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ABSTRACT 
The transition to more sustainable metal production is receiving much attention at present, and the 
iron and steel industry is at the centre of the conversation. New, more environmentally friendly 
production technologies, such as DRI smelting furnaces, need to be developed in a short period of 
time. This necessitates increased use of computational modelling that incorporates more accurate 
material descriptions. 
The combination of large-scale multiphysics models of high-temperature processes with CALPHAD 
material descriptions leads to infeasible computation times. This can be resolved with the previously 
reported RapidThermo framework, which has been demonstrated to make equilibrium calculations 
orders of magnitude faster, within controllable limits of accuracy. 
In this paper, we explain how further material properties, which are important to modelling high-
temperature reactors, can be added to the RapidThermo framework. This can improve the accuracy 
and usefulness of process and multiphysics models in the development of new technologies, which 
can significantly accelerate development cycles. 

INTRODUCTION 
To sustain and grow, modern society has a critical and growing need for metals to maintain and build 
infrastructure for accommodation, food production, transport, communication, etc. As we produce 
these metals, we emit waste and greenhouse gases that pollute water and the atmosphere, and 
influence the planet’s climate, thereby threatening the very existence we aim to protect and expand. 
This is no longer a concern that lurks far into the future, but because governments have started to 
legislate emission reduction to combat climate change, it is a practical reality that we must face today. 
We need to find a balance between living, thriving, and growing, and destroying the environment 
without which we cannot exist. 
To address this perceived existential threat, we need to change ... improve how we do things ... 
urgently. In pyrometallurgy this means we need to develop new processes that make better use of 
materials and energy, so that we can satisfy our needs for metals today, without destroying ourselves 
tomorrow. 
Considering history, developing new high-temperature processes is difficult, costly, risky, and time-
consuming. Given the magnitude and importance of this matter, though, it should be possible (1) to 
recruit talented people to take on these challenges and (2) to obtain the required funding. The two 
realities that remain are high risk and the time required. The scale and complexity of this challenge 
require that we learn at a high rate and fail many times, so that we can successfully get more efficient 
and sustainable processes into operation ... soon enough to protect our environment and ourselves. 
To learn and develop new processes rapidly, we need to continue hypothesising, experimenting, and 
theorising, but faster than before, based on a greater reliance on computational methods. Physical 
measurements, experiments, and pilot-scale testing remain indispensable, but they are unlikely to 
yield the required pace on their own. Computer-based modelling (hypothesising) and simulation 
(experimenting) as the basis for developing new understanding (theorising) more realistically hold the 
potential for addressing the complexity and urgency of society’s dilemma. Process and multiphysics 
models that describe the thermodynamics and kinetics of high-temperature processes and reactors 
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are crucial for improving the efficiency and profitability of existing operations, and for developing more 
sustainable production technologies. 
Computational models in pyrometallurgy, although already useful today, are fundamentally 
constrained by how accurately and efficiently we can describe the materials involved. 
Thermochemical equilibrium calculations along with composition- and temperature-dependent 
properties of materials like slags, alloys, and mattes are mostly omitted from multiphysics models that 
can be used for design, operation, and new technology development. This is mainly because of the 
complexity and computational expense of (1) equilibrium calculations, and (2) solving partial 
differential equations (PDEs) influenced by varying, non-linear material properties. Directly integrating 
Gibbs energy minimiser routines into PDE solvers generally lead to infeasible computation times, 
specifically for systems of industrial interest. 
In this paper we consider the current urgency to transition to “green steel” and the need to develop 
DRI smelting furnaces. Rapid development of such new technologies creates a greater need for 
computational modelling of high-temperature reactors, which in turn makes more accurate and 
computationally efficient material descriptions a necessity. We then consider the current realities and 
constraints of CALPHAD and multiphysics models and explain how the RapidThermo framework can 
contribute to making more detailed computational models of pyrometallurgical processes feasible. 

REPLACING THE BLAST FURNACE 
The iron and steel industry, the world’s largest metallurgical industry by production volume, is the 
second-largest greenhouse gas emitter, and contributes 7 to 9 % of global CO2 emissions. These 
emissions result mainly from producing pig iron with a blast furnace (BF) from iron ore and converting 
it to crude liquid steel with a basic oxygen furnace (BOF), as shown in Figure 1(a). This route emits 
close to 2 t CO2/t liquid steel (LS) produced. Recycling scrap with the electric-arc furnace (EAF) route 
can emit as little as 0.13 t CO2/t LS, but this route can provide neither the required volume nor all the 
required grades. (Wimmer, Fleischander and Voraberger, 2023) 

 
(a) Traditional route. 

 

 
(b) Proposed “green steel” route. 

Figure 1: Process routes for converting abundant low-grade iron ore to liquid steel. (Reproduced from 
Wimmer, Fleischander and Voraberger, (2023).) 

