

Key Performance Indicators (KPIs) to assess asset performance and drive future developments and investments

Prof. Jörg Krampe Institute for Water Quality and Resource Management, TU Wien

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's content, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

BIIV

Content

- Introduction
- KPIs to asses WWTP capacity
- KPIs to asses WWTP performance
- KPIs to asses WWTP efficiency
- KPIs to asses WWTP operational standards (qualification, training, OHS...)
- Discussion

What are KPIs

- A performance indicator or key performance indicator (KPI) is a type of performance measurement. KPIs evaluate the success of an organization or of a particular activity....in which it engages.
- ...choosing the right KPIs relies upon a good understanding of what is important to the organization
- ...assessments often lead to the identification of potential improvements, so performance indicators are routinely associated with 'performance improvement' initiatives

Ш Ы.імг

Institute for Water Quality and Resource Management

Who might be using KPIs

- Governments/regulators
 - