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ABSTRACT  

For an optimal design and control of metallurgical processes, a deep understanding of the 
thermodynamics of the governing reactions is required. Modelling the thermochemical behavior of 
those reactions is complex, as it involves multi-component and multi-phase systems. For this 
purpose, thermodynamic computing systems such as FactSageTM (Bale et al., 2016), which combine 
Gibbs energy minimization routines with large databases of optimized thermodynamic data of 
solutions and compounds, have been used within the SMS group.  

Recently, the successful integration of those thermodynamic computing systems into the digital 
platforms of SMS has been achieved through ChemApp, which made running complex 
thermochemical calculations in Python-integrated development environments possible. ChemApp is 
a programmer’s package for thermochemistry and incorporates the Gibbs energy minimizer of 
FactSageTM as reported by Petersen and Hack (2007) as well as by Zietsman and Petersen (2018). 
The digital platforms link the fundamental and the industrial aspects together and can be applied as 
a process advisor, or for the evaluation of the environmental footprint and the economic implications 
of different process routes, as discussed by Reuter (2023). Two examples illustrating the progress 
of the developments in this regard will be introduced:  

• The Tilting Refining Furnace (TRF) for copper scrap recycling and refining to anode copper 
(the BlueControlApp) 

• Dephosphorization control for the Oxygen Steelmaking process (BOF) 

INTRODUCTION  

The future of metals is circular and carbon neutral.  To achieve this, a thorough evaluation of the 
thermodynamic behavior of the systems involved is crucial. This evaluation is necessary for a 
comprehensive understanding of the system, allowing us to characterize its thermodynamic behavior 
to the full extent, quantify its limitations, and minimize the gap depicted in the top left of Figure 1.  

 Figure 1 illustrates the necessity of robust digital platforms for accurately quantifying the limitations 
of larger systems. These platforms facilitate scaling the physics of reaction interfaces in metallurgical 
reactors, which are instrumental in processing and recycling systems and guiding the product design. 
Consequently, it's crucial to thoroughly quantify the exergy efficiency of the entire system. Here, 
thermodynamics also plays an integral and important part in quantifying the performance relative to 
a rigorous baseline laying the groundwork for a comprehensive understanding of green premiums 
and their role in driving innovation within the system (Reuter (2023)). 

 

FIG 1 – Integration of process understanding, digitalization, and innovation via the digital platforms of the 
SMS group. 
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Using ChemApp (Petersen and Hack, 2007; Zietsman and Petersen, 2018), it has become possible 
to run complex thermochemical calculations within the Python-based Integrated development 
environment (IDE). ChemApp is a programmer’s package for thermochemistry and incorporates the 
Gibbs energy minimizer of FactSageTM. 

Later, two examples illustrating the progress of the developments in this regard will be introduced. 

APPLICATION FOR THE TRF FURNACE: THE BLUECONTROL APP 

In order to refine copper scrap, the SMS group uses a tilting refining furnace (TRF). By combining 
the tilting refining furnace with a casting wheel, high-quality anodes are produced. In other words, 
when combined with the casting wheel, TRF can execute the melting, refining, and casting of copper 
scrap in one flexible unit. However, as discussed by Reuter (2023), despite multiple advances in the 
process control of such furnaces, a certain degree of operator intervention is still required. Although 
there are modern process control methodologies available such as artificial intelligence techniques, 
the current process control input is primarily based on the operator's and/or metallurgist's expertise 
and intuition, rather than solely relying on these advanced techniques. 

As shown in Figure 2, the tilting refining furnaces operate through a series of stages. Initially, the 
scrap is melted. Subsequent stages involve the removal of impurities such as Al, Fe, Ni, Pb, Sn, Zn, 
etc., which are transferred from the copper alloy into the slag by oxidation. This purification begins 
indirectly during the smelting of high-grade scrap, but due to limited slag uses, the final oxidation 
step(s) after charging and smelting are necessary.  

 

FIG 2 – Tilting Refining Furnace and its various steps, oxidation can happen in 1 to 3 steps depending on the 
scrap feed quality and required anode quality. 

Non-linear solution chemistry of slag and copper affects the distribution of elements from copper to 
slag and off-gas. Obviously, the flow of gas through the system especially affects the distribution of 
elements and compounds with higher vapor pressure. Inefficiencies due to mass and heat transfer 
and fluid flow also have an effect. 

