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ABSTRACT  
Dissolution of non-metallic inclusions in the metallurgical slag is of vital importance for cleanliness 
control of the steel manufacturing. With the development of high temperature confocal laser scanning 
microscope (HT-CLSM), new insights have been obtained due to its in-situ observation 
characteristics, higher resolution, and precise control. However, HT-CLSM measurement has the 
limitation, e.g. the slag composition cannot include high amount of transition metal oxides. In 
addition, it is time consuming for the experimental procedure and not so simple to succeed for every 
measurement. It is known that digitalization has made a significant progress in recent years. Machine 
learning (ML), a sub-domain of artificial intelligence (AI), is the key enabling technology for the 
digitalization of the material science and industry. The database for ML model is collected using 
almost all available HT-CLSM experimental data, and subsequently the established database is 
trained by different ML methods. Unseen data is used as the benchmark of the ML model. Al2O3 
dissolution is the main process to be predicted in the current study. A good agreement between the 
HT-CLSM data and the ML model prediction results show the possibility to apply ML in process 
metallurgy. 

INTRODUCTION 
Inclusion (oxide) dissolution in the metallurgical slag is one of the key issues for the clean steel 
production. On the one hand, the main components in refractories, e.g. alumina, magnesia, etc. have 
the potency to be dissolved in the slag during contacting. Subsequently, the eroded refractory has a 
much lower chemical and physical stability at high temperature, and tends to be a source for 
exogenous inclusions formation in the steel. On the other hand, the formed inclusion particles tend 
to flow up to pass the steel/slag interface and need to be dissolved quickly in the slag (Park & Zhang; 
2020; Park & Kang, 2017; Reis, et al., 2014; Webler and Pistorius, 2020). If the remained inclusions 
entrapped back into the liquid steel, they may have the risk to make agglomerations resulting in 
serious industrial problems e.g. nozzle clogging. In this case, the study of inclusion dissolution 
attracts the attention of metallurgists during the past decades. Finger rotating test (also named as 
dip test) is the conventional method to investigate the dissolution of oxide (refractory or synthetic 
inclusion) in the liquid slag. This method provides a good freedom of varying the experimental 
conditions (slag composition, temperature, atmosphere, etc.), however the sample size is much 
larger than the real inclusion so the obtained knowledge cannot connect to the real steelmaking 
process directly (Cooper Jr & Kingery, 1964; Aneziris et al., 2013). 
With the development of the instrumentation in recent twenty-five years, high temperature confocal 
laser scanning microscope (HT-CLSM) offers a path to the in-situ observation of dissolution of 
inclusion particles in the steelmaking slag in real time. To track the particle dissolution, a quasi-three-
dimensional images with sharp boundary and good contrast could be taken from the video by the 
CCD camera equipped with HT-CLSM. Specifically, the size of the used particle which ranges from 
a few tens to several hundreds of microns fits well with the actual inclusion size. Al2O3 dissolution in 
the slag is the most comprehensively studied by HT-CLSM, and the early work can refer to Sridhar 
and Cramb (2000). They investigated the effect of the temperature on the dissolution of alumina 
particles in the CaO-Al2O3-SiO2-MgO (CASM) slag. Subsequently, comprehensive research 
activities focusing on the effect of inclusion type, slag composition, slag viscosity, temperature, etc. 
are performed. Specifically, 1630 °C is the maximum temperature which could be achieved so far to 
observe oxide dissolution (Liu et al., 2007). Due to the development of furnace in HT-CLSM, this 
maximum temperature could be further challenged. CASM slag without transition metal (Fe, Mn, 
etc.) oxides is the mainly selected system since the slag needs to be transparent to enable the in-
situ observation, which is one main limitation for the application of HT-CLSM in this field. By utilizing 
the advantage of HT-CLSM, dissolution kinetics of different kinds of non-metallic inclusions besides 
Al2O3, i.e. MgO, MgAl2O4, TiO2, Al2TiO5, CaO·2Al2O3 (CA2); SiO2, SiC, TiN, etc. (Liu et al., 2007a,b; 
Miao et al., 2018; Michellic et al., 2016; Park et al., 2018; Ren et al., 2022; Sharma, et al., 2018; Yi 
et al., 2003) have been investigated. Except for the chemistry of inclusion, other processing 
parameters, e.g. dissolution temperature, particle size, slag composition, have been studied, 
however, there are still many parameters need to worth further investigated. For instance, the HT-
CLSM can only observe the particle dissolution in the transparent slag, which means the influence 
of some component, e.g. FetO cannot be studied quantitatively, especially the FetO content in slag 
is high. In this case, the simulation and other technique needs to be performed to understand the 
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inclusion dissolution mechanism with the comprehensive conditions. 
 
