
1

Process modeling and high-throughput thermochemical calculations
using ChemApp for Python

Ö. K. Büyükuslu, F. Tang, M. to Baben, S. Petersen

GTT-Technologies, 52134 Herzogenrath, Germany, Email: sp@gtt-technologies.de

Keywords: thermochemistry, materials informatics, high-throughput calculations, ChemApp

mailto:sp@gtt-technologies.de

2

ABSTRACT
GTT-Technologies’ ChemApp for Python was developed to provide a powerful, easy to use interface
to ChemApp for a programming language highly popular with scientists and engineers. It is used, for
instance, by GTT to develop program modules such as the CALPHAD Optimizer for the FactSage
software, by customers to move from interactive FactSage calculations to perform versatile scripting
with Python, and by GTT and its partners in research projects in the area of materials informatics.
Computational thermochemistry is fundamental for advancing sustainable metallurgy and creating
new alloy compositions for engineering applications. Materials informatics involves handling vast
amounts of data and complex workflows.
GTT’s approach uses ChemApp for Python and the FactSage thermodynamic databases to design
recyclable alloys from the start, incorporating a higher percentage of scraps while aiming to simplify
the workflows to simulate material design steps. Challenges arise due to recycling scraps,
introducing more elements for consideration. CALPHAD-based databases accurately cover
materials from primary metallurgy, but additional data for minority and critical elements is crucial for
precise computational modelling.
GTT combines machine learning-based ab-initio databases with traditional CALPHAD databases to
cover the complete chemical space with appropriate accuracy. The design of a hardfacing alloy
through a high-throughput materials informatics approach is used as a demonstrator of the current
possibilities.

INTRODUCTION
ChemApp is a thermochemical software library which enables the user to perform thermochemical
calculations across a wide spectrum of applications by providing a programmable interface to
perform complex equilibrium calculation techniques for multicomponent, multiphase chemical
systems. It is based on Gunnar Eriksson’s SOLGASMIX code, which was further developed into
ChemSage (Eriksson and Hack, 1990), and became a widely used program for the calculation of
complex chemical equilibria.
Since 1996, ChemApp has been available as a product and is not only used as a module for custom
program development in research and industry, but also as an add-on to third-party software
(Petersen and Hack, 2007). The wide range of application areas is supported by the amount of
thermochemical data available for ChemApp. In particular, all thermochemical data accessible
through FactSage (Bale et al, 2016) can be used with ChemApp by exporting a subset of the data
for a particular chemical system from one or more databases to a data-file.
Initially, ChemApp was used primarily with programming languages such as FORTRAN, C/C++,
Basic, and Object Pascal/Delphi. In the last years however, Python became more and more a
programming language of choice for scientists and engineers, especially for scripting and prototyping
tasks. It was thus decided to develop an interface to ChemApp in the form of a Python package to
make ChemApp accessible to a larger group of users and applications.

CHEMAPP FOR PYTHON

Design goals
ChemApp for Python provides several augmentations and additional components that allow for ease
of use and increased productivity. Special care was taken to help new users getting started with the
packages, without taking away from the accessibility of the raw API to the calculation core, which,
due to the potential intricate nature of the calculations to perform, is also frequently used. Therefore,
the package contains a basic module, which provides a direct link to the ChemApp subroutines, very
similar to the well-established C/C++ and Fortran interfaces.
An addition to ChemApp for Python is the friendly module, which is exclusive to ChemApp for Python.
It strives to simplify the process of setting up and running calculations, making it accessible to users
with all levels of expertise.

3

Furthermore, a set of helper functions and classes are part of ChemApp for Python that allow for
collaboration and combination with various typical components of the Python ecosystem, such as
pymatgen (Ong et al, 2013), for instance by providing a compatible class for managing and
manipulating chemical compositions.
Additionally, a technical necessity shapes a number of decisions regarding the implementation of
ChemApp for Python. Since the ChemApp calculation kernel is very strictly procedural, it is
unfeasible to keep state in a manner like how Python usually does, by reference-counting of objects
and shallow copying. Therefore, an abstraction of result objects is introduced, which bridges the
conceptual differences sufficiently well.