Directly reducing high-grade iron ore with hydrogen to produce H2-DRI and melting it down in an EAF 
can yield as low as 0.2 t CO2/t LS. Economically viable processing of low-grade iron ore, which is 
most abundantly available, into liquid pig iron via direct reduction requires a semi-continuous DRI 
smelting furnace (DSF), however, as shown in Figure 1(b). (Wimmer, Fleischander and Voraberger, 
2023) DSF technology does not currently exist, and is currently a point of much attention in the iron 
and steel industry. 
Some European countries, like the Netherlands and Germany, have legislated strict deadlines for the 
steel industry to adhere to. In some cases, DRI-DSF technology, with DSF units operating at about 
100 MW to produce 1 Mt pig iron/a, needs to be operational by 2030, which leaves little time for 
developing the DSF concept into a successfully operating production technology. 
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DRI Smelting 
Several questions need to be answered to develop and ultimately design DSFs. These include: 

1. What type of furnace should be used? E.g. rectangular 6-electrode AC, circular 3-electrode AC, 
circular single-electrode DC as shown in Figures 2(a) to 2(c). 

2. How should energy be discharged into the process? E.g. Immersed electrode(s), brush arc(s), 
open arc(s) as shown in Figures 2(d) to 2(f). 

3. What configuration should the furnace power supply have? E.g. number of taps, tap voltages, 
resistance, current. 

4. Where should feed be discharged into the process? E.g. Close to the walls, close to the 
electrode(s) as shown in Figures 2(g) and 2(h). 

5. What will the furnace’s energy consumption and efficiency be? 
6. How should the process be contained? E.g. Slag saturated in refractory components, sidewall 

feed heaps, slag freeze lining as shown in Figures 2(g) and 2(h). 
7. What will the furnace’s production capacity be? E.g. 1 Mt/a of tapped alloy. 
8. What will the composition of the liquid alloy product be? Carbon and silicon contents are of 

specific importance for the downstream BOF process. 
 

   
(a) Rectangular 6-in-line AC 

furnace. 
(b) Circular 3-electrode AC 

furnace. 
(c) Circular single-electrode 

DC furnace. 

   
(d) Immersed electrode. (e) Brush arc. (f) Open arc. 

  
(g) Side feeding and sidewall 

feed heap containment. 
(h) Centre feeding and slag 

freeze lining containment. 

Figure 2: Equipment and design choices relevant to DRI smelting furnaces. 



4 

 
Question 5 is easiest to answer based on mass and energy balance calculations and a heat transfer 
model of the furnace. Questions 1 to 4 are often driven by an equipment supplier’s experience and 
capabilities, and by operational and scale considerations, and their answers have implications for 
questions 5 to 8. Questions 6 to 8 (the Key Questions) are the most difficult to answer. They are 
influenced by the preceding questions, and, very importantly, also by feed material properties, furnace 
operating conditions, and process material properties. 
The development tasks are interdependent – furnace design depends on the process, which depends 
on material properties and operating conditions, which depend on raw materials and furnace design. 
To solve the problem, it is therefore necessary to iterate through different furnace designs, operating 
conditions, and process material compositions to converge to a configuration that will operate 
successfully. Within the time constraints, research and development iterations can feasibly involve 
laboratory experiments, and focused but limited pilot-scale testing. Extensive pilot-scale testing and 
demonstration-scale operation appear to be out of the question. It is therefore reasonable to conclude 
that computational modelling and simulation need to contribute substantially to DSF development for 
such furnaces to be in operation by 2030 or soon after. 

Modelling a DSF 
We can use process models to describe mass and energy balances (Zietsman, Steyn and Pretorius, 
2018) and study dynamic process behaviour (Zietsman and Pistorius, 2006), thereby answering some 
of the questions posed in the previous section. The Key Questions require that we use multiphysics 
models to investigate the influences of and interactions between geometry, scale, transport 
phenomena, and material properties. 
Table 1 and Figure 3 indicate the scope and complexity of a DSF multiphysics modelling endeavour, 
focusing only on the most important aspects – it is an ambitious task. The model needs to describe 
several physical phenomena, which involve several materials, as functions of varying temperature 
and composition. This means that a wide range of material property models are needed. 

 
Figure 3: Physical phenomena important to DSF modelling, design, and operation. 

 
In the case of the slag bath (column highlighted in Table 1), for example, electrical current flow and 
joule heating release energy, which is transported through thermal conduction and fluid flow driven 
by buoyancy and Lorentz forces. Chemical reactions and phase change occur, which involve DRI, 
reductant, and flux particles, liquid and solid slag, liquid and solid alloy, and gas. Considering only the 
liquid slag material (row highlighted in Table 1), descriptions of density, heat capacity, Gibbs energy, 
magnetic permeability, electrical conductivity, thermal conductivity, and viscosity are required. 
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Table 1: Most important phenomena, materials, and material properties relevant to DSF multiphysics 
modelling. Most properties vary with temperature and composition. Gibbs energy 𝐺𝐺‾ collectively refers to 

material thermodynamic properties, which also include 𝑆𝑆̅ and 𝐻𝐻�. The slag bath region column and liquid slag 
material row are emphasised in blue. 

