
1 

Advancement in experimental methodologies to produce phase 
equilibria and thermodynamic data in multicomponent systems 

M. Shevchenko 1, Denis Shishin 2, and E. Jak 3 

1. Research Fellow, PYROSEARCH, University of Queensland, Brisbane, QLD, 4072. Email: 
m.shevchenko@uq.edu.au 

2. Research Fellow, PYROSEARCH, University of Queensland, Brisbane, QLD, 4072. Email: 
d.shishin@uq.edu.au 

3. Professor, Centre Director, PYROSEARCH, University of Queensland, Brisbane, QLD, 4072. 
Email: e.jak@uq.edu.au 

Keywords: high-temperature phase equilibria, EPMA, thermodynamic modelling, FactSage 

ABSTRACT 

One of the key aspects to develop sustainable metallurgical production is to ensure that the 
predictive power of thermodynamic tools is brought up to a new level of accuracy and reliability. 
Exploring new polymetallic processes, integrating primary and recycled materials, means utilizing 
the uncharted areas within the Cu-Pb-Zn-Fe-Ca-Al-Mg-Si-O (major) – Cr-Na (slagging) – As-Sn-Sb-
Bi-Ag-Au-Ni-Co (minor) slag-solids-metal-matte-speiss-sulphate system. This requires extensive 
integrated experimental and thermodynamic modelling study, which is underway at PYROSEARCH 
(UQ). 

Recent improvements in experimental methodology allowed: a) generating over a thousand 
equilibrium data points per year by high-temperature (400-1750°C) equilibration, quenching, 
Electron Probe X-ray Microanalysis (EPMA) technique at laboratory-controlled oxidation/reduction 
conditions; b) studying previously impossible systems by smart choice of substrates corresponding 
to system conditions, one example being rhenium foil for Sn- and Sb-rich slags, c) systematic 
updates in the properties of pure components/endmembers to provide self-consistent heat capacities 
from -273 to >3000°C in all phases, enthalpies of phase transition and melting points. 

The accuracy of measurements also increased. For instance, selected compounds with well-known 
stoichiometry were systematically used as a set of secondary standards. Also, effects of secondary 
X-ray fluorescence were addressed. As the experimental techniques improve, new areas of 
compositions are revealed, which are not necessarily easy to describe using the existing 
thermodynamic model frameworks. Examples of these areas are: miscibility gaps in silicate systems, 
many of which never accurately measured before; multicomponent 4-phase liquid equilibria slag-
matte-metal-speiss; liquidus temperatures for extremely high melting oxides CaO, MgO, NiO and 
SnO2. 
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INTRODUCTION 

 

Pyrometallurgy is an important sector of modern industrial society actively participating in solving 
current environmental, economic, materials scarcity and other challenges (Jak 2018). Fundamental 
theoretical models can now be used to make a significant next step towards the development and 
implementation of computerised models describing real industrial processes. Recent trends 
determine the new challenges for the scientists including a) stricter demand for the accuracy of the 
data, and b) more difficult systems for research and c) more components of chemical systems (Jak 
2012). The ultimate target is development of “Pyro-GPS” multicomponent, multi-phase, wide range 
of conditions thermodynamic model (Jak et al. 2024). 

An outline of the fundamental and applied research, through the expert analysis of processes of the 
industrial processes, to the implementation of the results of the research outcomes into industrial 
operations, was provided by (Jak 2012). The present paper attempts to present the developments 
of this approach that happened during the last 12 years. The integrated experimental/thermodynamic 
modelling approach developed in previous studies by the co-authors (Jak, Hayes, and Lee 1995; 
Jak 2012; Jak et al. 2016), based on microanalysis of equilibrium phase compositions, represents a 
breakthrough in the accuracy, productivity and range of conditions to be studied (Jak et al. 2024). 

New experiments are essential for development of the new model. Literature lacks both cover of 
systems/conditions and often accuracy. Experiments need to be planned to ensure sufficient (1) 
quantity and coverage of systems and conditions; (2) accuracy and reliability. 

(1) Which systems to investigate and how densely? 

The range of characterised systems keeps extending each year. Due to large scope of possible 
studies (thousands of binary, ternary and quaternary systems, with 10-200 experiments potentially 
needed in each), it is essential to identify priorities and conduct minimum sufficient number of them 
in the most important systems first (Jak et al. 2024). This planning is driven by the model 
requirements – experiments location and quantity should adapt to the model needs. 

Since most models in the currently available thermodynamic software packages have only binary 
and ternary parameters, it is essential to study all corresponding binary and ternary systems (“no 
experiments – no parameters” approach). Importantly, 

- Thermodynamic data for pure components – H, G, S, Cp(T) for all stable and metastable phases 
(e.g. supercooled liquids as endmembers for slag) – are often not reliable due to high melting points 
(>2000°C: CaO, MgO, Al2O3, Cr2O3, SnO2), instability (Ag2O, Au2O), volatility (As2O3, Sb2O3, SnO, 
ZnO), extreme reactivity (Na2O), etc. Therefore, binary and often ternary or even quaternary data 
are needed just to understand the behaviour of pure components properly. 

- Similarly, some areas of binary systems are not known directly. But they are required for description 
of ternary and higher-order systems – that is how the models work. Although ideally it would be 
desirable to have 20-30 reliable points in each binary system (at least one point per each 5 mol.%), 
this can rarely be achieved in practice due to a) high liquidus temperature of many areas, particularly 
close to pure components, that exceeds the current technique limits (1750 °C); b) instability, volatility 
and reactivity of pure components as listed above; c) inability to quench liquids with compositions 
rich in some of the components that are poor glass-formers – particularly metals. 