Regarding the study of dissolution mechanism, shrinking core (SC) model is believed to be the most 
frequently applied approach. Using this model, the dissolution mechanism is usually identified 
through a proper fitting between the SC model prediction and the experimental observation data. If 
the observed dissolution profile is linear, the dissolution process is considered as the reaction-
controlled dissolution (RCD). If the dissolution profile is in a parabolic shape, the boundary layer 
diffusion-controlled dissolution (BLDD) is the mechanism. When the dissolution profile shows a 
sigmoidal shape, shell layer diffusion-controlled dissolution (SLDD) may be the controlled 
mechanism. Alternatively, stationary interface diffusion model (SIM) could also obtain a sigmoidal 
profile which quite closes to SLDD. For the classical SC models, the experimental profile sometimes 
could not fit any mechanism curve which is a clear drawback, a few attempts have been made to 
modify the SC model. For instance, Feichtinger et al. (2014) introduced a factor ‘f’ in the SIM model 
(also named ‘invariant interface diffusion control’), which improves the model performance 
significantly, and ‘f’ is reported to relate to slag viscosity. Very recently, a modified SC-based physical 
model, i.e. diffusion-distance-controlled dissolution (DDD) model (Xuan and Mu, 2021) is developed 
to investigate the shape origin and variation of oxide dissolution in the slag. It is reported that the 
diffusion-related particle dissolution is actually one mechanism but not a few, the shape of the 
dissolution profile is controlled by the distance of diffusion region. This model has been verified with 
HT-CLSM data of different kinds of inclusions dissolution. However, the comprehensive application 
of this model is relied on the input of physical parameters to present different slag compositions, 
currently this is the only limitation for the DDD model.   
In order to further extend the application of the theoretical model to predict inclusion dissolution in 
the comprehensive processing conditions, machine learning (ML) has been considered to use to 
combine with the current DDD physical model. Digitalization has brought many significant changes 
to the manufacturing in the recent decade. ML is a sub-domain of artificial intelligence, which is the 
key enabling technology for industrial-driven research, e.g. material engineering and metallurgy. The 
database for ML model is collected using HT-CLSM experimental data, DDD model is used for the 
augmentation of the current database, to have a continuous distribution of data. Unseen 
experimental data is used as the benchmark of the ML model. Al2O3 is the most common inclusion, 
so its dissolution in the slag is performed in the current study, to test the accuracy of the current 
hybrid modelling methodology. The successful implementation of this model can be applied to predict 
the dissolution of other kinds of inclusions, e.g., MgO, SiO2, MgAl2O4, CaO·2Al2O3, etc. in the further 
study.  

