the stored 
results is generated by iterating over the results objects and excerpting the respective values from 
the objects. The use of pandas’ DataFrames allows for very convenient use of the data in 
subsequent processing pipelines, as they are a de facto standard for data analysis in Python. 
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temperature of 800°C at ambient pressure. The activity of the sigma phase will be stored in 
a results database for each composition to assess the stability of the embrittling phase. 
Table 1. Composition space for the Fe-Cr-Co system. “Stepsize” represents the resolution 
of the calculations and corresponds to the increment of system component amounts from 
minimum to maximum (in wt.%). 

System component Min (wt.%) Max (wt.%) Stepsize (wt.%) 
Fe 10 80 balance 

Cr 20 80 2 

Co 10 70 1 
 

Step 3: Calculate 
With the criteria defined, the next step is to perform the thermochemical calculations using ChemApp 
for Python. This involves setting up and executing a series of equilibrium calculations to generate 
the necessary thermochemical results. ChemApp for Python allows for the automation of these 
calculations, enabling the efficient handling of a large number of scenarios. The results from these 
calculations, including equilibrium compositions, phase distributions, and thermodynamic properties, 
are stored for further analysis. 

Example: ChemApp for Python code snippet. The composition space is generated and fixed 
conditions are set (1). The incoming amount for each system component is defined (2) and 
the equilibrium for each composition is calculated (3) within a nested loop. The activities of 
the sigma phase are stored in a results dataframe (4). In case the equilibrium cannot be 
calculated, the exception handler is triggered (5). 

# Set fixed conditions (1) 

Co_range = np.arange(10, 71, 1) 

Cr_range = np.arange(20, 81, 2) 
caec.set_eq_T(800)  # °C 

caec.set_eq_P(1)  # bar 

for Co in Co_range: 

    for Cr in Cr_range: 
        Fe = 100 - Co - Cr 

        if Fe <= 80 and Fe >= 10: 

            # Set chemical formula incoming amounts. (2) 

            caec.set_IA_cfs(["Fe", "Co", "Cr"], [Fe, Co, Cr]) 
            try: 

                # Calculate equilibrium (3) 

                caec.calculate_eq() 

                activity_sigma = caec.get_eq_AC_ph("SIGMA") 
                # Assume the results are stored in a  

                # dataframe with the composition as index (4) 

                results_df.loc[Fe, Co, Cr] = activity_sigma 

                print(f"composition {composition_ID} is calculated") 
  # Handle error (5) 

            except ChemAppError: 

                print("Equilibrium cannot be calculated!") 

                results_df.loc[Fe, Co, Cr] = "None" 
 

Figure 5. High-throughput screening of alloy candidates using ChemApp for Python. The code snippet 
illustrates the procedure for setting conditions, calculating the equilibrium, and retrieving results. 
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Step 4: Filter & Select 
The final step in the HTS workflow is to filter and select the most promising material candidates 
based on the predefined criteria. This involves comparing the calculated results against the desired 
properties and constraints. Candidates that meet the criteria are shortlisted for further experimental 
validation or a more detailed study. This step ensures that only the most viable materials, which 
satisfy all necessary thermodynamic requirements, are considered for further examination. 

Example: Set a threshold for the activity of the sigma phase. The compositions that pass the 
criteria are stored in a new dataframe, which is subsequently used for a new set of 
calculations. Repeat the screening until all computable requirements are met based on the 
materials design and processing conditions.   

Input: 

  Output: 

 
By following the steps outlined above, researchers can make thermodynamically informed decisions 
that enhance the efficiency and effectiveness of material selection and process optimization. 
Screening can be repeated to further refine the composition space of alloy candidates. 
 

threshold = 0.5 

results_df_filtered = results_df[results_df["activity_sigma"] < threshold] 

print(results_df_filtered) 

print( 
    f"""Out of {results_df.shape[0]}, {results_df_filtered.shape[0]}  

    compositions have a sigma phase activity of less than {threshold}.""" 

) 

                      activity_sigma 
Fe_wt% Co_wt% Cr_wt%  
21     59     20            0.497369 
20     60     20            0.478664 
19     61     20            0.461042 
18     62     20            0.444460 
17     63     20            0.428878 
16     64     20            0.414260 
15     65     20            0.400567 
14     66     20            0.387766 
13     67     20            0.375822 
12     68     20            0.364705 
11     69     20            0.354385 
10     70     20            0.344834 
 
Out of 961, 12 compositions have a sigma phase activity of less than 0.5. 