E.g. FIG 1 for CaO-NiO-SiO2: 
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FIG 1 – Example of limited binary thermodynamic data for the CaO-NiO-SiO2 system. 
 

A random composition inside the area of realistic liquid slag, is shown using the blue dot in FIG 1. 
For this composition, thermodynamic properties are calculated by combining properties from three 
binaries as shown by the blue arrows, with further addition of ternary parameters. It is very likely, 
interpolation into ternary system is done from the unknown part of a binary sub-system. That is why 
ternary data may and should be used to double-check and evaluate the properties of binaries in the 
areas that cannot be studied directly. 

Similarly, not all areas of each ternary system can be directly studied, but they may be revealed by 
experiments in the certain quaternary systems. Thus, quaternary systems must be studied and used 
to test the values of binary and ternary parameters. 

Furthermore, a third or fourth component can sometimes be used as a flux added to the binary (or 
ternary) eutectic, to study the subsolidus behaviour in a more productive way. For instance, 
kinetically-limited solid-state experiments within the MgO-AlO1.5-SiO2 system would likely result in a 
sample, which is porous, contains compositional gradients, and very hard to polish into smooth 
surface. For this system, the phases are also indistinguishable due to similar brightness in back-
scattered electron image, which relies on the difference in average atomic numbers of phases. 
Alternative approach involves the addition of PbO flux, as shown in FIG 2. PbO does not form any 
solid solutions with MgO-AlO1.5-SiO2 phases, neither it forms new stable solid phases. The addition 
of even small concentration of PbO to the liquid slag immediately makes it much brighter than all 
solids, giving the necessary contrast for effective sample much analysis. Some ternary invariant 
points involving slag have too high temperature to be studied directly. For instance liquid slag-lime-
periclase-C3S equilibrium within the CaO-MgO-SiO2 system has the temperature of >1800°C. An 
addition of a fourth component, such as AlO1.5, extends this invariant point as a lower temperature 
univariant line, allows measuring phase compositions accurately, and then extrapolate the 
quaternary results to obtain the compositions of all liquid and solid solutions in that point for the 
AlO1.5-free ternary system. 

 

SiO2

CaO

Tmelt=2900?

NiO

Tmelt=1990? 

Or decomposition to Ni+O2?

unknown

(T>2100 C)

large uncertainty

(1750-2100 C)

well known

large uncertainty

(miscibility gap, 

T>1750 C)

known

unknown

(T>1750 C)

unknown

(miscibility gap,

T>1750 C)

unknown

(T>1750 C)
known



4 

  

FIG 2 – Example microstructure of approaching the MgO-AlO1.5-SiO2 system (tridymite-pyroxene-cordierite 
solids) by addition PbO-rich flux (slag), and CaO-MgO-SiO2 (lime-periclase-C3S solids) with AlO1.5 liquid slag. 

High-order systems (4-, 5-, 6-component, etc.) are the ultimate target for thermodynamic predictions, 
relevant to the industrial purposes. The predictions must be confirmed by a certain number of 
experiments, preferably covering a large volume of the multidimensional compositional space. 
Traditional binary and ternary diagrams cannot represent the results of calculations and experiments 
in such systems. Several options exist to represent and analyse phase equilibria in these cases: 

- Pseudoternary sections, where the concentrations or ratios of all components except three are 
fixed. Example: for the 6-component (PbO+CaO+SiO2)-FeO-Fe2O3-ZnO systems, the ratio 
PbO/SiO2 and CaO/SiO2 can be fixed, furthermore the p(O2) is fixed at 0.21 atm to define the 
FeO/Fe2O3 ratio, allowing the (PbO-CaO+SiO2)-(FeO+Fe2O3)-ZnO pseudo-ternary diagram (Jak and 
Hayes 2002b, 2002a). 

- Projections from the selected apex(es) of the multidimensional space. In the FactSage calculation, 
this can be achieved by fixing the activity of the corresponding primary solid phase to 1, and 
analysing the secondary phase fields (Shevchenko and Jak 2020b; Wen et al. 2023). 

- Plotting the phase diagram based on three major components and analysing the behaviour 
(solubility, activity coefficients) of other minor components (Shevchenko, Chen, and Jak 2021). 

Types of thermodynamic data 

For each system, multiple types of thermodynamic data exist: 

- Properties (H, G, S, Cp, vapour pressures, etc.) of pure components, compounds and solutions as 
functions of temperature, most importantly ΔfH°298, S°298. 

- Properties of compounds and solutions (liquid, solid) as functions of temperature: integral and 
partial H, G, S, activities of components, vapour pressures. 

- Phase equilibria: liquidus of each phase; extents of solutions; special points / lines of phase 
diagrams (phase transitions, eutectics, univariants, etc.); distributions of elements between phases. 

Only rarely, all these types of data are available and even possible to measured directly. Lack of 
some types of data can be partially compensated by improved reliability and range of other types. 

Current scope of study by PyroSearch team 

Wide range of objects is studied simultaneously by the PyroSearch team: slag (including silica-free 
and other “exotic” systems), matte, metal, speiss, liquid sulphates, solid solutions (FIG 3). Attempts 
are taken to develop other techniques: DTA/DSC, viscosity, electrical conductivity, aqueous 
leaching. 
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tridymite

CMAS2d-1740slag

C3S
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FIG 3 – Summary of all successful experiments done at PYROSEARCH in a typical year (2023). 