For most applications, including the high-throughput calculations introduced in this study, Python is
not used for its performance, but rather for its flexibility of use. Nonetheless, performance is a critical
feature of every software, and in a way a matter of sustainability, too. Therefore, ChemApp for Python
strives to be as thin of a layer as possible, which, especially given the discrepancies in software
architecture, is a challenging task.

Implementation details
The underlying ChemApp library is designed with the so-called TQ-Interface, for which all separate
dimensions of a thermochemical system loaded from a data-file have to be addressed using an
internal index. These indexes exist for phases, system components (which in most cases are the
elements of the thermochemical system), but also phase constituents, which are generally phase
model-specific countable entities such as species in a gas phase, or certain stoichiometric
compositions for which individual modelling data exists.

The problem space is typically defined by several degrees of freedom that are determined by the
dimensionality of the thermochemical system, e.g. the number of linearly independent system
components, and the number of boundary conditions determined by the Gibbs phase rule.
Despite having its advantages, the setup of calculations using indexes can be improved to increase
user-friendliness. ChemApp for Python thus implements an interface that allows for the use of names
of phases, system components, and phase constituents, thus increasing maintainability of the code
significantly. Furthermore, some of the TQ-Interface functions use string literals. These have all been
encapsulated into Python enumeration types, which allow for their type-checking by modern ’linters’,
which help to prevent coding errors by highlighting semantic and stylistic problems in the source
code. As of the management of errors, failure modes of the ChemApp calculations are properly
encapsulated into Python exceptions to allow for typical pythonic try-except idioms.

Despite these improvements, the procedural architecture of the ChemApp library and its inability to
communicate the internal calculation state continuously are a big problem when trying to produce
recreatable results. This means that the calculation path to a solution may be different depending on
previous results and calculations, which can be helpful if calculations are similar and therefore the
‘proximity’ can be used as an advantage. However, it can be also detrimental to performance if, for
instance, a randomized input parameter space is employed, for which the final conditions of a
calculation are very dissimilar. It is computationally impossible to infer which of those cases is more
likely to occur for a given calculational sequence without a deep understanding of the specific
calculations.

ChemApp for Python in its entirety is written in Cython (Behnel et al, 2011), resulting in an elegant
and efficient wrapping of the ChemApp library, as well as a statically compiled, performance-
enhanced, fully C-compiled Python package.

4

In the design of ChemApp for Python, the developers tried to achieve a balance between the addition
of ‘verbose’ commands that are close to natural language, and descriptions which are brief and clear.
One example is the group of user-friendly class functions to retrieve specific results (Figure 1).

Having a consistent and concise, but at the same time clear way to retrieve result values was a main
goal of the development.
Within the scope of this type of application, the efficiency of high-throughput computations is
significantly enhanced by adopting a 'fail early' approach, which can be quickly implemented in
Python. The ‘brute force’ of using nested iterations on certain compositions has to be organized in a
way so that the most significant criteria can be evaluated first, and in case of failing validation, the
nested iterations can be skipped. In Figure 2, an abbreviated example approach highlights how this
approach removes a (potentially large) chunk of compositions that are known to fail the criteria later.

ChemApp calculations can produce vast amounts of reasonably informative data, but it is crucially
important to be able to navigate these results. Therefore, a balance must be found between stored
and discarded results. As some of the results aren't simple to recover without redoing a calculation,

def critical_cost_reached(B, Mo, Ti):

 # this assumes a global dictionary 'cost' exists with the cost of each

 # element. The value 30 is arbitrarily chosen

 return cost[B] + cost[Mo] + cost[Ti] >= 30

for B in B_range:

 for Mo in Mo_range:

 for Ti in Ti_range:
 # when cost for B, Mo, Ti reaches a certain threshold, skip

 # the rest of the loop because it's going to be too expensive

 if critical_cost_reached(B, Mo, Ti):

 # skip the rest of the loop
 continue

 # otherwise, continue to sample the rest alloying elements

 for Cr in Cr_range:

 ...