Phenomenon 
 

Region Material Properties 

EA SB AB FB FL FH Thermodynamic Kinetic 

Electromagnetics 
   Magnetohydrodynamics 
   Electrical current flow 
   Joule heating 

 
✓ 

✓ 
✓ 

 
✓ 
✓ 
✓ 

 
✓ 
✓ 
✓ 

 
 
 
 

 
 
 
 

 
 
 
 

 
𝜌𝜌 
 
 

 
𝜇𝜇m𝜎𝜎𝜇𝜇 
𝜎𝜎 
𝜎𝜎 

Heat Transfer 
   Thermal conduction 
   Thermal radiation 

 
✓ 
 

 
✓ 
 

 
✓ 
 

 
✓ 
✓ 

 
✓ 
 

 
✓ 
 

 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 

 

 
𝜅𝜅 

𝛼𝛼r 𝜌𝜌r 𝜏𝜏r 

Momentum Transfer 
   Fluid flow 
   Buoyancy 
   Lorenz forces 

 
 
 
 

 
✓ 
✓ 
✓ 

 
✓ 
✓ 
✓ 

 
✓ 
✓ 
 

 
 
 
 

 
 
 
 

 
𝜌𝜌 
𝜌𝜌 
 

 
𝜇𝜇 
 

𝜇𝜇m 𝜎𝜎 

Chemical Changes 
   Chemical reactions 
   Phase change 

 
 
 

 
✓ 
✓ 

 
 
✓ 

 
 
 

 
✓ 
✓ 

 
✓ 
 

 
𝐺𝐺‾ 
𝐺𝐺‾ 

 
 

 

Material Region Material Properties 

EA SB AB FB FL FH Thermodynamic Kinetic 

Raw Materials 
   DRI particles 
   Reductant particles 
   Flux particles 

 
 
 
 

 
✓ 
✓ 
✓ 

 
 
 
 

 
 
 
 

 
 
 
 

 
✓ 
✓ 
✓ 

 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 

 
𝜅𝜅 
𝜅𝜅 
𝜅𝜅 

Process Materials 
   Liquid slag 
   Solidified slag 
   Liquid alloy 
   Solidified alloy 

 
 
 
 
 

 
✓ 
✓ 
✓ 
✓ 

 
 
 
✓ 
✓ 

 
 
 
 
 

 
✓ 
✓ 
 
 

 
✓ 
✓ 
✓ 
✓ 

 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 

 
𝜇𝜇m 𝜎𝜎 𝜅𝜅 𝜇𝜇 

𝜅𝜅 
𝜇𝜇m 𝜎𝜎 𝜅𝜅 𝜇𝜇 

𝜅𝜅 

Freeboard Materials 
   Dust 
   Fume 
   Gas 

 
✓ 
✓ 
✓ 

 
 
 
✓ 

 
 
 
 

 
✓ 
✓ 
✓ 

 
 
 
 

 
✓ 
 
✓ 

 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 𝐺𝐺‾ 

 
𝛼𝛼r 𝜌𝜌r 𝜏𝜏r 
𝛼𝛼r 𝜌𝜌r 𝜏𝜏r 
𝛼𝛼 r𝜌𝜌r𝜏𝜏r𝜅𝜅 𝜇𝜇 

Others 
   Plasma 

 
✓ 

 
 

 
 

 
✓ 

 
 

 
 

 
𝜌𝜌 𝐶𝐶‾𝑃𝑃 

 
𝜎𝜎 𝜅𝜅 𝜇𝜇 

EA: electric arc, SB: slag bath, AB: alloy bath, FB: freeboard, FL: slag freeze lining, FH: sidewall feed heap 

 

COMPUTATIONAL REALITIES 
When considering comprehensively addressing the scope in Table 1 and focusing on liquid slag and 
other oxide phases in particular, we are confronted with a number of realities, which are true in the 
case of DSFs, but also in many, if not most, other pyrometallurgical scenarios. 

Thermodynamic Space 
The Gibbs phase rule shown in Equation (1) shows the number of dimensions in which materials 
exist, and therefore the number of dimensions that we need to perform calculations in. A system’s 
dimensionality is equal to  f̂ ρ with φ�ρ = 1. 
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f̂ ρ = ψ�ρ + ε�σ + �ε�φi

φ�ρ

i=1

− φ�ρ − ζ̂σ −�ζ̂φi

φ�ρ

i=1

(1) 

 

In pyrometallurgy we usually work at constant pressure and varying temperature (ψ�σ = 1), and with 
large numbers of system components. In the case of a DSF, iron ore combined with carbonaceous 
reductants commonly contain Al, C, Ca, Fe, H, K, Mg, Mn, N, Na, O, P, S, Si (ε�σ = 14), when ignoring 
other minor elements. Assuming that there are no compositional constraints (ζ̂σ = ζ̂φi = 0 ), these 
elements combine with temperature to yield f̂ ρ = 14 when φ�ρ = 1 ... a 14-dimensional system. This 
results in the ”curse of dimensionality”, which exponentially increases the required computation, 
memory, and storage space as the number of dimensions increase. 
As an example, when generating a grid with 25 points in each dimension and storing the necessary 
independent and dependent parameters (each represented by a single double-precision floating point 
number of 8 B) at each grid location will require 17.50 to 144.5 TB of storage space. Such a data set 
will only sparsely cover the 14D domain and it will not capture detailed phase diagram features. Table 
1 shows that values for several material thermodynamic properties (MTPs) and material kinetic 
properties (MKPs) need to be stored, and each of these will further increase the required storage 
space. In comparison, the GPT-4 large language model (LLM) used a dataset with 1 T tokens, and 
has about 1.76 T parameters (OpenAI, 2023; The Decoder, 2023). (These figures were not formally 
released by OpenAI but are provided as a relatable reference.) 
Training a large neural network that can describe the example DSF system with all its thermodynamic 
and kinetic properties is possible in principle, but the enormity of thermodynamic space makes it 
practically infeasible. Exorbitant amounts of data (measured or calculated), computation, memory, 
and storage space would be required. 