 
Examples of microstructures of quenched high-temperature samples obtained in recent years are 
shown in FIG 4.  
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FIG 4 – Examples of microstructures in various types of systems studied at PYROSEARCH: immiscible liquid 
slags; liquid slag-matte-metal; metal-matte-speiss; metal-speiss-solids-slag; liquid sulphate-slag-solids. 

 

(2) Accuracy and reliability of experiments. 

Although the equilibration, quenching, electron probe X-ray microanalysis proved to be powerful, 
and seem easy to implement, there is a long list of possible issues that can lead to experiment failure 
or unreliable results. Each time a new type of object is studied, it is essential to prove that sample 
has reached equilibrium and that its quenched state properly represents that high-temperature 
equilibrium. Multiple stages of each experiment need a careful approach to avoid uncertainties, 
including: 

- Experimental: impurities, achievement of equilibrium, temperature and gas composition 
uncertainties, quenching quality. 

- Analytical: selection of area for analysis, effect of probe diameter, standards, characteristic line 
selection and interference, ZAF-correction, beam-sensitive elements, secondary fluorescence. 

2.1. Conditions: accuracy of temperature, p(O2/SO2/etc.), stability of substrates, absence of 
impurities. The impurities can be introduced from original materials, during the sample preparation, 
during the equilibration in impure atmosphere / dust, due to reaction with substrate, and at post-
quenching treatment due to hydration, oxidation. 

A large variety of the starting materials is used: 

• Pure powders, e.g. Fe, FeO1+x, Fe3O4, Fe2O3, FeS, Cu, Cu2O, CuO, Cu2S, CaCO3, CaO 
selected by optimising the purity, mixing efficiency, availability, price-to-value ratio. 

These can be affected and controlled by: 

• Reactions during heating / melting. For instance, CuO can de-compose upon heating, iron 
and lead oxides will react according to Fe + PbO = FeO + Pb, 

• A thermal arrest at lower than target temperature, e.g. to melt a mixture of PbO + SiO2, or Cu 
+ As. 

Master slags / matte / speiss are often prepared in advance. The PbO-SiO2 master slag is necessary 
to minimise vaporisation of PbO in initial stages of experiment. The CaO-SiO2, Ca2Fe2O5 need to be 
prepared to avoid residues of volatiles, CaCO3 and Ca(OH)2. Without complete removal of volatiles, 
sealed ampoule experiment can fail due to expansion. The synthesis of compounds like Cu3As, 
FeAs, SnS, Sb2S3 may help avoiding the conditions where combined pressure of arsenic-sulphur 
containing gaseous species exceeds 1 atm and results in explosion. 

The selection of a holding material for the sample equilibration is not straight forwards. Over the 
years, many combinations substrates and samples has been developed at PyroSearch, which are 
summarized in TABLE 1 and FIG 5. Substrates made of “inert” precious metals requires careful 
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analysis of experimental conditions. Factors, such as temperature, p(O2), and possible reactions 
with corrosive metals, such as Cu, Pb, Sn, Sb, etc., their oxides and mattes, often make them 
impractical to use. Both the melting points and the affinity for oxygen of most commonly used 
precious metals increase in the order Au < Pt < Ir < Re (Jak et al. 2022).  

 

 

 

TABLE 1 – List of substrates applied at PYROSEARCH for high-temperature phase equilibria studies. 

Material Advantages Disadvantages Systems studied, 
examples 

SiO2 ampoule 

 

Allows full protection from 
interaction with gas and 

evaporation of volatile materials. 

Used for quartz, tridymite, 
cristobalite liquidus, or others if 

second substrate enclosed 
inside: 

 

Sometimes infiltrated by 
slag (e.g. FeO-rich). 

Can expand and block the 
furnace at high T if any 

gas is released from 
sample. 

Preferred for all oxide 
systems (high-SiO2 

ranges) where 
contact with gas is 

not needed. 

Also – slag-matte-
metal, matte-metal-

speiss... 

SiO2 ampoule 
with a hole 

Allows the escape of released 
gas (CO2, O2, SO2) and 

exposure to outside gas, which 
is not too far from composition 

inside. 

The equilibration with gas 
is not fast enough in some 

cases. 

Pb slag-matte-metal 
at high pSO2 – limits 
evaporation of Pb. 

Fe-Sn-Si-O at high 
pO2. 

SiO2 open 
crucible 

 

Allows faster equilibration with 
gas (e.g. CO-CO2) 

Exposes a sample to dust 
contamination from above. 

Large range of slag-
metal, slag-metal-
matte at fixed pO2. 

Al2O3 crucible 

 

Strong, not expensive, available 
in multiple sizes. 

Can be enclosed in SiO2 
ampoule (up to 1590°C) for 

volatile systems. 

Relatively thick, may 
prevent fast quenching. 

May be infiltrated by slag. 

Cu-Ca-Al-O 
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MgO crucible 

 

Low solubility in most silicate, 
Cu- and Pb-slags. May be 

covered by protective layer of 
olivine. 

Can be enclosed in SiO2 
ampoule (up to 1540°C) for 

volatile systems. 

Thick, may prevent fast 
quenching. 

May be infiltrated by slag. 

Contains ~3% Y2O3 
impurity. 

Relatively brittle and 
expensive. 

Cu-Mg-Si-O, Pb-Mg-
Si-O 

Au foil 

 

Very stable to oxidation to slag, 
does not form any oxide 

compounds. 

Reusable. 

Low Tmelt = 1064°C, even 
lower in presence of Pb, 

Sn, Sb, ... 

PbO-rich slags at low 
T 

Pt foil/wire/ 
crucible 

 

Easy to manufacture, thin – 
promotes fast quenching. 

Does not oxidise in air in contact 
with most slags. 