Although a TRF is seemingly a simple system, various non-linear interconnected physical processes 
complicate the prediction of possible outcomes, i.e. metal quality. A full cycle of melting, oxidizing, 
refining, and casting typically takes approximately 24 hours. Optimizing the feed mix for a desired 
outcome requires substantial computational effort, as it involves repeatedly solving numerous 24-
hour cycles using the Gibbs energy minimization method. Typical operational parameters to be 
optimized can include:  

• correct quantity and mix of fluxes to achieve the desired flux type, fayalite/olivine (Figure 3), 
calcium- or calcium silicate-based; 

• the processing steps and times; 

• lambda of the burner, which denotes the ratio of actual air supply to the stoichiometric air 
requirement for complete fuel combustion; 

• quantity and type of oxidizing and reducing gases; 

• temperature; 

• indirect parameters, such as viscosity; 

• oxidation or reduction gas rate. 
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FIG 3 – Example target slag compositions for the copper refining for an operating point for an olivine. 

The above said would suggest that the involvement of human intervention and decision-making in 
the production and refining processes of copper scrap may lead to various adverse outcomes. These 
might include inefficiencies in anode production mass, inconsistent anode quality, i.e. impurities 
outside of desired levels, unreliable parameters e.g. slag viscosity, significant deviations from 
customer yield targets, suboptimal refining processes i.e. not reaching the targets for an anode, 
lengthy decision-making periods, and heavy reliance on skilled operators and metallurgists with 
specialized knowledge of these processes. These downsides can lead to increased costs and 
reduced productivity. 

For this purpose, SMS has developed the BlueControl application, to support the metallurgists as 
well as the operators in designing, analyzing, controlling, and optimizing the copper refining process. 
The application can be further used for the training of operators and for calculating the process 
outcomes under different operating conditions (linked directly to the thermochemical software library 
ChemApp). As shown in Figure 4, the BlueControlApp has two main calculation features: 

1. Simulation: The executed dynamic simulations use thermochemical equilibrium software 
FactSageTM (Bale et al., 2016), with a ChemApp interface, to perform Gibbs free energy 
minimization. Unfortunately, since the Gibbs free energy minimization algorithm uses the 
constrained and non-linear optimization method, the calculations can be time-consuming. 
For example, using FactSageTM with a ChemApp interface may take a single oxidation 
simulation (single refining cycle) up to 2 minutes and about 20 seconds to execute. 

• Optimization: Based on the copper scrap weight and its composition, feed temperature, 
oxidation gas rate and reduction gas rate, the optimization application finds the ultimate 
fluxes combination. The resulting flux combination assures the highest possible copper 
amount and the lowest possible amount of impurities at the end of the refining process (purest 
copper anode). This will improve production efficiency, yield, quality, throughput and reduce 
production costs. 
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FIG 4. Schematics of BlueControlApp. 

Moreover, the optimization process is based on the calculations done by the simulations, making it 
time-consuming. To illustrate more, using the BlueControlApp optimizer to find suitable fluxes 
combinations requires running a tremendous number of simulations, where each simulation 
resembles specific input values used during the copper refinement process. Recalling that such 
simulations are based on the time-consuming ChemApp interface, the optimization process itself will 
be also time-consuming. This can lead to tremendous production delays and an increase in 
production cost, thus making such analyses infeasible. To handle this issue, Akouch, Reuter, Kirmse 
et al. (2023) developed a surrogate model, which corresponds to a statistical model that accurately 
approximates the FactSage-based simulation outputs within seconds and not minutes. 

The surrogate model is considered as a supervised machine learning model, where the model is 
trained to recognize patterns and physical relationships between the input-outputs of the copper 
refining process. Using the surrogate model as a core model to run BlueControl 
simulations/optimization, made it possible to accurately estimate in real-time the costly and time-
consuming simulations/optimization. 

APPLICATION FOR THE BOF PROCESS: DEPHOSPHORIZATION CONTROL 

The next example illustrating the need to integrate computational thermochemistry into digital 
platforms is the control of phosphorous removal from steel during the oxygen steelmaking route, 
denoted as “steel dephosphorization”. 

