ASIA AND THE PACIFIC TRANSPORT FORUM 2024 CLEAN TRANSPORT FOR ALL

14-17 May 2024 | ADB Headquarters, Manila, Philippines

ASSESSING THE SCOPE FOR GREEN ROADS

Dangara-Guliston Road in Tajikistan

- Internal transportation needs are currently mainly served by a **26,759-km-long road network**, consisting of Public and Departmental roads under responsibility;
- The existing Dangara-Guliston road falls into technical category III.
- The project road consists of one carriageway with two traffic lanes width of 3.50 m, in each lane
- Traffic volumes indicates that the existing road category is not adequate for the anticipated future traffic volumes and improvement/upgrading into four traffic lanes of the road category I was therefore designed
- The road section build important transport links, supply of agricultural commodities
- Part of the A370: significant transport connection through the People's Republic of China, Afghanistan and further south to Pakistan.

BACKGROUND OF ROAD NETWORK IN TAJIKISTAN

GREEN ROADS WILL HAVE A TRANSFORMATIVE IMPACT IN TAJIKISTAN - NOT JUST ON CONNECTIVITY -

The road sector is a major factor in carbon emissions

18% of global CO2 emissions

Road's change <u>landscape hydrology</u>

reduction in springs, exacerbating floods, **12-36%** of sedimentation

Road's change local climates

wind, temperature, moisture, rainfall/dust

Road's affect biodiversity

second cause of wildlife kills, disconnected habitats

Roads have an important effect on public health

dust, heat, public hygiene

Roads are responsible for the extraction of **30-40%** of all <u>construction materials</u>

WE CAN TURN ROADS INTO NATURE-POSITIVE FOR EXAMPLE IN WATER MANAGEMENT, LOCAL CLIMATE AND BIODIVERSITY, PUBLIC HEALTH AND MITIGATE THE NEGATIVE IMPACTS!

AFFECTS BY THE IMPACTS OF CLIMATE CHANGE IN TAJIKISTAN

- ⇒ Higher average and extreme temperatures (1.5-2 °C for 2050; +6 °C by 2100) (see A)
- ⇒ Changes in c patterns (see B)
- ⇒ Extreme meteorological events, are expected to lead to:
 - water scarcity
 - droughts
 - decreased agricultural yield
 - increased slope instability, and more deleterious impacts

DANGARA - GULISTON ROAD IS IN GENERAL VULNERABLE TO CLIMATE RISKS

CLIMATIC CHANGE	IMPACT
Warming above the global mean in central Asia	 Increase in average plain region temperatures of 0.5 to 0.8 C and mountain region temperatures of 0.3 to 0.5 C in 60-year period Increase in ice melt and snow melt triggering floods and mudslides. Melting of permafrost increasing landslides Shift from dry snow to wet snow
The number of days over 40°C has increased A)	More evaporation, higher water demand, more aridity
Increase in evapotranspiration	 Estimated increased evaporation by 5-14 percent and vapor transpiration by 10-20 percent.
Reduction in snow and ice field and declining glaciers	 Lower amount of water in streams, springs and seasonal streams drier earlier, droughts
Increasing frequency and intensity of extreme events particularly, intense rainfall; decrease in number of rainy days (B)	Heavy rains, high waters caused by mudflow, high air temperature accompanied by droughts, strong winds and dust storms, frost and extreme cold temperature; larger risk of landslides
The winters are becoming warmer (temperature is expected to increase by 2 degrees), and the duration of frost-free days has increased	Spread of pests

WHAT ARE GREEN ROADS?

- COMPARING REGULAR ROADS AND GREEN ROADS -

12 Themes

3 for Regular Roads

- ⇒ Connectivity and access
- ⇒ Safeguarding safety
- ⇒ Making affordable transport possible

9 for Green Roads

- ⇒ Decarbonization
- ⇒ Climate resilience
- ⇒ Water and land management
- ⇒ Reducing pollution
- ⇒ Improving quality of life
- ⇒ Preserving biodiversity
- ⇒ Disaster preparedness
- ⇒ Sourcing materials sustainably
- ⇒ Fostering inclusive growth

Synergies between the themes!