Can form liquid or solid 
alloy in presence of Pb, 

Sn, Sb, Ni, Fe... at high T 
and reducing conditions. 

Can oxidise to slag (up to 
0.3 wt.%) or compounds 
(Pb-Pt-O, Ca-Fe-Pt-O) at 

low T and high P(O2). 

Expensive, not reusable. 

Ca-Fe-Si-O, Pb-Fe-
Si-O, etc. 

Pt-25%Ir foil 

 

Stronger than Pt, and less brittle 
than Ir, therefore reusable. High 

Tmelt than Pt. 

Intermediate resistance to 
alloy formation (reducing) 

and oxidation to 
slag/compounds between 

Pt and Ir. 

Preferred for most 
oxide systems in air 
or mildly reducing / 
inert atmosphere. 

Ir wire/plates 

 

 

Stable to corrosion by Cu, Pb, 
Sn metals. 

Can oxidise to compounds 
(Pb-Ir-O, Ca-Ir-O, spinel...) 

at low T and oxidising 
conditions 

Relatively brittle. 

Expensive, not reusable. 
Plates are particularly 

expensive but reusable. 

Cu, Pb, Sn systems. 

The only substrate to 
work in air above 
1750°C, and in 

reducing atmosphere 
+ corrosive metals. 

Re foil/wire 

 

Stable to corrosion by liquid Cu, 
Pb, Sn, Sb, Bi, Ag, Au metals. 

Not brittle, reusable. 

Can oxidise to slag, oxide 
compounds, and gas (e.g. 
in air it just gradually burns 

out). 

SnO- and Sb2O3-rich 
systems in 

equilibrium with metal 
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Ag wire Easy to manufacture. Low Tmelt = 962°C. Easily 
oxidises to slag. 

Pb-Ag-Si-O 

Pd wire Similar to Pt, may be less prone 
to formation of certain oxide 

compounds, e.g. calcium 
ferrites. 

Lower Tmelt than Pt and 
higher solubility in most 

slags. 

Ca-Fe-O 

Mo, W wire 

 

Very high Tmelt, strong, not 
expensive. 

Easy to oxidise and 
contaminate slag, form 

many stable solid 
compounds. Also form 

volatile MoO3, WO3 which 
cause persistent furnace 
contamination. Only for 

very reducing conditions. 

Fe-Mg-Si-O 

Cu foil/wire 

 

Cheap, easy to manufacture. Tmelt = 1085°C, further 
reduced by impurities. 

Cu-Pb-Si-O 

Ni foil/wire 

 

Cheap, easy to manufacture. Tmelt = 1455°C, further 
reduced by impurities. 

Ca-Ni-Al-O 

Co foil/wire 

 

Cheap, easy to manufacture. Tmelt = 1495°C, further 
reduced by impurities. 

Requires careful protection 
from oxidation. 

Co-Si-O 

Fe foil/wire 

 

Cheap, easy to manufacture Requires careful protection 
from oxidation. 

Wetted by slag and liquid 
metals that creep into thin 

layer. 

Usually has some Mn 
contamination (~0.1%) that 

preferably goes to slag. 

Ca-Fe-Si-O, Pb-Fe-
Si-O (reducing – 

equilibrium with Fe) 

FeO, Fe3O4 
prepared from 

Fe foil/wire 

 

Can be reliably manufactured. 
Good choice for corrosive slag-

metal combinations. 

Brittle, very porous. Slag 
can be fully lost into pores. 

Not as good when slag 
has spinel-forming 

components (Al, Mg, Zn, 
Ni) – unclear if slag-spinel 
equilibrium distribution is 

reached. 

Cu-Ca-Fe-O, Cu-Fe-
Si-O, Pb-Fe-Si-O 
spinel and wustite 

liquidus 
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Other sintered 
oxides (CaSiO3, 

...) 

Can be used in primary phase 
fields of respective compounds, 
when all other substrates are too 

reactive. 

Brittle, very porous. Slag 
can be fully lost into pores. 
Complicated preparation 

with low success rate. 

Still requires other 
intermediate substrates 

(metal wires) for handing. 

Cu-Ca-Si-O 

Future plans – 
Cr2O3 

 

Very low solubility in most 
silicate slags, high Tmelt. 

Technique requires 
development. 

Cr systems, 
multicomponent Pb 

slags 

 

 

FIG 5 – Typical substrate preferences depending on pO2 and T (Jak et al. 2022). 

 

2.2. Achievement of equilibrium: completion of reactions. General principles: macro- and micro-
inhomogeneities, fast (liquid/solid) vs slow (gas/liquid, solid/solid) reactions. 

Confirmation of achievement of equilibrium can be complicated, formulated as a “4-point test” (Jak 
2012; Shevchenko et al. 2016) including: (1) variation of equilibration time; (2) assessment of the 
compositional homogeneity of the phases by EPMA; (3) approaching the final equilibrium point from 
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different starting conditions; and, importantly, (4) consideration of reactions specific to this system 
that may affect the achievement of equilibrium or reduce the accuracy. 

• Direction of reactions towards equilibrium – should be investigated in preliminary experiments 
to avoid blocking mass transfer during equilibration (Hidayat et al. 2023). 

• Distance to equilibrium point: 

o in initial experiments can be larger to ensure approach to equilibrium from different 
directions; 

o final experiments – better to be in the “believed to be true”. 

Planning may be assisted with FactSage with adjustment for “believed to be true”, but also can be 
done with a separate “mass balance” model. 