Phosphorus is introduced to the blast furnace through the charged iron ore and ends up almost 
completely in the discharged liquid metal. The dissolved phosphorus must be removed from the 
liquid metal up to levels below 150 ppm due to its detrimental effect on the quality of steel. This 
occurs in the next aggregate, the BOF process (Basic Oxygen Furnace) through oxidation of 
phosphorus to P2O5, which is then bound into the slag phase. To ensure that the phosphorous oxide 
remains in the slag, the process should be operated in a way that sets favorable conditions for P2O5 

stability in the slag. Otherwise, P2O5 is reduced, and the phosphorous returns to the liquid metal 
denoted as “steel rephosphorization”. It is well established that the dephosphorization potential of 
the slag increases with its CaO and FeO content while it decreases with temperature. 

In previous works (Khadhraoui, Odenthal, Das et al., 2018, Khadhraoui, Hack, Jantzen et al. 2019, 
2021; Khadhraoui, 2021), it has been reported that BOF slags are heterogeneous for a large part of 
the process containing a liquid phase and a variety of solid phases. The solid phase 2CaO.SiO2 
(C2S) is particularly interesting for dephosphorization, as it is capable of dissolving phosphorous 
through the formation of the 2CaO.SiO2-3CaO.P2O5 (C2S_C3P) phase, which increases the 
dephosphorization potential of the heterogeneous slag. The formation of other solid phases, which 
do not dissolve phosphorous such as the 3CaO.SiO2 (C3S) phase, as well as the MgO- and CaO-
based solid monoxide solutions, decreases the dephosphorization potential. Thus, the optimal slag 
zone for dephosphorization is suggested to lie within the single C2S saturation regions, indicated by 
the blue-marked area in Figure 5, which presents the phase diagram of the main oxide system for 
BOF slags, the CaO-FeOx-SiO2. However, the ratio of the C2S phase in the heterogenous slag has 
to be controlled carefully below a certain value, otherwise, its positive effect on dephosphorization 
can be counteracted by the negative effect on the kinetics of dephosphorization, as it decreases the 
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mass transfer coefficient of the slag. Thus, the target region for optimal dephosphorization has to be 
narrowed further, as indicated by circle A in Figure 5.  

 

FIG 5 – Position of the alternative target slag regions A and B, suggested for optimal dephosphorization 
results in the CaO-FeOx-SiO2 system, at 1973 K (1700°C), and for a reduced p(O2) state.  

Controlling the slag composition during the BOF process towards the target region, indicated by 
region A in Figure 5, is associated with the following challenges: 

1. Identifying the actual composition of the slag: The CaO oxide is formed through the addition 
of CaO-containing fluxes such as lime and limestone. The further major components FeO 
and SiO2 are formed through the oxidation of Fe and Si from the metal phase, respectively. 
Due to its high oxygen affinity, Si oxidizes almost completely within the first minutes of the 
process and the mass of SiO2 in the slag remains constant for the rest of the process. The 
FeO content of the slag is distinguished by a dynamic behavior and is largely affected by the 
process operation (oxygen lance height, oxygen flowing rate, etc) and the decarburization 
rate. The FeO in the slag further acts as a fluidizing agent for the slag and helps dissolve the 
lime charged into the furnace.  Thus, in addition to temperature, the amount of CaO dissolved 
in the slag is a strong function of FeO evolution.  For identifying the actual position of the slag 
in the phase diagram shown in Figure 5, functions or modules for the determination of the 
evolution of the main slag components as well as the temperature based on the actual 
process data are required.  

2. Identifying the target composition of the slag: The phase boundaries of the CaO-FeOx-SiO2 
oxide system are a strong function of the process temperature, the p(O2) levels as well as of 
the minor oxide contents such as MgO, MnO, Al2O3. This implies that the composition of the 
target slag region, indicated by circle A in Figure 5 should be adjusted accordingly. Examples 
of adjustment of the target composition in case of an increase in temperature, in the presence 
of 7% MgO and 4 %Al2O3 are presented in Figure 6-b), Figure 6-c), and Figure 6-d) 
respectively. For this purpose, ChemApp can be applied for the accurate determination of 
the thermochemical behavior of the actual oxide system at the conditions prevailing in a 
furnace.  
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FIG 6 – Target slag compositions for optimal dephosphorization in the BOF furnace. Examples of the 
adjustment of the position of the optimal target slag region (green circle) in the CaO-FeOx-SiO2 oxide system 
at reduced p(O2) state as a function of temperature: a) 1673 K (1400°C), b) 2023 K (1750°C), and depending 

on the minor oxide content of the system: c) 7 wt% MgO at 1873 K (1600°C), d) 4 wt% Al2O3 at 1873 K 
(1600°C). The dashed lines represent the phase boundaries of the ternary system at 1873 K. 