The Limits of Computation 
When building a multiphysics model for answering the Key Questions related to DSF technology, we 
are primarily describing transport phenomena, and are therefore heavily dependent on kinetic 
properties. These properties are influenced by thermodynamic properties, which are determined by 
equilibrium behaviour as determined with Gibbs energy minimisation (GEM) calculations at the 
temperatures and compositions inside a DSF. These aspects are interdependent, which makes it 
necessary to solve such a model iteratively. 
Roos and Zietsman (2022, Fig. 2) showed that direct integration of GEM calculations with up to 10 
system components into realistically sized multiphysics models can result in computation times of up 
to hundreds of years for modest numbers of iterations. These durations only allowed for equilibrium 
calculations, and not for further material property calculations. Therefore, integrating partial 
differential equation (PDE) solver software and GEM software that are available today, yields 
infeasible computation times. This infeasibility is the thrust behind developing the RapidThermo 
material description framework (Roos and Zietsman, 2022). 
The same authors showed that the burden of calculating and storing data across a DSF’s entire 14D 
domain can be reduced in two ways. Firstly, the Gibbs phase rule reduces the number of dimensions 
by (φ�ρ − 1) (Roos and Zietsman, 2022). For example, when liquid alloy, liquid slag, dicalcium silicate, 
and gas are stable, it is only necessary to work in 11 dimensions rather than 14. Secondly, only those 
regions of the phase diagram in which the process in question is active need to be populated with in-
situ tabulation (Roos, Bogaers and Zietsman, 2023). This is demonstrated in Figure 4 with simplified 
compositional spaces for ironmaking, steelmaking, and ilmenite smelting, which shows that large 
regions of compositional space will likely be unimportant for simulating such processes. 
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(a) Ironmaking. (b) Steelmaking. (c) Ilmenite smelting. 

Figure 4: Simplified compositional spaces indicating regions that need to be considered to describe 
feed and product materials, and process reaction zones. 

Thermodynamic Properties 
The thermodynamic behaviour (G, S, H) of the example 14D DSF system are fairly well (but not 
perfectly) described with thermochemical data in CALPHAD software such as FactSage (Bale et al., 
2016). There are still regions of this system that are not well described, or described at all by the 
available data. Calculating the equilibrium state of a system through GEM with such software is 
possible, but too slow for doing large numbers of calculations in short periods of time. 

𝐶𝐶�̅�𝑝,Δ𝐻𝐻�f,298𝐾𝐾  and 𝑆𝑆2̅98𝐾𝐾  of pure substances and �̅�𝐺  of solutions are described reasonably well in 
CALPHAD software databases. Recent progress has been made with the description of molar volume 
and thermal expansivity that together describe density with a CALPHAD model (Thibodeau, Gheribi 
and Jung, 2016a; Thibodeau, Gheribi and Jung, 2016b; Thibodeau, Gheribi and Jung, 2016c) and 
density functional theory (DFT) (Liu, Wang and Shang, 2022) models, but these models are not yet 
readily available in CALPHAD software. Because density differences drive flow through buoyancy, 
better descriptions of slag density can contribute to more accurate simulation of fluid flow and heat 
transfer in a DSF slag bath with multiphysics models. 

Kinetic Properties 
When considering silicate slags relevant to the example 14D DSF system, the best described kinetic 
property is viscosity, with several models available in CALPHAD software or based on CALPHAD 
solution models (Grundy et al., 2008; Kim, 2011; Wu et al., 2015). Thibodeau and Jung (2016) 
reported a structure-based electrical conductivity model for slags. A similar model for thermal 
conductivity is not currently available. These properties combine to influence energy discharge, fluid 
flow, and heat transfer, all of which are relevant and important to developing DSFs. 
General practice in multiphysics modelling is to select single values for these properties, and keep 
them constant throughout a simulation, without accounting for the influences of changing temperature 
and composition in a furnace over time. This is one of the core reasons why multiphysics models can 
only describe high-temperature systems with limited accuracy. To improve these models, these 
kinetic properties (µ, σ, and κ) need to be integrated along with thermodynamic properties and phase 
states at equilibrium. Accomplishing this through direct integration of CALPHAD and multiphysics 
software is infeasible at present. 

Summary 
The challenges stated above can be summarised as follows: 

1. It is infeasible to cover the vast thermodynamic space of a DSF process by pre-calculating data 
and, for example, fitting a neural network. 

2. It is infeasible to use direct integration of equilibrium calculations in multiphysics models. 
3. It is possible to calculate some thermodynamic properties with CALPHAD tools, but due to the 

dependence on equilibrium calculations, this is infeasible for high-throughput computation. 
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4. It is possible to calculate some kinetic properties of a system with CALPHAD tools, but due to 
the dependence on both equilibrium calculations and thermodynamic properties, it remains 
infeasible for high-throughput computation. 