METHODOLOGY 
The current ML dataset contains 1506 data points collected from the open literatures (Hagemann et 
al., 2010; Lee et al., 2001; Liu et al., 2007a, b; Monaghan et al., 2005; Michellic et al., 2016; Sharma 
et al., 2018; Soll-Morris et al.,2009; Sridhar and Cramb, 2000; Yi et al., 2003), DDD physical model 
is used for the data augmentation, this combination methodology can be seen in the report by Mu et 
al. (2021). The collecting dataset is split into 80% for training and 20% for testing. Furthermore, 252 
unseen data which are not included in the training and testing datasets (Liu et al., 2007a,b; Yi et al., 
2003; Michellic et al., 2016) is used as the validation dataset for the benchmark. There are ten 
parameters including in the dataset to predict Al2O3 dissolution, i.e. original inclusion size (radius), 
temperature, concentration of five components in slag (SiO2, CaO, Al2O3, MgO and FetO), density 
of inclusion, slag viscosity and radius change (R/R0, R represents the radius at the certain time and 
R0 is the initial radius). The time required for the dissolution of Al2O3 particles was selected as the 
output. For the further work to predict different kinds of inclusion dissolution, one more parameter, 
inclusion type needs to be added. The detailed information of training & testing dataset as well as 
validation dataset are listed in Tables 1 and 2.  
Standard normalization was used in this work in order to eliminate the difference in numeric scale of 
features. Based on the previous modelling results, it is found that the prediction of the trained ML 
model fluctuates as the different partition of training dataset and testing dataset, so multiple hold-out 
method is used in order to reliably evaluate model’s performance (Shen et al., 2019). In this study, 
the dataset was randomly divided into training and testing sets by 50 times to develop 50 ML models. 
Moreover, common mean absolute error (MAE) and square correlation coefficient (R2) were used to 
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evaluate the model’s performance (Pal, 2017). Besides, the suitable selection of ML algorithm is also 
important for good performance. In this work, six common ML algorithms were employed to develop 
three models, including Support Vector Regression (SVR) (Liu et al., 2021), Multi-Layer Perception 
(MLP) (Del Campo et al., 2021) and three kinds of ensemble learning algorithms, i.e. AdaBoost 
(Ada), decision tree regression (DTR), random forest regression (RFR) (Sammut et al., 2011), and 
the modelling results for testing data are plotted in Fig. 1. It is seen that ensemble algorithms have 
the higher prediction accuracy than MLP and SVR algorithms. The R2 values of these models were 
greater than 98%, meaning a very good prediction performance. Finally, RFR algorithm was selected 
to predict the dissolve curve of Al2O3 particle owing to the relatively lowest MAE value.  

TABLE 1 - Data distribution in present dataset (including training and testing sets). 
Parameters Min. Max. Mean Std. 
Radius [µm] 41.3 250.2 176.6 76.9 

Temperature [°C] 1673 1873 1772.3 56.7 
SiO2 [wt.%] 0 62.4 33.4 19.8 
CaO [wt.%] 22.4 57.2 35.2 9.1 
Al2O3 [wt.%] 13.3 50.0 29.0 11.6 
MgO [wt.%] 0 7.5 2.0 3.1 
FetO [wt.%] 0 9.2 0.4 1.7 

Slag Density [kg.m-3] 3568 3640 3604 20.4 
Slag viscosity [Pa.s] 0.1 100.5 4.7 16.4 

R/R0 [-] 0 1 0.7 0.3 
Dissolution time [sec] 0 4490 925 1099 

TABLE 2 - Data distribution in validation set 
Parameters Min. Max. Mean Std. 
Radius [µm] 95.3 249.1 226.6 47.3 

Temperature [°C] 1723 1873 1778.2 50.1 
SiO2 [wt.%] 0 46.2 39.2 16.5 
CaO [wt.%] 29.7 49.5 32.7 7.1 
Al2O3 [wt.%] 24.1 50.0 28.0 9.3 
MgO [wt.%] 0 0.5 0.08 0.18 
FetO [wt.%] 0 0 0 0 

Slag Density [kg.m-3] 3568 3622 3602 18.0 
Slag viscosity [Pa.s] 0.8 3.6 2.5 1.1 

R/R0 [-] 0 1 0.56 0.26 
Dissolution time [sec] 0 4490 1527 1290 

 

 
FIG 1 - Prediction performance of different ML algorithms: (a) MAE value; (b) R2 value. 
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RESULTS AND DISCISSION 
Pearson correlation is one of the simplest methods to determine the linear relation between features 
and the dependent variable. According to the method, the features that are uncorrelated with the 
dependent variable are good candidates to exclude from the dataset before training the model 
(Rahaman et al., 2019). Here we apply the same methodology to determine the correlation between 
variables (radius, temp., slag compositions, inclusion density, slag viscosity, and R/R0) with 
dissolution time. This method measures the linear correlation between two variables and the 
resulting value lies between -1 and 1. Negative values mean negative correlation; alternatively, 
positive values mean the opposite; 0 means that there is no linear correlation between the two 
variables. The Pearson’s correlation coefficient for the inclusion dissolution dataset is represented 
as a heat map in Fig.2. It can be seen that some parameters, e.g. original inclusion radius and SiO2 
have clear positive correlation with the dissolution time. It is obvious that the increasing inclusion 
original size as well as the SiO2 content in slag will increase the dissolution time. The parameter, e.g. 
inclusion density has a less influence on the dissolution time. However, since the role of Pearson 
correlation is to check if some parameters can be removed but not the feature importance, we will 
discuss deeply on each parameter’s linear correlation, also we keep all parameters in this ML model. 
For the current work, the data amount is not really large, more parameters are always good to use 
for the accuracy of ML modelling containing small size dataset.  