Preliminary short experiments (1-5 minutes) are recommended at the initial stage of study of each 
system, to identify most important reactions on melting. Final equilibration time can vary from 10-15 
minutes (very high temperature ~1700-1750°C, fluid low-SiO2 liquids, presence of volatile 
components such as ZnO, SnO2) to 2-24 h (typical) and even several weeks (low temperature ~500-
700°C, viscous liquids rich in SiO2, PbO, Sb2O3, expected slow-forming compounds such as 
PbSiO3). 

2.3. Quenching. 

Selection of quenching medium. The best is not “as cold as possible” but “as far from boiling point 
as possible, in terms of enthalpy”. E.g. liquid N2 is very cold but close to the boiling point, and thus 
a very bad quenching medium. Sometimes, is referred to as Leidenfrost effect. Water at room 
temperature is not as good as water at 0°C. Even better is the salt brine at -20°C. It is not just the 
low temperature, but also the prevention of continuous vapour cushion blanket due to the change in 
regime of boiling (Pizetta Zordão et al. 2019; Luty 1992). Other possible, but less used quenching 
media is fluororganic liquid NOVEC1230, C6F12O, also known as “dry water”, which is applicable 
samples that are water-sensitive, such as high-Na2O slags and molten salts. Oils are not used for 
quenching due to fire hazard and because the oil contamination is very bad for the electron 
microscopes.  

Depending on the properties of phases and their combinations, the main uncertainty is either the 
achievement of equilibrium or preservation of equilibrium during the quenching (FIG 6). The former 
is limiting for highly viscous liquids or slow solid-state reactions, while the latter is a problem for very 
fluid liquids, or reactions happening fast at temperature drops. 

 

FIG 6 – Approximate rating of liquids by behaviour on quenching. 

• Fluid liquid – expected problems with quenching and no issues with equilibration – % solids 
should be minimum with maximum liquid exposed first to the quenching media and later 
found in the mounted sample, equilibration time can be shorter (unless gas is involved) 

• Viscous liquid – expected problems with equilibration and no issues with quenching - % solids 
should be higher, but not blocking mass transfer access to other phases (e.g. gas, matte, 
slag) 

Easiest to quench/

Hardest to reach equilibrium

Hardest to quench/

Easiest to reach equilibrium

Oxide: SiO2Sb2O3Al2O3CaOFeO, ZnO, MgOCu2O PbO

FeS

Metal:

Matte: Cu2S

Pb Sn, Sb Fe Cu

Speiss: Fe-As Cu-As

Salt: (Na,Ca,Pb)xSO4
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2.4. Analysis of phase compositions. EPMA is the main technique – allows high accuracy after taking 
all necessary precautions: 

Selection of area for analysis. It is recommended to avoid immediate proximity to solids, dendrites 
and micro-inhomogeneities. Areas closer to surface provide better quenching (FIG 7). Good areas 
must have all needed phases to be present within the diffusion path. When some expected phases 
are lacking in the area, it is sometimes referred to as macro-inhomogeneities. A number of separate 
areas in sample should be investigated. Within each area, at least 5 points should be measured for 
well-quenched samples and 15-20 for poorly quenched. Also, for poorly quenched samples, a non-
zero probe diameter is selected, within the 20-100 micron. This helps to average minor local micro-
inhomogeneities formed during the quenching. 

The volume fraction of solids is targeted to be below 50%, and preferably about 10%, to achieve 
rapid equilibration and satisfactory quenching of the liquid phase into an amorphous material. The 
solid phases act as heterogeneous nucleation centres, and a minimum distance of 10-20 μm 
between solid grains is necessary to ensure that an amorphous slag of uniform composition exist 
between the grains. In this case, it is unaffected by dendritic crystal growth during quenching. The 
correlation between the volume fraction of the solid phases and the volume fraction of the liquid slag 
phase affected by the growth of the quenching crystals is schematically shown in FIG 7 (Khartcyzov 
et al. 2022): an increase in the volume of the solid phases will lead to a decrease in the volume of 
the liquid slag suitable for accurate measurement using the EPMA. 

 

FIG 7 – A schematic diagram illustrating the correlation between the volume fraction of solid phases and the 
volume fraction of homogenous liquid phase (Khartcyzov et al. 2022), and example of microstructure with well-
quenched slag on the surface and poorly quenched inside. 

 

The steps to analyse of micro- and macro- inhomogeneity trends can be summarised as follows: 

• Identify all phases. If unsure, use EDS, literature, powder XRD database, first-principles 
predictions. 

• Make a hypothesis of reactions occurring within the sample as it approached the equilibrium. 
Prove it by varying starting conditions, equilibration time, etc. 

• Macro-inhomogeneity check: measure the trend in similar areas across the sample (Hidayat 
et al. 2023). 

• Micro-inhomogeneity check: measure the trends in each location. A distance from solids must 
be kept as described above and supported by a micrograph. 

• In the case of viscous liquid samples, which are at risk of equilibration issue, use areas close 
and exposed to solids – targets of liquid/solid equilibrium. 

CMA83a-1735

slag

spinel

CaMg2Al16O27

poorly quenched 
inside of the sample



14 

• In the case of fluid liquid samples, which are at risk of quenching issue, use liquid areas free 
from solids, and those first exposed to quenching medium. 

• Tune contrast to the maximum to identify inhomogeneities and to find hidden phases. 

• Non-equilibrium samples can only be accepted with a special proof that at least local 
equilibrium exists. 

• Average of all measurements is not directly acceptable. Plotting the scattered points 
compositions against a phase diagram should reveal the existence or absence of a 
systematic trend. The points that are obviously further from equilibrium / or affected by poor 
quenching should be rejected, rather than averaged. 