Figure 2. Slightly modified example of an early failing iteration of the calculation scheme, where
injecting an additional condition early to omit certain iterations increases overall performance.

set the amount of O2 in the gas phase of stream #2 to 'A'
casc.set_IA_pc("#2", "gas_ideal", "O2", A)

calculate without printing results

casc.calculate_eq(print_results=False)

get the amount for each phase constituent in the gas (as list)

amount_of_pcs_in_gas = casc.get_eq_A_pcs_in_ph("GAS")

set the status of SLIQ phase as ENTERED

cats.set_status_ph("SLIQ#1", Status.ENTERED)

 Figure 1. Example calls for functions that ChemApp for Python provides. Notice that a few
abbreviations are being used. These are used throughout the package, making the developer
experience fully consistent. The ‘caec’ and ‘casc’ objects are abbreviated class names, with their full
names being ChemApp.EquilibriumCalculation and ChemApp.StreamCalculation, respectively.

5

a satisfactory amount of data needs to be stored to validate against all criteria. Typically, when using
ChemApp for Python, a Python object that collects all obtainable results can be generated after each
calculation. However, depending on the size of the thermochemical system (e.g. number of system
components and phases), this object can reach sizes of a few megabytes per calculation relatively
easily, which affects performance and agility of any further analysis. If enough consideration of later-
applied criteria can be carried out beforehand, it may be more reasonable to only fetch those required
results and omit the generation of the full object. The caveat for that strategy is obviously a loss of
possible further evaluations that would require more information. As many strategies of data
warehousing in industrial processes prioritize to keep as much data as possible, simply storing all
result objects may be more feasible, and ChemApp for Python provides routines to serialize into
common database compatible formats to address this need.

LEVERAGING THE PYTHON ECOSYSTEM
A major advantage of using ChemApp for Python for process modeling is the strength of the Python
ecosystem that allows for easy data transformations. An example of such a strong incorporation of
established data pipelines and the ease of inputting and outputting into adequate formats and plots
is illustrated for a simple LD converter process, which can be modelled in a short amount of time.
The code for this example can be found online (ChemApp Examples Repository, 2024).
In this example, a specific aspect of the LD converter process of a hot iron melt is illustrated, namely
the removal of carbon from the liquid phase by oxygen blowing. In real processes, the composition
of the liquid metal varies, with the appropriate amount of oxygen and the reaction enthalpy being the
technically interesting results. In Figure 3, an easy way to interact with an externally provided table
of input values is illustratively shown to indicate the low threshold that is needed to combine external
data sources with ChemApp for Python. Noteworthy is that the friendly interface performs all
necessary conversions and datatype management issues internally.

import pandas as pd

content of the hotmetal.csv file:

> ID,mass,T,Fe,C,Si,Mn,P,S
> 0,97.09,1306.1,94.88,4.01,0.54,0.43,0.109,0.019

> 1,99.12,1361.6,94.71,4.28,0.51,0.39,0.096,0.02

...

read the input data from a CSV file

input_data = pd.read_csv("hotmetal.csv").set_index("ID")

for ID, composition in input_data.iterrows():
 total_mass, T, Fe, C, Si, Mn, P, S = composition

 casc.set_IA_pc("#1", "Fe_bcc(s)", "Fe_bcc(s)", Fe)

 casc.set_IA_pc("#1", "C_Graphite(s)", "C_Graphite(s)", C)

 casc.set_IA_pc("#1", "Si_solid(s)", "Si_solid(s)", Si)

Figure 3. A simple way to include external data sources into a Python script, and subsequently into a
ChemApp calculation. The code is abbreviated and does not show a fully working example, but
simply highlights the few lines of code it takes to import values from a csv file for use as parameters
to ChemApp calls.

6

All calculations, but especially large-dimension calculations benefit a lot from easy exploratory
plotting and interaction with reduced data. In Figure 4, a brief example is shown that again highlights
the construction of specific data views from a CalculationResultObject and its properties.

HIGH-THROUGHPUT SCREENING USING CHEMAPP FOR PYTHON: A
WORKFLOW FOR THERMODYNAMICALLY-INFORMED DECISION MAKING
High-throughput screening (HTS) is a powerful approach in materials science that facilitates the
rapid evaluation of numerous material candidates under varying process conditions. Using
ChemApp for Python, researchers can systematically explore a wide range of materials and process
parameters to make informed decisions. The decision-making process follows a number of steps to
narrow down the initial compositional space to a reduced number of candidates for a more thorough
examination. This approach is demonstrated below using a simplified example of a high-temperature
alloy selection process in the Fe-Cr-Co metallic system.