18 % of global CO2 emissions (IEA, 2021).

 Emissions in each phase of the road cycle (material production and transport, construction, use, maintenance and end-of-life)

Key intervention areas:

1.1 - REUSE OF EXISTING ROAD MATERIAL

(CO)

- Assessment and calculation of material in current road
- Separation and reuse plan
- Timing and reuse in the tender documents

1. Decarbonization

18 % of global CO2 emissions (IEA, 2021).

 Emissions in each phase of the road cycle (material production and transport, construction, use, maintenance and end-of-life)

Key intervention areas:

1.2 - LED LIGHTING

- Calculation of the energy consumption for each traffic light and choose LED lighting
- Assessing the potential for constructing renewable energy infrastructure along road
- Evaluation of potential for implementing luminous road markings, beacons, and traffic signage.

18 % of global CO2 emissions (IEA, 2021).

 Emissions in each phase of the road cycle (material production and transport, construction, use, maintenance and end-of-life)

ç

Key intervention areas:

1.3 - ROADSIDE TREE PLANTING

Actions and implications:

• Tree planting plan with selection of species (trees and undergrowth), seedling sourcing, planting system, ownership, community engagement, maintenance system, business and replacement system.

2. Climate Resilience

- ✓ Climate-related damage to road infrastructure costs countries between <u>1-3% of their GDP annually (</u>World Bank)
- Making infrastructure more climate-resilient can add about 3 percent to the upfront costs but has <u>benefit-cost ratios of about 4:1</u> (Global Commission on Adaptation)

Key intervention areas:

2.1 – BIO-ENGINEERING SECTIONS IN CRITICAL SECTIONS

Actions and implications:

• Bio-engineering plan covering the highly exposed riverbanks and the unstable slopes at the end of the road and the possible affected road slopes in the new road section.

2. Climate Resilience

- ✓ Climate-related damage to road infrastructure costs countries between <u>1-3% of their GDP annually (World Bank)</u>
- Making infrastructure more climate-resilient can add about 3 percent to the upfront costs but has <u>benefit-cost ratios of about</u>
 4:1 (Global Commission on Adaptation)

Key intervention areas:

2.2 – RETHINKING ROAD DRAINAGE IN CRITICAL SECTIONS

- Assessment of drainage system in current inlets and outlets
- Investigation for adding culverts.
- -Red of adequate outlet / chute for the drainage system

Q

- ✓ Water is responsible for <u>80% of road damage to unpaved roads and</u> <u>30% of damage to paved roads</u>
- ✓ It is estimated that 20% of the global land surface is within one kilometre of road
- Roads have a major impact on local hydrology often with negative consequences – this can be turned around into beneficial water management using the road infrastructure

Key intervention areas:

3.1 - MUDFLOW CONTROL FROM THE TOP

- Measurement and mapping of the gullies
- Design and cost of diversion structure
- Gully plugging program

- ✓ Water is responsible for 80% of road damage to unpaved roads and 30% of damage to paved roads
- ✓ It is estimated that <u>20% of the global land surface is within one kilometre of road</u>
- Roads have a major impact on local hydrology often with negative consequences this can be turned around into beneficial water management using the road infrastructure

Key intervention areas:

3.2 - WATER REUSE OPTIONS

Actions and implications:

• Water collection measures will be added later at the end of the cross-drainage system

4. Reducing Pollution

- ✓ Usually, a land strip up to <u>60-100 meters from the road is</u> <u>significantly affected by road pollution</u>, either from runoff or deposited road dust.
- The health consequences of exposure to these contaminants can be severe

Key intervention areas:

4.1 – SAFE DECOMMISSIONING AND REMOVAL OF PETROL STATIONS

- Mapping and assess ownership status of abandoned petrol stations
- Soil sampling to assess degree of contamination of all petrol stations.
- Safe removal and treatment plan