 

Over the years, some issues were identified with the standard EPMA ZAF-correction, used to 
recalculate X-ray counts into concentrations, considering complex effects of interaction between 
electrons and the sample, as well as X-rays and the sample. Many uncertainties can be resolved by 
introduction of secondary standards within the sample. Ideal secondary standard is a stoichiometric 
compounds existing within the system of interest. Good examples are: PbSiO3, Pb2SiO4, Zn2SiO4, 
Fe2SiO4, Ca2Fe2O5, CaFe2O4, CaAl2O4, FeAl2O4, CuSiO3, CuAlO2, Cu2PbO2, etc. (Shevchenko and 
Jak 2017, 2018, 2019a, 2019b; Shevchenko and Jak 2021; Cheng et al. 2021; Khartcyzov et al. 
2023). When secondary standards are not available, using alternative types of ZAF-corrections, such 
as Mass Absorption Coefficients sets (MACs) were proved to be valuable. Using different EPMA 
machines for mutual check was tried in many cases. Some trends were revealed for neighbouring 
elements in Periodic table, e.g. Fe-Al – Co-Al – Ni-Al – Cu-Al – Zn-Al. All of them had stoichiometric 
compounds (or approaching stoichiometric at certain conditions) – spinel (FeAl2O4, CoAl2O4, 
NiAl2O4, ZnAl2O4) and delafossite (CuAlO2). For all of them, the concentrations of Al were 
overestimated if the existing Mass Absorption Coefficients set was used. Larger overestimation was 
observed when Al is combined with heavier elements (Cu, Zn) than lighter (Fe, Co). This effect is 
not universal but depends on the local EPMA machine, software and settings used. Therefore, each 
machine / software / settings combination needs to be calibrated against stoichiometric compounds, 
and the correction developed accordingly. 

The Secondary X-ray fluorescence is a widely overlooked source of “fake solubility”. It is observed 
for transition elements (Cr, Mn, Fe, Co, Ni, Cu, Zn) in light element-rich phases (SiO2, CaO, Al2O3) 
(Hidayat, Hayes, and Jak 2012; Hidayat et al. 2012; Xia, Liu, and Taskinen 2016; Hamuyuni, 
Klemettinen, and Taskinen 2016; Shevchenko and Jak 2018). Interesting cases involved two 
neighbouring transition element-rich phases inside one another, such as over-estimated % Fe in 
metallic Cu, which was surrounded by FeO-rich slag. Also, several % overestimation of Cu was 
noticed in zincite phase (ZnO), which was surrounded by the Cu-rich slag (Shevchenko and Jak 
2020a). 

The progress in (1) Quantity and selection of studied systems, and (2) Accuracy and reliability of 
results for each systems has become a foundation for the next stage in thermodynamic modelling. 
It has allowed gradual improvement of the accuracy of thermodynamic models for all studied 
systems. But it also revealed some limitations of the thermodynamic models, which could not be 
resolved without the deep re-assessment of model parameters, and even some concepts of the 
models themselves. Further in the paper, we describe the revision of properties of all end-members 
of model solutions.  

REVISION OF THERMODYNAMICS OF END-MEMBERS 

Since the early development of FactSage solution models, heat capacities of supercooled liquids 
below melting points were usually assigned the same functions of temperature as the corresponding 
solid phases. This often resulted in a discontinuous function for the pure liquid heat capacity (Cp) at 
the melting temperature. Typically, the heat capacity of liquids is about 10% higher compared to the 
solid of the same composition (FIG 8a). The discontinuity is also present in the heat capacities of 
multicomponent liquids, which are mostly approximated as an additive sum of all liquid endmembers, 
with only a minor contribution from the quasichemical interaction. The experimental evidence 
accumulated later does not support any jumps in liquid heat capacities (Richet and Bottinga 1985; 
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Richet and Bottinga 1986). Instead, most liquid silicates demonstrate constant heat capacities down 
to the lowest temperature of their stable existence, which can be closely approximated by the 
additive sum of liquid endmember heat capacities above their melting points. Moreover, for glass-
forming liquids such as SiO2, constant heat capacity (81.4 J/mol K) is observed down to glass 
transition point (Richet et al. 1982). The latter point (~1200°C for SiO2) is not a thermodynamic but 
a kinetic phenomenon, i.e. shifts to lower temperature on longer time scales and is sensitive to even 
minor impurities. Therefore, constant high heat capacity for equilibrium (relaxed) supercooled SiO2 
liquid may be extended below 1200°C, but not indefinitely, since the entropy of this supercooled 
liquid must not become lower than the entropy of the most stable solid at low temperature (low-
quartz) – this condition known as “Kauzmann paradox” (Stillinger 1988; Johari 2000; Speedy 2003). 
While the heat capacity of supercooled SiO2 can be measured due to its high viscosity, other pure 
oxide supercooled liquids could not be experimentally obtained, so their heat capacities may only be 
evaluated from the multicomponent data (Stebbins, Carmichael, and Moret 1984; Lange and 
Navrotsky 1992). Similarly, the heat capacities of all other supercooled liquid endmembers between 
~1000°C and their melting point need to be increased according to the literature for multicomponent 
melts – for example, for most divalent oxides (CaO, MgO, FeO, ZnO) from 50-60 J/mol K (as in solid 
phases) to at least 70-80 J/mol K. This allows significant improvement of description of binary and 
multicomponent phase diagrams while simultaneously removing excessive negative interaction 
parameters, the only purpose of which was to compensate for underestimated liquid Cps. This 
compensation, however, can never be perfect and resulted in large discrepancies in slopes of 
liquidus that would accumulate to >100 K discrepancy in some areas (FIG 8b). 

 

 

   (a)       (b) 

FIG 8 – Example of the supercooled liquid SiO2 Cp improvement (a), and schematic effect of the liquid 
endmember Cps on the simple eutectic, ideal liquid solution binary A-B phase diagram (b). 

 

Principles in revision of endmember thermodynamic properties: 

1. Heat capacity must be a non-negative, monotonically increasing function on temperature. 

(Unless there is solid experimental evidence of otherwise, e.g. due to magnetic transitions) 

Usually, in the revised version of thermodynamic model, the range 0-50 K is described by  

Cp = aT + bT2 + cT3 + dT4 + eT5 (no terms with T power <1 should be used, to avoid divergence), 

50-298.15K: Cp = a + bT + cT2 + dT3 + eT4 

298.15-X (X~1000-3000 K): Cp = a + bT + cT-2 + dT2 + some other terms if needed 

Mandatory term for highest T (X to >6000 K): Cp = a + bT-0.5 + cT-1 + dT-2 + eT-3 (no terms with T 
power >0 should be used, to avoid divergence)  
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2. Heat capacities and entropies of solid allotropes and liquid endmember of the same 
composition should follow the same sequence as their stability ranges on the temperature 
scale  

– to ensure no unreasonable restabilisation of liquid or high-T solid at low T, or solid at high T. 

3. Entropies of all solid and liquid endmembers should (at least approximately) tend to 0 at 0 K 
(3rd law of thermodynamics). 

Although pyrometallurgy rarely encounters T < 25°C, this fundamental principle allowed to fix lots of 
issues over the last few years. 

It is known that glasses / amorphous solids have small residual positive entropy at 0 K. This is due 
to incomplete relaxation – the viscosity below the glass transition (Tg) becomes so high that the 
lowest-entropy most-stable state is not achieved below Tg within reasonable experimental 
timescale. What is known for sure is a) the difference of entropy between supercooled liquid and 
solid decreases below Tmelt, and b) it must remain non-negative to avoid “Kauzmann’s paradox”. 
There is no consensus in literature whether the entropy of liquid should be exactly 0 at 0 K 
(Speedy 2003; Benigni 2021), or may remain somewhat higher. There are recent examples of 
thermodynamic models where zero entropy of supercooled liquid at 0 K is assumed: (Sergeev et 
al. 2019; Yazhenskikh et al. 2021; Khvan et al. 2018; Khvan et al. 2019; Bigdeli, Chen, and Selleby 
2018; Khvan et al. 2020; Bajenova et al. 2020; Khvan et al. 2022; Khvan, Uspenskaya, and 
Aristova 2024; Li et al. 2017; He and Selleby 2022). While there are different ways to extrapolate 
the thermodynamic properties of supercooled liquids below their observed glass transitions, they 
usually result in very similar outcomes, as long as the range between the glass transitions of most 
endmembers (~400-800°C) and their melting points (1700-2900°C) is described well. 

4. Heat capacities and entropies of all chemically similar species should have similar 
tendencies, with physically sound dependence on the position in Periodic Table. 

The currently used liquid slag model describes oxide and sulphide endmembers as unbreakable 
species (e.g. CaO, FeS), while Matte/Metal – as combinations of metal (e.g. Ca, Fe) + 
hypothetical liquid O or S. 

For example, for trivalent oxides (FIG 9), 

- Heat capacities (Cp) of all M2O3 liquid endmembers reach ~150-160 J/mol K above 500 K and do 
not change much anymore. 

- Entropies S of all M2O3 liquid endmembers have systematic trend on Periodic Table position: low 
S (light Al) => high S (heavy Bi). 

5. A systematic revision has been underway to ensure both approaches (i.e. oxide “FeO” in slag 
and elemental “Fe, O” in matte/metal) result in consistent thermodynamic properties over the whole 
temperature range (0 K – at least 2000 K). 

This involved modifying the heat capacity of the hypothetical liquid O endmember in matte/metal to 
a lower value (29 J/mol K) at high T to avoid spurious formation of “oxide matte” instead of liquid 
slag for many systems (Pb-O, Sb-O, Bi-O, ...) 

6. All endmembers should be reviewed with regards of all recent literature (TABLE 2, FIG 10). 

Some were inherited from early versions of FactSage (1980-1990s) and appeared to be obsolete. 

Systematic analysis of pure oxide endmembers:  

- enthalpies/entropies of melting vs Tmelt,  

- heat capacities of liquid and solids at Tmelt  

should be consistent throughout the whole Periodic Table (FIG 11). 
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FIG 9 – Systematic change in heat capacities (Cp) and entropies (S) of trivalent liquid slag endmembers (M2O3) 
in the revised thermodynamic model, as function of temperature. All Cps stabilise at 150-160 J/mol K above 
~500 K, while the entropies are usually ranked by atomic number (Al<Cr<Fe<As<Sb<Bi). 

 

TABLE 2 – List of updates in the properties of pure components (endmembers) of the oxide database within 
the recent major thermodynamic revision. Note: properties below 298 K were also described for all solids 

and liquids. 

