Assessment of phase evolution in Al₂O₃–CaO–SiO₂–MgO system with varied Al₂O₃/SiO₂ ratio using in-situ high-temperature Raman spectroscopy and X-ray scattering.

F Gyakwaa¹, S Wang², H Singh³, G King⁴, Q Shu⁵, W Cao⁶, M Huttula⁷, T Fabritius⁸

- 1. Postdoc, Process Metallurgy Research Unit, University of Oulu, FI-90014 Oulu, Finland. Email: <u>Francis.Gyakwaa@oulu.fi</u>.
- 2. Postdoc, Nano and Molecular Systems Research Unit, University of Oulu, FI-90014 Oulu, Finland. Email <u>shubo.wang@oulu.fi</u>.
- 3. Adjunct Professor, Nano and Molecular Systems Research Unit, University of Oulu, FI-90014 Oulu, Finland. Email: <u>harishchandra.singh@oulu.fi</u>.
- 4. Scientist, Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2V3, Canada Email: <u>Graham.King@lightsource.ca.</u>
- 5. Professor, Process Metallurgy Research Unit, University of Oulu, FI-90014 Oulu, Finland Email: <u>Qifeng.Shu@oulu.fi.</u>
- 6. Professor, Nano and Molecular Systems Research Unit, University of Oulu, FI-90014 Oulu, Finland. Email: <u>Wei.Cao@oulu.fi.</u>
- 7. Professor, Nano and Molecular Systems Research Unit, University of Oulu, FI-90014 Oulu, Finland. Email: <u>Marko.Huttula@oulu.fi.</u>
- 8. Professor, Process Metallurgy Research Unit, University of Oulu, FI-90014 Oulu, Finland Email: <u>timo.fabritius@oulu.fi</u>.

Keywords: slag, *in-situ* synchrotron X-ray diffraction, Raman spectroscopy, crystallization, structural properties.

ABSTRACT

Metallurgical slag, such as refining slag, is essential to enhance or promote steel cleanliness. The AI_2O_3 -CaO-SiO_2-MgO system is the primary source of oxides-based inclusions predominantly for Si-deoxidized steels and is essential for applications in various pyrometallurgical processes. Numerous thermodynamic databases and physicochemical properties of slag studies mainly focus on quenched samples and measurements at room temperature. Consequently, the present study explored the physicochemical, structural properties, and crystallization evolution for CaO-SiO₂-MgO-Al₂O₃ glassy slags via in situ high-temperature Raman spectroscopy and synchrotron X-ray diffraction. The study was carried out by synthesizing CaO-SiO₂-MgO-Al₂O₃ slag with varying AI_2O_3/SiO_2 ratios. The results from the situ high-temperature measurement demonstrated a pattern showing a transformation of a broad peak from the glassy matrix to crystalline peaks. The study showed crystallization of dominant phases such as Ca₂SiO₄, CaAl₂O₄, Ca₅Al₆O₁₄, Ca₂Al₂SiO₇, and Ca₃Al₄O₉ that correspond and are attributable to changes of structural units during in situ high-temperature measurements. The results further showed a correlation between an increase and transformation in crystalline phases observed from the spectra obtained from non-isothermal heating of the samples.