 
FIG 2 – Pearson correlation  

Fig. 3 displays the prediction results of inclusion dissolution. The output is dissolution time of Al2O3 
inclusion in the slag, and the X and Y axis strand for the actual dissolution time and predicted time 
by ML model, respectively. Fig. 3 (a) shows the actual value vs. predicted value for training data. It 
can be seen that all data points basically concentrated around the diagonal, showing a very high 
prediction accuracy. The MAE and R2 values are 17.0 second and 99.8%, demonstrating that the 
ML model has learned the reliable relation between dissolution time of inclusions and all input 
features based on training samples. In order to test the application ability of trained model, 20% of 
the total data in the testing set were inputted into model, and the prediction result is shown in Fig. 3 
(b). It is observed that most data points are also located in the line with the slope of 1, showing a 
good robustness of trained model. The MAE and R2 values are 30.2 second and 98.7%. It is also 
seen that small number of data points deviates from the diagonal, but the largest MAE value is still 
less than 150s, which is within the acceptable scale.  In order to further validate the robustness for 
new data, trained model was applied to the unseen 252 data in the validation dataset with different 
parameters. The prediction result is shown in Fig. 4. It can be seen that like training and testing data, 
present model also has a high prediction accuracy on validation data, and most data points locate 
around the diagonal. The MAE and R2 values are 70.8s and 97.7%, respectively. Compared to 
training and testing data, the predicted accuracy on validation data slightly reduces, but present 
prediction level is still high enough to guide the actual experiments. 



6 

 
FIG 3 - Predicted results of dissolution time of inclusion using (a) training and (b) testing dataset. 

  
FIG 4 - Predicted results of dissolution time of inclusion using validation dataset. 

It is known that the parameters, e.g. slag viscosity is a joint function of temperature and slag 
composition, and the inclusion density is also influenced by the temperature. Since these parameters 
are already included in the current database, new attempt to remove slag viscosity and inclusion 
density in the database has been made to see the model prediction performance. It seems the model 
accuracy decreases slightly but it is still quite acceptable (i.e. 41.66 of MAE and 98.41% of R2 for 
using testing dataset in new model). In this case, the new model can be considered to use by 
inputting slag composition, temperature, etc. but without using physical parameters, e.g. slag 
viscosity, inclusion density, etc. which will be even easier to operate the model for the application 
perspective.  
 
In addition, it needs to be mentioned that the correlation importance between dissolution time and 
each input parameter can be analysed. This type analysis is usually called feature importance (FI). 
FI is used to evaluate which parameter plays a more important role in within the specific dataset 
(Rahaman et al., 2019; Mu et al., 2021). The importance of the same parameter can be different if 
the dataset is changed. However, the current dataset includes the experimental data are all collected 
from the HT-CLSM measurement. In this case, some parameters e.g. contents of different 
components in the slag are not such comprehensive due to the limitation of HT-CLSM (e.g. FetO 
content should be almost zero). In this case, the feature importance may show different tendency 
compare with the physical understanding of inclusion dissolution, so FI analysis is not included in 
the current work. 

CONCLUSIONS 
The current hybrid methodology in combination of machine learning and physical modelling has been 
established to predict Al2O3 dissolution in the steelmaking slag. The successful implementation of 
applying the method to predict of dissolution time provides the possibility to further application of the 
model. Different kinds of inclusion dissolution data observed by HT-CLSM and measured by other 
methodology is needed to be used to establish a robust dissolution model. 
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