Component Changed Tmelt, ΔHmelt Changed Cp(liq) (J/mol K) Changed other; 
reference 

SiO2 - Increased from 74 to 83 

 

(Wen et al. 2023) 

CaO Increased Tmelt from 2572 to 
2896°C 

Increased ΔHmelt from 79.5 to 
83 kJ/mol 

Increased from 55 to 80 

 

Increased Cp(solid) 
> 2000 K 

FeO - Increased from ~60 to 71 

 

(Wen et al. 2024) 
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Fe2O3 Decreased Tmelt from 1695 to 
1673°C 

Increased ΔHmelt from 77.2 to 
98.6 kJ/mol 

Increased from 145 to 160 

 

(Wen et al. 2024) 

PbO Increased ΔHmelt from 25.5 to 
27.7 kJ/mol 

Increased from <60 to 65 

 

(Wen et al. 2023) 

ZnO - Increased from 55-60 to 70 

 

(Wen et al. 2023) 

Cu2O - Decreased from 120 to 103 

 

“Apparent MQM 
coordination 

number” from 1 to 2 

(Wen et al. 2023) 

Al2O3 - Increased from ~145 to 155-160 
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MgO Increased Tmelt from 2825 to 
2941°C 

Increased ΔHmelt from 77.4 to 
85.4 kJ/mol 

Increased from ~60 to 72 

 

Increased Cp(solid) 
> 2000 K 

Partially published 
by  

(Abdeyazdan et al. 
2024) 

Cr2O3 - Increased from 130-135 to 157 

 

- 

CrO Increased ΔHmelt (from 
Cr+Cr2O3) 

Increased from ~54 to 72 

 

- 

As2O3  Made smooth below 298 K 

 

- 

As2O5 Introduced first time Set as 205 

 

- 
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SnO - Made smooth below 1000 K 

 

Partially published in 
(Shevchenko et al. 

2021) 

SnO2 Increased Tmelt from 1625 to 
2349 and then to 2439°C 

(Note: these are Tmelt under 
closed conditions – at finite 

pO2 they are lower, currently 
being set as 2144 at 1 atm O2 
and 2059°C at 0.21 atm O2) 

Increased ΔHmelt from 41.1 to 
49.8 and then to 55.5 kJ/mol 

Increased from 92 to 97 

 

Partially published in 
(Shevchenko et al. 

2021) 

Sb2O3 - Decreased from 157 to 150 

 

Revised Cp(solids), 
ΔHform and ΔHtransition 
to destabilise Sb2O3 

liquid 

Bi2O3 - Increased from 140 to 144 

 

- 

Ag2O - No change 

 

(Sultana, 
Shevchenko, and 

Jak 2021) 
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Au2O - Decreased from 121 to 103 

 

- 

NiO Increased Tmelt from 1955 to 
1990 °C  

(Note: these are Tmelt under 
closed conditions – at finite 

pO2 they are lower, currently 
being set as 1970 at 1 atm O2 
and 1947°C at 0.21 atm O2) 

Increased ΔHmelt from 58.3 to 
59.5 kJ/mol 

Increased from 67 to 71 

 

(Abdeyazdan, 
Shevchenko, and 

Jak) 

CoO Tmelt = 1830°C 
Increased ΔHmelt from 40 to 

42.1 kJ/mol 

Made smooth below 1400 K 

 

- 

Na2O - Increased from 99 to 105 

 

- 
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FIG 10 – Comparison of old and new heat capacities of liquid monovalent (M2O), divalent (MO), trivalent (M2O3) 
and tetravalent (MO2) liquid slag endmembers. Several unreasonable jumps (Na2O, CrO, PbO, MgO, CaO, 
Cr2O3, Al2O3, SiO2) and divergences to ±∞ (MgO, CaO, ZnO, Al2O3, Fe2O3) at low or high T have been 
corrected. 
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FIG 11 – Comparison of enthalpies of melting (ΔHmelt), entropies (ΔSmelt), heat capacities of liquids (Cpliq at 
Tmelt) and ratios of liquid to solid heat capacities at Tmelt, all normalised to 2 atoms for presentation purpose. 
Red circles represent corrected properties for some endmembers (e.g. CaO-n). 

 

Ideally, all elements should have (at least approximately) the same high-T heat capacities when 
expressed as (oxide – pure liquid O) and as (pure liquid metal) = ideal dashed line (y=x). 

Existing discrepancies (FIG 12) provide clues for further improvement of the database robustness, 
and will make introduction of new species (e.g. As5+, Sb5+, other elements) more fundamentally 
supported. Note: this chart includes elements that are not in the current thermodynamic database –
literature review was undertaken to plot Li+, P5+, K+, Ti3+, Ti4+, V2+, V3+, V4+, V5+, Mn2+, Mn3+, Ge4+, 
Zr4+, Te4+, Ba2+ – from public FactSage, etc. – to ensure consistency for all possible elements. Some 
of them (e.g. P5+, V5+, Te4+, Zr4+) do not align with the principles described here – indicating potential 
inaccuracies in properties from literature. 
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FIG 12 – Correlation between the heat capacities of pure liquid elements (metals and metalloids, e.g. P, Te, 
S) and their cations in liquid slag, calculated in assumption of Cp(O2-) = 29 J/mol K or (for covalently bound in 
SiO2, GeO2, SO3 groups) 25 J/mol K. Deviations from “ideal” dashed line indicate likely uncertainties in 
presently accepted Cp of the liquid element and/or its liquid oxide, with arrows showing desired correction. 

 

CONCLUSIONS 

Advances in experimental technique and scope within the 20-component Cu-Pb-Zn-Fe-Ca-Al-Mg-
Si-O (major) – Cr-Na (slagging) – As-Sn-Sb-Bi-Ag-Au-Ni-Co (minor) slag-solids-metal-matte-speiss-
sulphate system have been demonstrated in this paper. Improved range, quantity and accuracy of 
experimental data have initiated major improvements in thermodynamic model, including revision of 
properties of pure components (endmembers) that has not been attempted since the 1990s. 
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