In summary, the determination of the dynamic evolution of the slag composition and temperature, 
as well as the adjustment of the corresponding target zone are required for deciding on the necessary 
measures to be taken to achieve dephosphorization targets. Figure 7 provides an example of how 
computational thermochemistry can be integrated into the dynamic dephosphorization model 
through ChemApp. Actual process data, such as the oxygen blowing rate, the lance height profile, 
the input time, and the input amounts of fluxes define the input for dynamic process modules which 
are mainly based on mass and energy balance equations. The calculation output of other modules, 
such as the amount of dissolved lime is also required. The dynamic process modules deliver 
information on the evolution of the process temperature as well as on the evolution of the main slag 
components, such as CaO, FeO, SiO2, MnO, and MgO. The results are fed into the ChemApp 
module, which, in turn, calculates the actual and the target slag compositions. The necessary 
corrective measures to be undertaken to minimize the deviation between actual slag and target slag 
state are determined and controlled by further dynamic modules. For example, the CaO content 
and/or the FeO content of the slag can be adjusted toward the target values by charging lime and/or 
modifying the blowing profile. The options available for undertaking the corrective measures may 
differ depending on the processing stage. 
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FIG 7 –  Concept for the implementation of computational thermochemistry in the dynamic 
dephosphorization model. 

To overcome the limitations associated with the high computational effort, the surrogate model 
approach, introduced in the previous section for the TRF furnace, can be applied.  

CONCLUSION 

The development of robust digital platforms serves as a basis for the integration of process 
understanding, digitalization and innovation into the industrial plants. The direct integration of 
computational thermochemistry into those digital platforms through ChemApp opens new 
possibilities for enhanced process control for the metallurgical industry. A surrogate-based modelling 
approach is adopted to overcome the limitations associated with the high computational efforts, thus 
making it suitable for online application. The examples discussed in this work illustrate the benefits 
for both the ferrous and non-ferrous metallurgical industry. 

 REFERENCES 
Akouch, A, Reuter, M A, Kirmse, C,  Bruns, M, Khadhraoui, S, Degel, R,  Hecker, E and Borowski, N, 2023. Deep learning 

of thermodynamic equilibria for optimized process control, in Proceedings European Metallurgical Conference 2023 
(GDMB Gesellschaft der Metallurgen und Bergleute e.V: Duesseldorf).  

Bale, E B C W, Chartrand, P, Decterov, S A, Eriksson, G, Gheribi, A E, Hack, K, Jung, I H, Kang, Y B, Melançon, J, Pelton, 
A D, Petersen S, Robelin, C, Sangster, J, Spencer P and Van Ende M A, 2016. FactSage Thermochemical Software 
and Databases - 2010 - 2016, Calphad, 54:35-53. 

Khadhraoui, S. A Contribution to Modeling and Control of Dephosphorisation. Doctoral Thesis, University of Duisburg-
Essen, 2021. 

Khadhraoui S, Hack K, Jantzen T, and Odenthal H: Study of the State of Industrial P2O5‐Containing Slags Relevant to 
Steelmaking Processes Based on a New Thermodynamic Database Developed for CaO–FeOx–P2O5–SiO2–MnO–
MgO–Al2O3 Slags. Steel research int. 2019, 90, 1900085. DOI:10.1002/srin.201900085.  

Khadhraoui S, Odenthal H, S. Das, Schlautmann M, Hack K, Glaser B, and Woolf R: A new approach for modelling and 
control of dephosphorization in BOF converter, La Metallurgia Italiana 2018, n. 11-12, 5-16 

Petersen, S, and Hack, K, 2007. The thermochemistry library ChemApp and its applications. International Journal of 
Materials Research, 9:935-945.  

 Reuter, M A, 2023. The fundamental limits of circularity quantified by digital twinning, in Handbook of Recycling: State-of-
the-art for Practitioners, Analysts, and Scientists (Eds: Meskers, C, Worrell, E, Reuter, M A), second edition, chapter 
2 (Elsevier). 

 Zietsman, J, and Petersen, S, 2018. ChemAppPy - A Python interface to ChemApp, paper presented to the RCCM-GTT 
Users’ Meeting, Tokyo, 7 November.  

 