This leads to the conclusion that high-fidelity, high-resolution simulation of pyrometallurgical 
processes of industrial importance is currently infeasible. As shown in Table 2, the RapidThermo 
accelerator framework development by Roos and Zietsman (2022) addresses item 1 above through 
dimensional reduction and in-situ tabulation, item 2 through tabulation of equilibrium calculation 
results, and item 3 partially through tabulation of phase thermodynamic properties. 
Table 2 – Current capabilities related to material property determination, description, and application. Shaded 

cells show the scope targeted by the RapidThermo framework. 

Property Property Determination CALPHAD Descriptions Efficient Descriptions Dependent Models 

Properties can be deter-
mined with physical 
measurements; compu-
tation, e.g. DFT, MD. 

Descriptions are readily 
available in CALPHAD 
software. 

Sufficiently efficient 
descriptions are 
available for high-
throughput computation. 

Models that depend 
on these properties 
and descriptions. 

Pure Substances / Pure Phases (PPs) 

Structural properties 
- Crystal structure 
- Atomic/ionic radii 
Thermodynamic properties 
- 𝑆𝑆‾298𝐾𝐾 𝐶𝐶‾ 𝑃𝑃 𝐺𝐺‾ 
- 𝑉𝑉‾𝛼𝛼𝑉𝑉 𝜌𝜌 
Kinetic properties 
- 𝜇𝜇 𝜎𝜎 𝜅𝜅 

 
✓ 
✓ 
 
✓ 
✓ 
 
✓ 

 
✓ 
✗ 
 
✓ 
- 
 
✗ 

 
 
 
 
✗ 
✗ 
 
✗ 

 
MP(SP) 
MP(SP) 

 
MP(TP) GM 
MP(TP) GM 

 
MP(KP) MP 

Solution Phases / Mixture Phases (MPs) 

Structural properties 
- Crystal structure 
- Atomic/ionic radii 
- Inter-atomic/ionic distances 
Thermodynamic properties 
- 𝑆𝑆̅∘ 𝐻𝐻�∘ �̅�𝐺ex 
- 𝑉𝑉‾ ∘ 𝑉𝑉‾ ex 𝛼𝛼𝑉𝑉 𝜌𝜌 
Kinetic properties 
- 𝜇𝜇 
- 𝜎𝜎 𝜅𝜅 

 
✓ 
✓ 
✓ 
 
✓ 
✓ 
 
- 
- 

 
✓ 
✗ 
✗ 
 
✓ 
✗ 
 
✓ 
✗ 

 
 
 
 
 
✓ 
✗ 
 
✗ 
✗ 

 
MP(TP,KP) 
MP(TP,KP) 

MP(KP) 
 

GM PR MP 
MP 

 
MP 
MP 

Equilibrium State 

System properties 
- Phase fractions 
- Thermodynamic quantities 
Phase properties 
- Molar composition 
- Thermodynamic quantities 
Morphology 
- particle size, surface area 
Apparent TPs 
- �̌�𝐻 �̌�𝐶𝑃𝑃 
- 𝑉𝑉‾  𝛼𝛼𝑉𝑉 𝜌𝜌 
Apparent kinetic properties 
- 𝜇𝜇 𝜎𝜎 𝜅𝜅 

 
✓ 
✓ 
 
✓ 
✓ 
 
✗ 
 
 
 
 
 

 
✓ 
✓ 
 
✓ 
✓ 
 
✗ 
 
✓ 
✗ 
 
✗ 

 
✓ 
✓ 
 
✓ 
✓ 
 
✗ 
 
✓ 
✗ 
 
✗ 

 
SP(TP,KP) PM MP 

PM MP 
 

PM MP 
PM MP 

 
CM(KP) MP 

 
PR MP 

MP 
 

MP 

SP: structure property TP: thermodynamic property KP: kinetic property 
MP: multiphysics models PR: process models GM: Gibbs energy minimisation 
CM: composite material (multiple phases)  
✓: good -: ok ✗: bad 
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The following can also be noted based on Table 2. 
1. Pure substances:  

Properties can be determined by experimental measurement and, more recently, with 
computational chemistry (Liu, Wang and Shang, 2022). CALPHAD descriptions provide 
crystal structure information, but not dimensions such as atomic/ionic radii, or kinetic 
properties. The latter is improving in, for example, FactSage (Bale et al., 2016). The available 
descriptions are not suitable for direct inclusion in high-throughput computations such as 
multiphysics models.  

2. Solution phases:  
Determining structure information, thermodynamic properties, and kinetic properties with 
physical measurements is possible but generally difficult for slags. Computational chemistry 
(e.g. DFT, MD) has made progress with determination of kinetic properties (Mongalo, Lopis 
and Venter, 2016), but much is still left to do. CALPHAD descriptions provide structure 
information, but not dimensional information, and not yet all required thermodynamic, and 
kinetic property descriptions. The available descriptions are not suited for high-throughput 
computation. 

3. Equilibrium state:  
System and phase properties are described well with CALPHAD models, and these can be 
integrated into high-throughput computations with RapidThermo. Morphology influences the 
kinetic properties of composite materials (e.g. viscosity of slag with dispersed solids). This 
cannot be addressed with CALPHAD software at all because morphology is not determined 
by equilibrium. Some thermodynamic properties, and all the required kinetic properties are not 
yet accessible in high-throughput computation. 