Step 1: Collect Data
The first step in HTS involves gathering comprehensive data on the materials of interest and their
associated process conditions. This data collection includes identifying the state-of-the-art materials
and the specific conditions under which these materials will be processed. Key factors to consider
are the chemical composition, phase stability, and potential reactions of the materials under certain
conditions.

Example: The alloy system Fe-Cr-Co exhibits the sigma phase over a large composition
range. The sigma phase is known to cause embrittlement at high temperatures and is not
desired.

Step 2: Analyse
Once the data is collected, the next step is to translate the requirements for the material and the
process into computable criteria. This involves defining the thermodynamic properties and
constraints that are critical for the application. For instance, desired properties such as phase
stability, reaction enthalpies, and Gibbs free energy changes are converted into specific criteria that
can be analysed computationally.

Example: The compositional space for the Fe-Cr-Co system is generated based on the
literature/plant data as shown in Table 1. The equilibrium calculations will be performed for a

create a DataFrame with the columns: A, Amount Fe-liq, Carbon content,

wt% C, dH

carbon_content_in_Fe_liq = pd.DataFrame(
 columns=["A", "Amount Fe-liq", "Carbon content", "wt% C",

"dH"]).set_index("A")

for ID in input_data.index:

 # iterate over the dictionary of calculated result objects
 for amount_O2, calc_res in converter_results[ID].items():

 # the total phase amount

 amount_feliq = calc_res.phs["Fe-liq"].A

 # the total enthalpy change
 dH = calc_res.dH

 # the phase constituent amount

 amount_c = calc_res.phs["Fe-liq"].scs["C"].A

 # calculate carbon content
 wp_c = amount_c / amount_feliq * 100

Figure 4. Using pandas’ DataFrames, a table is filled with data specific to a query of the stored
results is generated by iterating over the results objects and excerpting the respective values from
the objects. The use of pandas’ DataFrames allows for very convenient use of the data in
subsequent processing pipelines, as they are a de facto standard for data analysis in Python.

7

temperature of 800°C at ambient pressure. The activity of the sigma phase will be stored in
a results database for each composition to assess the stability of the embrittling phase.
Table 1. Composition space for the Fe-Cr-Co system. “Stepsize” represents the resolution
of the calculations and corresponds to the increment of system component amounts from
minimum to maximum (in wt.%).

System component Min (wt.%) Max (wt.%) Stepsize (wt.%)
Fe 10 80 balance

Cr 20 80 2

Co 10 70 1

Step 3: Calculate
With the criteria defined, the next step is to perform the thermochemical calculations using ChemApp
for Python. This involves setting up and executing a series of equilibrium calculations to generate
the necessary thermochemical results. ChemApp for Python allows for the automation of these
calculations, enabling the efficient handling of a large number of scenarios. The results from these
calculations, including equilibrium compositions, phase distributions, and thermodynamic properties,
are stored for further analysis.

Example: ChemApp for Python code snippet. The composition space is generated and fixed
conditions are set (1). The incoming amount for each system component is defined (2) and
the equilibrium for each composition is calculated (3) within a nested loop. The activities of
the sigma phase are stored in a results dataframe (4). In case the equilibrium cannot be
calculated, the exception handler is triggered (5).

Set fixed conditions (1)

Co_range = np.arange(10, 71, 1)

Cr_range = np.arange(20, 81, 2)
caec.set_eq_T(800) # °C

caec.set_eq_P(1) # bar

for Co in Co_range:

 for Cr in Cr_range:
 Fe = 100 - Co - Cr

 if Fe <= 80 and Fe >= 10:

 # Set chemical formula incoming amounts. (2)

 caec.set_IA_cfs(["Fe", "Co", "Cr"], [Fe, Co, Cr])
 try:

 # Calculate equilibrium (3)

 caec.calculate_eq()

 activity_sigma = caec.get_eq_AC_ph("SIGMA")
 # Assume the results are stored in a

 # dataframe with the composition as index (4)

 results_df.loc[Fe, Co, Cr] = activity_sigma

 print(f"composition {composition_ID} is calculated")
 # Handle error (5)

 except ChemAppError:

 print("Equilibrium cannot be calculated!")

 results_df.loc[Fe, Co, Cr] = "None"

Figure 5. High-throughput screening of alloy candidates using ChemApp for Python. The code snippet
illustrates the procedure for setting conditions, calculating the equilibrium, and retrieving results.