Figure 6. Postprocessing of equilibrium calculation results. The code snippet illustrates how the 
equilibrium calculation results are filtered to identify compositions where the sigma phase has an activity 
of less than 0.5. It then prints the filtered results and reports the number of compositions meeting the 
threshold criteria. 

 

Figure 7. Output of results generated by the code snippet shown in the Figure 6. 
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CASE SCENARIO: HARDFACING ALLOY DESIGN USING THERMOCHEMICAL 
SCREENING 
In this example we introduce the design of a hardfacing alloy using a high-throughput “materials 
informatics” approach. The objective is to identify successful compositions for an iron-based 
hardfacing alloy for mining and agricultural applications, which is also cheaper than a patented 
benchmark material. The project started with a sample space of 765.000 compositions based on a 
range of the benchmark alloy’s reference composition space that involves 12 elements. As a result 
of the multi-step HTS process, 168 promising compositions were obtained.  

The foundational step in the high-throughput approach involves the selection and integration of 
compatible thermochemical data within the chemical system of interest. FactSage provides a variety 
of databases which are particularly useful for various applications such as materials design, process 
metallurgy, and energy conversion. By combining CALPHAD (Calculation of Phase Diagrams) and 
ab-initio based thermochemical data for use with ChemApp calculations, users can address complex 
scenarios in material science, such as identifying critical elements in steel metallurgy, which require 
a comprehensive and accurate materials property database.   

Following the selection of the appropriate thermochemical data, specifications must be clearly 
defined based on the intended application of the material. This corresponds to step 1 (see above), 
where data is collected for the calculations. Specifications can be material-, process- or cost-related 
based on the application case. A crucial step is the transformation of process specifications to 
thermodynamically computable criteria in order to generate a high-throughput calculation workflow 
(i.e. analyse the data and ensure that the specifications are met). For instance, the design of 
hardfacing alloys necessitates specific processes and properties such as austenitic solidification, 
martensitic transformation, and a narrow melting range. The melt range criterion is defined as the 
difference between the formation temperature of a first hard phase to solidify, and the liquidus 
temperature of a matrix phase. It is a fingerprint of the tendency for hot cracking during solidification. 
Additionally, it is vital to avoid conditions that result in the formation of phases such as carbides, 
borides, and intermetallics that can embrittle the alloy. Specific conditions also include physical 
properties such as low density and cost-effectiveness, which can be estimated using databases such 
as GTT’s ab-initio Materials Project Database (aiMP). These specifications can serve as computable 
criteria for the subsequent material screening process.  
The next phase involves navigating the chemical space to identify potential candidates that meet the 
defined specifications. ChemApp offers robust capabilities for exploring and manipulating chemical 
compositions. This allows researchers to rapidly scan through thousands of potential compounds to 
pinpoint those that align with the desired material properties. In the process of generating the 
compositional space for the design of a hardfacing alloy, it is initially defined to consist of 10 metals 
plus boron (B) and carbon (C). The composition range for each element is established with iron 
serving as the balancing element. The maximum and minimum values (in mol.%) are set for each 
component. Iron is set to vary from 45 to 70 mol%, while additives like molybdenum, vanadium, and 
nickel vary from 0 to 20 mol%, and carbon and boron from 5 to 15 mol%. The step sizes for each 
element are set to values between 2.5 and 5 mol%. This structured approach allows for the 
systematic exploration and analysis of the defined chemical space. 

Once the compositional space is generated, it is possible to calculate and perform the equilibrium 
calculations. The initial screening of 765,000 compositions involves two equilibrium calculations at 
temperatures of 500°C and 1000°C. This process aims to identify compositions that predict stability 
for the FCC (face-centred cubic) phase at high temperature (1000°C) and the BCC (body-centred 
cubic) phase at low temperature (500°C), aligning with the benchmark alloy and its FCC-BCC 
transformation criteria. Additionally, the screening checks for the predicted absence of the graphite 
phase, which is crucial for the desired material properties. Once the calculation results are stored in 
a dedicated database, the compositions can be subsequently refined, corresponding to the “Filter & 
Select” step of the high-throughput approach. This efficiently narrows down the number of potential 
candidates by assessing their relevant phase stabilities under the specified thermal conditions.   