Continued RapidThermo development to incorporate further thermodynamic properties (item 3) and 
kinetic properties (item 4) is the focus of the next section. 

EFFICIENT MATERIAL DESCRIPTIONS 
Figure 5 shows that the RapidThermo accelerator accepts an independent system state 𝚾𝚾σ as input. 
It returns a dependent equilibrium system state Yσ directly calculated by CALPHAD software as result 
if its database contains insufficient data but returns interpolated values Y�σ  once enough data is 
available. The database is populated in situ, which means it can start empty and be populated as the 
connected process or multiphysics models request calculation results; there is no need for a large 
number of pre-calculations. The interpolation routine is substantially faster than GEM calculations, 
and the benefit grows as the number of system components increases (Roos, Bogaers and Zietsman, 
2023). This makes incorporating accurate material descriptions into such models more feasible. 
The accelerator discretises the system’s phase diagram, which is 14-dimensional in the DSF 
example, into small thermochemical cells within which it can use interpolation based on the lever rule 
to calculate Y�σ  results, which limits expensive CALPHAD software calculations. To be clear though, 
the RapidThermo accelerator does not aim to replace or eliminate the use of CALPHAD software. It 
acts as an intermediary between computationally intensive models and CALPHAD software to make 
more detailed, more accurate, and larger-scale investigation of pyrometallurgical processes feasible. 
The core requirements of the RapidThermo algorithm are: 

1.  Configurability: The accelerator must 
o be generic, so that it can function for any number of system components and 

nonchemical potentials; 
o use minimal configuration, including thermochemical system data and metadata, and 

discretisation ranges and cell sizes; and 
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FIG 1: The RapidThermo accelerator concept compared with direct integration between models and 
CALPHAD software (indicated as equilibrium calculation software). (Roos and Zietsman, 2022) 

o be modular, to allow changing sub-algorithms for discretisation, interpolation, and 
multiphase property calculation by changing configuration settings rather than changing 
source code. 

2. Efficiency: The accelerator must 
o perform calculations orders of magnitude faster than the CALPHAD software it 

integrates with, to allow feasible solution of the connected process and multiphysics 
models; 

o allow parallel execution, so that large numbers of Xσ can be specified and large numbers 
of Yσ can be returned simultaneously; and 

o require minimal computer memory and storage space to allow execution on reasonably-
costed computer hardware. 

3. Accuracy: The accelerator must 
o produce calculation results that satisfy mass, element mass, and energy conservation 

within machine precision; and 
o allow control over interpolation accuracy through configuration of discretisation cell 

ranges and sizes. 
Table 2 shows that the accelerator reported by Roos, Bogaers and Zietsman (2023) can calculate 
system phase fractions and thermodynamic quantities, phase molar compositions and 
thermodynamic quantities, as well as 𝐶𝐶�̅�𝑝 and Δ𝐻𝐻�P  for combinations of multiple phases. These 
capabilities allow more sophisticated multiphysics model calculations that can describe, for example, 
phase change associated with slag freeze linings. 
As indicated in Table 1, further properties that are required to describe DSFs include density, 
viscosity, electrical conductivity, and thermal conductivity, for both single phases such as liquid slag 
and multiple phases. Similar to 𝐶𝐶�̅�𝑝and Δ𝐻𝐻�P,  these properties only need to be stored in single phase 
regions and on one-phase-fraction (OPF) boundaries for single phases. This has the benefit of 
reducing the number of data points that need to be calculated and stored. These properties are further 
addressed in the remainder of this section, with specific reference to liquid slag. 
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Slag Structure 
When oxides melt and mix to become a liquid slag, the cations and anions will with time arrange 
themselves into the most probable, or equilibrium, configuration Γeq

σ . Considering a binary CaO-SiO2 

melt, Si-O-Si bonded oxygen ions are indicated as O0 and referred to as bridged oxygens, Ca-O-Ca 
bonded ones are indicated as O2– and referred to as free oxygens, and Ca-O-Si bonded ones are 
indicated as O– and referred to as broken oxygens. The structure of this melt can be described with 
Q0, Q1, Q2, Q3, Q4, and Ca-Ca species; the superscript indicates the number of oxygen atoms per Si 
tetrahedron that binds to another Si atom. The equilibrium mole fractions of the different species 
change with composition and temperature, and can be determined experimentally or with CALPHAD 
software such as FactSage. (Thibodeau, Gheribi and Jung, 2016a) 
The structure of the melt directly influences its properties, such as molar volume, thermal expansivity, 
viscosity, electrical conductivity, and thermal conductivity. Some property models use equilibrium 
structure information from the Modified Quasichemical Model (MQM) (Pelton and Blander, 1986) in 
FactSage to estimate property values (Grundy et al., 2008; Thibodeau, Gheribi and Jung, 2016a; 
Thibodeau and Jung, 2016). Calculated equilibrium structure data would be too large to efficiently 
store in RapidThermo. This data must therefore be used to calculate property values, which can be 
stored efficiently, and then discarded. 

Slag Properties 
Density, viscosity, electrical, and thermal conductivity are the most important properties that need to 
be accessible to multiphysics models, of DSFs for example. This additional information must be 
provided by RapidThermo at the lowest possible additional computational, memory, and storage cost. 