8

Step 4: Filter & Select
The final step in the HTS workflow is to filter and select the most promising material candidates
based on the predefined criteria. This involves comparing the calculated results against the desired
properties and constraints. Candidates that meet the criteria are shortlisted for further experimental
validation or a more detailed study. This step ensures that only the most viable materials, which
satisfy all necessary thermodynamic requirements, are considered for further examination.

Example: Set a threshold for the activity of the sigma phase. The compositions that pass the
criteria are stored in a new dataframe, which is subsequently used for a new set of
calculations. Repeat the screening until all computable requirements are met based on the
materials design and processing conditions.

Input:

 Output:

By following the steps outlined above, researchers can make thermodynamically informed decisions
that enhance the efficiency and effectiveness of material selection and process optimization.
Screening can be repeated to further refine the composition space of alloy candidates.

threshold = 0.5

results_df_filtered = results_df[results_df["activity_sigma"] < threshold]

print(results_df_filtered)

print(
 f"""Out of {results_df.shape[0]}, {results_df_filtered.shape[0]}

 compositions have a sigma phase activity of less than {threshold}."""

)

 activity_sigma
Fe_wt% Co_wt% Cr_wt%
21 59 20 0.497369
20 60 20 0.478664
19 61 20 0.461042
18 62 20 0.444460
17 63 20 0.428878
16 64 20 0.414260
15 65 20 0.400567
14 66 20 0.387766
13 67 20 0.375822
12 68 20 0.364705
11 69 20 0.354385
10 70 20 0.344834

Out of 961, 12 compositions have a sigma phase activity of less than 0.5.

Figure 6. Postprocessing of equilibrium calculation results. The code snippet illustrates how the
equilibrium calculation results are filtered to identify compositions where the sigma phase has an activity
of less than 0.5. It then prints the filtered results and reports the number of compositions meeting the
threshold criteria.

Figure 7. Output of results generated by the code snippet shown in the Figure 6.

9

CASE SCENARIO: HARDFACING ALLOY DESIGN USING THERMOCHEMICAL
SCREENING
In this example we introduce the design of a hardfacing alloy using a high-throughput “materials
informatics” approach. The objective is to identify successful compositions for an iron-based
hardfacing alloy for mining and agricultural applications, which is also cheaper than a patented
benchmark material. The project started with a sample space of 765.000 compositions based on a
range of the benchmark alloy’s reference composition space that involves 12 elements. As a result
of the multi-step HTS process, 168 promising compositions were obtained.

The foundational step in the high-throughput approach involves the selection and integration of
compatible thermochemical data within the chemical system of interest. FactSage provides a variety
of databases which are particularly useful for various applications such as materials design, process
metallurgy, and energy conversion. By combining CALPHAD (Calculation of Phase Diagrams) and
ab-initio based thermochemical data for use with ChemApp calculations, users can address complex
scenarios in material science, such as identifying critical elements in steel metallurgy, which require
a comprehensive and accurate materials property database.

Following the selection of the appropriate thermochemical data, specifications must be clearly
defined based on the intended application of the material. This corresponds to step 1 (see above),
where data is collected for the calculations. Specifications can be material-, process- or cost-related
based on the application case. A crucial step is the transformation of process specifications to
thermodynamically computable criteria in order to generate a high-throughput calculation workflow
(i.e. analyse the data and ensure that the specifications are met). For instance, the design of
hardfacing alloys necessitates specific processes and properties such as austenitic solidification,
martensitic transformation, and a narrow melting range. The melt range criterion is defined as the
difference between the formation temperature of a first hard phase to solidify, and the liquidus
temperature of a matrix phase. It is a fingerprint of the tendency for hot cracking during solidification.
Additionally, it is vital to avoid conditions that result in the formation of phases such as carbides,
borides, and intermetallics that can embrittle the alloy. Specific conditions also include physical
properties such as low density and cost-effectiveness, which can be estimated using databases such
as GTT’s ab-initio Materials Project Database (aiMP). These specifications can serve as computable
criteria for the subsequent material screening process.
The next phase involves navigating the chemical space to identify potential candidates that meet the
defined specifications. ChemApp offers robust capabilities for exploring and manipulating chemical
compositions. This allows researchers to rapidly scan through thousands of potential compounds to
pinpoint those that align with the desired material properties. In the process of generating the
compositional space for the design of a hardfacing alloy, it is initially defined to consist of 10 metals
plus boron (B) and carbon (C). The composition range for each element is established with iron
serving as the balancing element. The maximum and minimum values (in mol.%) are set for each
component. Iron is set to vary from 45 to 70 mol%, while additives like molybdenum, vanadium, and
nickel vary from 0 to 20 mol%, and carbon and boron from 5 to 15 mol%. The step sizes for each
element are set to values between 2.5 and 5 mol%. This structured approach allows for the
systematic exploration and analysis of the defined chemical space.