10 

After filtering out 92% of compositions as a result of the initial screening, the focus shifts to more 
computationally intensive calculations, now manageable due to the reduced dataset size. The melt 
range of hard precipitates is determined through a two-step process that starts with the calculation 
of the liquidus temperature (Tliq) of the matrix phase. This temperature is critical for identifying the 
point at which the material begins to solidify. Following this, an equilibrium calculation is conducted 
at 250°C lower than Tliq to assess the stability of the matrix phase at reduced temperatures. The 
martensite start temperature (Tms) model, which predicts the temperature at which martensite (a 
harder, more brittle phase of steel) begins to form, is applied to successful candidates that pass the 
melt range criteria (van Bohemen and Morsdorf, 2017). This prediction is based on how the free 
energy of the material changes with temperature between two different Fe-matrix phases (FCC and 
BCC) at 1000°C. 

Estimated Tms values agree well with experimental findings of our project partners within a range of 
±50°C. The aiMP database is employed to calculate the bulk density of each alloy composition. The 
cost of each composition is calculated by the weighted average of phases and corresponding 
densities. Approximately 300 phases are identified for each composition and categorized into four 
groups: (1) Fe-matrix phase, (2) carbides & borides that cause strengthening, (3) carbides & borides 
that cause embrittlement, and (4) intermetallics. Consequently, any compositions that include 
phases leading to embrittlement (i.e. which belong to group 3 and 4) are filtered out. The remaining 
compositions are taken as the successful candidates that pass the screening criteria. Furthermore, 
the solidus and liquidus temperatures of the alloy are reported for each successful composition, as 
these temperatures define the range over which the alloy remains partially liquid and are thus crucial 
for processing techniques in additive manufacturing.  

In the final screening step, alloy compositions which pass the thermochemical screening criteria are 
evaluated based on the criticality of the alloying elements. Criticality in the context of alloying 
elements refers to the assessment of risks associated with their supply, which includes factors such 
as scarcity, geopolitical risks, and environmental implications of their extraction and processing. As 
shown in Figure 8, the “Substitution Index” (SI) is used as a metric for criticality, where the arrow 
indicates the tendency towards a lower substitution index that is the goal with respect to the alloy 
composition, as well as a lower production cost.  

 
Figure 8. High-throughput screening of alloy candidates using ChemApp for Python. The figure demonstrates the 
process of identifying suitable alloys through high-throughput screening. The methodology encompasses evaluation 
within the total compositional space, austenitic solidification, martensitic transformation, and avoidance of hot 
cracking (e.g. melt range criteria). The criticality impact plot (top right) highlights the substitution index versus 
production cost (€/kg). The arrow indicates the intended tendency towards a lower substitution index and lower 
productions costs for the alloy composition. Predicted results and measured properties by subsequent processing of 
a single alloy candidate are given in the inserted table (bottom right). Liquidus, solidus and martensite start 
temperatures are compared and found to be in good agreement. 
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An average substitution index is calculated based on the aforementioned criteria for each 
composition and is found to be in good agreement with the low production costs associated with 
using fewer alloying elements.  

The thermochemical screening methodology used in this work has proven to be effective in 
identifying potential alloy candidates for industrial applications, taking into account process 
specifications, production costs, as well as environmental and supply chain of issues of critical 
alloying elements. Successful alloy candidates already underwent experimental analysis by our 
project partners. It was found that the measured findings align well with the predicted results, 
providing corroborating evidence for the existence of novel alloy compositions that are more 
sustainable and cheaper than the benchmark alloy while maintaining structural performance.  

CONCLUSIONS 
In the rapidly evolving field of material science, the high-throughput materials informatics approach 
has emerged as a transformative methodology, significantly accelerating the discovery and 
optimization of novel materials. With the automatic generation of ChemApp for Python scripts from 
FactSage, this approach is now easily accessible to every FactSage user, be it in an academic or 
industrial research context. The potential is demonstrated by screening millions of compositions for 
interesting properties as hardfacing alloys. The properties include application-related properties such 
as high hardness by formation of martensite and pre-defined volume fraction of carbides and borides, 
as well as properties related to processing, such as low liquidus temperature and low tendency for 
hot cracking during solidification. Besides the direct screening for application- or processing-related 
properties, the methodology can also be used to generate high-quality, homogeneous input data for 
machine learning models.  
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