TRADE FORUM 2024 Session 2: Enhancing Sustainable and Resilient Trade Facilitation

Smart Port Systems to Enhance Trade and Green Growth in Developing Asia

Yeşim Elhan-Kayalar Office of the Chief Economist, ADB

Background

Ports and maritime sector

- Move over 80% of all traded goods world-wide. Account for 3% of global greenhouse gas emissions.
- 64% global maritime trade through Asia.
- Global initiatives for emissions reduction in maritime.
 - International Maritime Organization's Greenhouse Gas Strategy (July 2023)
 - Maritime Single Window (1 January 2024)

Smart port systems

- Technology cheaper, readily available.
- Uptake ongoing in Asia and the Pacific region, albeit with subregional variations.

Smart port systems for sustainability

- Reduce greenhouse gas emissions at/around ports.
- Increase port productivity, support trade, national supply and global value chains.

International Maritime Organization's GHG Strategy

• 175 member states of IMO agreed on a new climate strategy that includes reaching net-zero greenhouse gas (GHG) emissions.

3

Largest Container Ports in 2022, by Throughout (million TEUs)

Port Delays in Asia and the Pacific (53 Port Sample)

Total pre-berth waiting time, 2019-2022

* Longer the wait, lower the throughput and higher the emissions.

Pre-berth waiting time vs. port throughput, 2022

Smart Port Systems in Asia and the Pacific

- Smart port evolving definition, in tandem with technology.
- Smart system applications in ports since the 1990s.
- Progress has been robust with technology more readily available for recent adopters.
- Uptake gaining momentum among countries in Asia and the Pacific region.

Smart Port Systems in Use, Sample of 53 Ports in Asia and the Pacific

Note: OCR = optical character recognition, VTMIS = vessel traffic management and information system, JIT = just in time. Source: Author's compilation from respective port authorities.

Assessing the Emissions Saving Potential (2022 baseline)

Source: Authors' elaborations from Drewry AIS database.

ADB

Can "Just in Time" Arrival System Generate Emissions Savings?

		Busan	Colombo	Chittagong
Reduce average inbound speed to 12 knots	Total time saving	47 days	76 days	466 days
	% reduction	4%	13%	21%
Reduce average inbound speed to 10 knots	Total time saving	128 days	169 days	946 days
	% reduction	11%	29%	43%
		Busan	Colombo	Chittagong
2022 Baseline	Emissions in anchorage (CO _{2eq} tonnes)	39,467	20,365	76,355
Reduce average inbound speed to 12 knots	Total saving (CO _{2eq} tonnes)	1599	2615	16,008
	% reduction	4%	13%	21%
Reduce average inbound speed to 10 knots Note: Assumes 1.43 tonnes CO _{2eq} per hour of wa Source: Author's analysis.	Total saving (CO _{2eq} tonnes)	4,397	5,806	32,461
	% reduction	11%	29%	^{43%} AT
				8 7 5

Points for Consideration

Collaborative action necessary in an interconnected industry.

Smart systems offer short- to medium-term results.

Multiple benefits for sustainable trade and the environment.

Complementary to net-zero emission solutions in medium- to long-term.

Thank you

For more information: Yesim Elhan-Kayalar yelhan@adb.org