Once the compositional space is generated, it is possible to calculate and perform the equilibrium
calculations. The initial screening of 765,000 compositions involves two equilibrium calculations at
temperatures of 500°C and 1000°C. This process aims to identify compositions that predict stability
for the FCC (face-centred cubic) phase at high temperature (1000°C) and the BCC (body-centred
cubic) phase at low temperature (500°C), aligning with the benchmark alloy and its FCC-BCC
transformation criteria. Additionally, the screening checks for the predicted absence of the graphite
phase, which is crucial for the desired material properties. Once the calculation results are stored in
a dedicated database, the compositions can be subsequently refined, corresponding to the “Filter &
Select” step of the high-throughput approach. This efficiently narrows down the number of potential
candidates by assessing their relevant phase stabilities under the specified thermal conditions.

10

After filtering out 92% of compositions as a result of the initial screening, the focus shifts to more
computationally intensive calculations, now manageable due to the reduced dataset size. The melt
range of hard precipitates is determined through a two-step process that starts with the calculation
of the liquidus temperature (Tliq) of the matrix phase. This temperature is critical for identifying the
point at which the material begins to solidify. Following this, an equilibrium calculation is conducted
at 250°C lower than Tliq to assess the stability of the matrix phase at reduced temperatures. The
martensite start temperature (Tms) model, which predicts the temperature at which martensite (a
harder, more brittle phase of steel) begins to form, is applied to successful candidates that pass the
melt range criteria (van Bohemen and Morsdorf, 2017). This prediction is based on how the free
energy of the material changes with temperature between two different Fe-matrix phases (FCC and
BCC) at 1000°C.

Estimated Tms values agree well with experimental findings of our project partners within a range of
±50°C. The aiMP database is employed to calculate the bulk density of each alloy composition. The
cost of each composition is calculated by the weighted average of phases and corresponding
densities. Approximately 300 phases are identified for each composition and categorized into four
groups: (1) Fe-matrix phase, (2) carbides & borides that cause strengthening, (3) carbides & borides
that cause embrittlement, and (4) intermetallics. Consequently, any compositions that include
phases leading to embrittlement (i.e. which belong to group 3 and 4) are filtered out. The remaining
compositions are taken as the successful candidates that pass the screening criteria. Furthermore,
the solidus and liquidus temperatures of the alloy are reported for each successful composition, as
these temperatures define the range over which the alloy remains partially liquid and are thus crucial
for processing techniques in additive manufacturing.

In the final screening step, alloy compositions which pass the thermochemical screening criteria are
evaluated based on the criticality of the alloying elements. Criticality in the context of alloying
elements refers to the assessment of risks associated with their supply, which includes factors such
as scarcity, geopolitical risks, and environmental implications of their extraction and processing. As
shown in Figure 8, the “Substitution Index” (SI) is used as a metric for criticality, where the arrow
indicates the tendency towards a lower substitution index that is the goal with respect to the alloy
composition, as well as a lower production cost.

Figure 8. High-throughput screening of alloy candidates using ChemApp for Python. The figure demonstrates the
process of identifying suitable alloys through high-throughput screening. The methodology encompasses evaluation
within the total compositional space, austenitic solidification, martensitic transformation, and avoidance of hot
cracking (e.g. melt range criteria). The criticality impact plot (top right) highlights the substitution index versus
production cost (€/kg). The arrow indicates the intended tendency towards a lower substitution index and lower
productions costs for the alloy composition. Predicted results and measured properties by subsequent processing of
a single alloy candidate are given in the inserted table (bottom right). Liquidus, solidus and martensite start
temperatures are compared and found to be in good agreement.