Density 
Phase density (Equation (2)) varies with composition and temperature; it is determined by molar 
volume (Equation (3)) and thermal expansivity (Equation (4)). 

𝜌𝜌φ  =
∑  
μ̂μ
φ

μ=1  𝑥𝑥μ
φ𝑚𝑚‾ μ

V‾ φ
(2)

𝑉𝑉‾φ  =
𝑉𝑉Tref 

φ
φ

∑  μ̂φ
μ=1  𝑛𝑛μ

φ �1 + αV
φ(T − Tref )� (3)

𝛼𝛼𝑉𝑉
φ  =

1
𝑉𝑉‾φ

∂𝑉𝑉‾φ

∂𝑇𝑇
(4)

 

Liquid slag density can be calculated either directly based on structure data from GEM results and 
the model by Thibodeau, Gheribi and Jung (2016c), or interpolated with previously calculated data 
stored in the RapidThermo database. It is sufficient to store only 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 rather than both 𝑉𝑉‾ slag and 𝛼𝛼𝑉𝑉

slag, 
since the accelerator’s discretisation scheme will implicitly store both composition and temperature 
dependence. 
Density of a mixture of phases is not dependent on morphology. The combined density of the phases 
𝜌𝜌  can therefore be determined simply with Equation (5), based on either directly calculated or 
interpolated single-phase densities 𝜌𝜌φ , which obviates storage of multi-phase density data. 

𝜌𝜌 =
𝑚𝑚σ

∑  φ̂ρ

φ=1  
𝑚𝑚φ

𝜌𝜌φ
(5) 

Viscosity 
Single-phase dynamic viscosity 𝜇𝜇φ is only relevant to fluids such as gas, liquid slags, and liquid alloys. 
Together with the flow domain geometry, it determines the rate at which momentum is transferred. 
This is important for fluid flow and heat transfer in high-temperature reactors such as DSFs. Liquid 
slag viscosity can be calculated with models from Grundy et al. (2008), Kim (2011) and Wu et al. 
(2015), all of which use structure data from GEM calculations as basis. 
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Because viscosity is a kinetic property, the morphology of a mixture of phases influences the mixture’s 
apparent viscosity 𝜇𝜇 (Schupsky et al., 2020). In the case of a single liquid phase with suspended solid 
phases, the Einstein-Roscoe equation (Roscoe, 1952) is often used (Equation (6)). This equation 
omits the influence of solid particle morphology, and therefore the interfacial area between liquid and 
solid phases. 
 

𝜇𝜇apparent = 𝜇𝜇liquid �1 − 1.35
𝑉𝑉solids 

𝑉𝑉liquid 
� (6) 

 
When the phase mixture only consists of liquids, such as a molten slag and alloy, Equation (7) can 
be used to calculate apparent viscosity as a volume weighted average (Muller, Zietsman and 
Pistorius, 2015), which also ignores morphology. 

𝜇𝜇apparent =
1
𝑉𝑉𝜎𝜎

�  
φ̂ρ

φ=1

 𝑉𝑉φ𝜇𝜇φ (7) 

  

Electrical Conductivity 
Single-phase electrical conductivity 𝜎𝜎φ together with domain geometry, and the electrical potential 
field determine the rate at which electrical charge is transferred. This releases energy through joule 
heating, which drives subsequent heat transfer, in high-temperature reactors such as DSFs. Liquid 
slag electrical conductivity can be calculated with the model from Thibodeau and Jung (2016), which 
uses equilibrium structure data as basis. 
As a kinetic property, the morphology of a mixture of phases influences the mixture’s apparent 
electrical conductivity 𝜎𝜎apparent. When ignoring morphology, an average weighted by volume fractions 
can be used as a simple approximation. 

𝜎𝜎apparent =
1
𝑉𝑉𝜎𝜎

�  
�̂�𝜑𝜌𝜌

𝜑𝜑=1

 𝑉𝑉𝜑𝜑𝜎𝜎𝜑𝜑 (8) 

Thermal Conductivity 
Thermal conductivity is the slag property that is most lacking in data and models. It is also of great 
importance to new technologies such as DSFs, since energy released through electrical heating must 
be transported, at least in part, through the slag bath. We suspect that heat transfer rates through the 
slag bath may be the fundamental capacity constraint of these new processes. 
It may be possible to resolve some of these problems with computational methods such as MD and 
DFT for single phases. Multiple phases can be approached similar to electrical conductivity, due to 
the similarities between the two properties. 

Summary 
The availability of sophisticated material property models based on slag structure makes it feasible 
and relatively simple to add thermodynamic and kinetic material properties to the information stored 
by the RapidThermo framework. These models use equilibrium calculation results as basis and 
compute physical properties at limited additional cost. The calculated properties only need to be 
stored on OPF boundaries, as is the case with the compositions, heat capacities, and enthalpies of 
single phases. 
Electrical conduction in slags involves transport of charge with ions and electrons (Equation (9)). 
Similarly, slag thermal conduction involves transport of heat with phonons (lattice vibrations), photons 
(thermal radiation), and electrons (Equation (10)). MQM structure information is used successfully as 
basis for describing 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (Thibodeau and Jung, 2016), and may similarly be able to support 
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calculation of 𝜅𝜅𝑝𝑝ℎ𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. It does not provide sufficient information, though, for estimating electronic and 

radiation components. It is therefore not yet possible to describe high-TiO2 slags, for example, that 
have large electronic contributions to their electrical and thermal conductivities. 