4. Reducing Pollution

- ✓ Usually, a land strip up to <u>60-100 meters from the road is</u> significantly affected by road pollution, either from runoff or deposited road dust.
- The health consequences of exposure to these contaminants can be severe

Key intervention areas:

4.2 - RETHINK DE-ICING STRATEGY

- Stakeholder engagement in de-icing
- Updating of current methods and bottlenecks.
- Improvement of strategy:
 - De-icing material
 - Better planning

4. Reducing Pollution

Usually, a land strip up to <u>60-100 meters from the road is significantly</u> <u>affected by road pollution</u>, either from runoff or deposited road dust. The health consequences of exposure to these contaminants can be severe

Key intervention areas:

4.3 – BIO-ACCUMULATOR PLANTS IN ROADSIDE VEGETATION

Actions and implications:

Bio-accumulator plants that absorb roadsides that are contaminated with hydrocarbons and break down these contaminants

PLANTS AS BIOFILTERS

PM REDUCTION BY GREEN INFRASTRUCTURE: GREEN ROOFS, LIVING WALLS, WATER RESERVOIRS, URBAN FARMING METHODS OF INCREASING THE PM CAPTURE POTENTIAL OF PLANTS

5. Quality of Life

- ✓ Large <u>negative impacts from roads to people's quality of life</u>, via dust, noise, temperature and aesthetics. This can be reduced and turned around.
- Tree planting is found to be associated with significant reductions in non-accidental and cardiovascular mortality (Donovan et al., 2022)
- Use of temperature control technologies such as the use of Thermosyphon can help to minimize permafrost thawing and heat island impact of road pavements
- ✓ Closely aligned to all other Green Roads themes.

Key intervention areas:

5 - BLOSSOM ROAD IN ROADSIDE TREE PLANTING

- Roadside vegetation have a marked contributions to the quality of life
- Improvement of air quality and dust control via roadside vegetation

- Roads significantly influence biodiversity, impacting both ecosystems and habitats, as well as populations of invertebrates (such as insects and soil biota) and vertebrates (including protected species).
- ✓ To <u>address the biodiversity crisis</u>, it is critical to ensure roads no longer harm biodiversity but instead preserve it and that habitats stay connected

Key intervention areas:

6 – ADDITIONAL LIVESTOCK PASSAGES

- Discussion with pastoralists to assess the priorities for livestock passages in combination with existing culvers
- Reinvestigation in the presence of special biodiversity

- Roads wire economies yet still over 400 million of Asia's population lacks basic road access
- ✓ Road construction and maintenance is a <u>large public expenditure ticket –</u> <u>high scope for inclusive growth and jump-start fledgling economies</u>
- In many countries, road construction is also included in <u>social safety net</u> programs
- Road construction can be used to build <u>entrepreneurial capacity</u> and through local sourcing - to enlarge the money circulating in <u>local</u> <u>economies</u>

Key intervention areas:

9 – LOCAL SOURCING PLAN TO OPTIMIZE ENGAGEMENT OF LOCAL CAPABILITIES

- Development of standard local sourcing (LSP) that will be include as a provision in the tender document,
- Agreement of scoring and weightage for the LSP in the tender procedure
- Enforcing the LSP based on reporting and securities.

Suggestions are made for Type B activities that may be added to the road investment

Introducing bioengineering and roadside tree-planting	•	program of developing and introducing right methods, combined
		with capacity building
Network analysis to look at planning and upgrading of entire network	•	Assessment of entire network and identify easy entry methods to
		introduce climate resilient practice
Preparing Guideline and Instruction	•	Introduction of a Guidelines combined with specific binding
on Green Roads		instructions could be considered
De-icing practice	•	Review and update current De-icing practice

ASIA AND THE PACIFIC TRANSPORT FORUM 2024 CLEAN TRANSPORT FOR ALL

14-17 May 2024 | ADB Headquarters, Manila, Philippines

THANK YOU!

0

6