11

An average substitution index is calculated based on the aforementioned criteria for each
composition and is found to be in good agreement with the low production costs associated with
using fewer alloying elements.

The thermochemical screening methodology used in this work has proven to be effective in
identifying potential alloy candidates for industrial applications, taking into account process
specifications, production costs, as well as environmental and supply chain of issues of critical
alloying elements. Successful alloy candidates already underwent experimental analysis by our
project partners. It was found that the measured findings align well with the predicted results,
providing corroborating evidence for the existence of novel alloy compositions that are more
sustainable and cheaper than the benchmark alloy while maintaining structural performance.

CONCLUSIONS
In the rapidly evolving field of material science, the high-throughput materials informatics approach
has emerged as a transformative methodology, significantly accelerating the discovery and
optimization of novel materials. With the automatic generation of ChemApp for Python scripts from
FactSage, this approach is now easily accessible to every FactSage user, be it in an academic or
industrial research context. The potential is demonstrated by screening millions of compositions for
interesting properties as hardfacing alloys. The properties include application-related properties such
as high hardness by formation of martensite and pre-defined volume fraction of carbides and borides,
as well as properties related to processing, such as low liquidus temperature and low tendency for
hot cracking during solidification. Besides the direct screening for application- or processing-related
properties, the methodology can also be used to generate high-quality, homogeneous input data for
machine learning models.

REFERENCES
Bale, C W, Bélisle, E, Chartrand, P, Decterov, S A, Eriksson, G, Gheribi, A E, Hack, K, Jung, I H, Kang, Y B, Melançon, J,

Pelton, A D, Petersen, S, Robelin, C, Sangster, J, Spencer, P, Van Ende, M-A, 2016. FactSage Thermochemical
Software and Databases 2010 – 2016. Calphad, 54:35-53. https://doi.org/10.1016/j.calphad.2016.05.002

Eriksson, G, and Hack, K, 1990. ChemSage - A computer program for the calculation of complex chemical equilibria, Metall
Trans B, 21:1013-1023. https://doi.org/10.1007/BF02670272

Ong, S P, Richards, W D, Jain, A, Hautier, G, Kocher, M, Cholia, S, Gunter, D, Chevrier, V L, Persson, K A, Ceder, G,
2013. Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials Analysis,
Computational Materials Science, 68:314-319. https://doi.org/10.1016/j.commatsci.2012.10.028

Petersen, S, and Hack, K, 2007. The thermochemistry library ChemApp and its applications. International Journal of
Materials Research, 98(10):935-945. https://doi.org/10.3139/146.101551

van Bohemen, S M C, and Morsdorf, L, 2017. Predicting the Ms temperature of steels with a thermodynamic based model
including the effect of the prior austenite grain size, Acta Materialia, 125:401-415.
https://doi.org/10.1016/j.actamat.2016.12.029

Behnel, S, Bradshaw, R, Citro, C, Dalcin, L, Seljebotn, D S, Smith, K, 2011. Cython: The best of both worlds. Computing
in Science & Engineering, 13(2), pp.31–39. http://dx.doi.org/10.1109/MCSE.2010.118

ChemApp Examples Repository (2024) GitHub. Available at: https://github.com/GTT-Technologies/ChemApp-Examples/ .

https://doi.org/10.1016/j.calphad.2016.05.002
https://doi.org/10.1007/BF02670272
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.3139/146.101551
https://doi.org/10.1016/j.actamat.2016.12.029
http://dx.doi.org/10.1109/MCSE.2010.118
https://github.com/GTT-Technologies/ChemApp-Examples/tree/6229259b9adb2048e1ced2f22e8a8ec2b47e6463/SimpleLDProcess

	Process modeling and high-throughput thermochemical calculations using ChemApp for Python
	ABSTRACT
	introduction
	ChemApp for Python
	Design goals
	Implementation details

	Leveraging the Python ECOsystem
	High-THROUGHPUT SCREENING USING CHEMAPP FOR PYTHON: A WORKFLOW FOR THERMODYNAMICally-INFORMED DECISION MAKING
	Step 1: Collect Data
	Step 2: Analyse
	Step 3: Calculate
	Step 4: Filter & Select

	CASE SCENARIO: HARDFACING ALLOY DESIGN using THERMOCHEMICAL SCREENING
	CONCLUSIONS
	REFERENCES