σslag = σion
slag + σelc

slag (9) 

κslag = κphn
slag + κelc

slag + κpht
slag (10) 

All multiphase properties are re-calculated efficiently with interpolation based on density information 
and the lever rule, which obviates the need for excessive storage. Simple volume-based multiphase 
descriptions can be exchanged for more sophisticated models when morphology information is 
available. Simple descriptions can already improve multiphysics models significantly compared with 
assuming constant material property values. 
Even though RapidThermo stores the minimum amount of data required for adequately accurate 
material descriptions, memory and storage requirements may increase to infeasible levels. In such 
cases, artificial neural networks (ANNs) may be fitted on OPF data to provide drastically compressed 
phase boundary descriptions. Such non-linear fits will have to be constrained to ensure that they 
remain thermodynamically consistent, and that mass, element mass, and energy conservation are 
still adhered to. 

CONCLUSION 
The pressure to develop new production technologies for the iron and steel industry is clear, and a 
current reality. If DRI smelting furnaces are to be in successful operation as soon as 2030, 
computational modelling will have to play a large part in the development process. This, in turn, needs 
more comprehensive, accurate, and computationally efficient material descriptions as a crucial 
component. Combining multiphysics models and existing material descriptions with existing methods 
and software will, however, lead to infeasible computation times. 
It has been demonstrated in earlier work that the RapidThermo framework can capture equilibrium 
phase compositions, heat capacity, and enthalpy, which can make substantially faster material 
descriptions available for process and multiphysics models. In this paper we explained how other 
material properties, including density, viscosity, electrical conductivity, and thermal conductivity can 
be added to the framework, to make more realistic models of high-temperature reactors possible. 
The current work identified the following points for further investigation: 

1. Large memory and storage requirements on OPF boundaries may make it necessary to 
compress this data. Artificial neural networks may provide a feasible solution, especially since 
large amounts of data would be available. 

2. Solution models like the MQM do not yet provide sufficient information to describe the electronic 
components of electrical and thermal conduction, and the radiation component of thermal 
conduction. It may be useful to extend such models to produce additional structure, geometric 
and dimensional information that can be used as basis for estimating these properties. 
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NOMENCLATURE 
Extensive Variables Intensive Variables 

𝑈𝑈 
𝑆𝑆 
𝑉𝑉 
𝐻𝐻 
𝐺𝐺 
𝑛𝑛 

 
𝑚𝑚 

internal energy 
entropy 
volume 
enthalpy 
Gibbs energy 
amount of substance 
 
mass 

J 
JK-1 
m3 
J 
J 
mol 
 
kg 

 
𝑇𝑇 
𝑃𝑃 

 
 
𝜇𝜇 
𝑥𝑥 
𝑦𝑦 

 
temperature 
pressure 
 
 
chemical potential 
amount fraction 
mass fraction 

 
K 
Pa 
 
 
J mol-1 
mol mol-1 
kg kg-1 

Arrays are indicated with boldface. E.g. 𝐧𝐧 is an array of 𝑛𝑛i. 

Extensive Variable Modifier Notation 

𝑉𝑉‾  
�̌�𝑉 

integral molar 
integral mass-specific 

𝑉𝑉 𝑛𝑛⁄  
𝑉𝑉 𝑚𝑚⁄  

𝑉𝑉�  partial molar ∂𝑉𝑉
∂𝑛𝑛𝑖𝑖

 

Material Thermodynamic Properties Material Kinetic Properties 

𝐶𝐶�̅�𝑃 heat capacity 
molar volume 
thermal expansivity 
mass density 

J K-1 mol-1 
m3 mol-1 
K-1 
kg m-3 
 
 
 

𝜇𝜇 
𝜎𝜎 
𝜅𝜅 
𝜇𝜇m 
𝛼𝛼r 
𝜌𝜌r 
𝜏𝜏r 

dynamic viscosity 
electrical conductivity 
thermal conductivity 
magnetic permeability 
thermal radiation absorptivity 
thermal radiation reflectivity 
thermal radiation transmissivity 

Pa s 
S m-1 
W m-1 K-1 
H m-1 
W W-1 
W W-1 
W W-1 

Objects Related to Thermochemistry 

Υ 
σ 
Γσ 
Γeq
σ  
γΓ 
ψσ 
εσ 
ζσ 
ϵσ 
 

the universe 
the system 
a macrostate (macroscopic configuration) of σ 
an equilibrium state of σ 
a microstate (microscopic configuration) of Γ 
a non-chemical potential of σ, e.g. T, P 
a component (usually chemical element) of σ 
a compositional constraint of σ 
an independent component of σ 
 

ς 
ρ 
f 
φ 
εφ 
ζφ 
ϵφ 
μφ 
λφ 
μλ 

the surroundings 
phase region (unique set of phases) in a phase diagram 
a degree of freedom 
a phase 
a component, e.g. an element or electron, local to φ 
a compositional constraint of φ 
an independent component of φ 
a constituent of φ 
a sublattice of φ 
a constituent of λ 

Hat notation indicates “the number of” an object. E.g. φ�ρ is the number of phases in a phase region. 
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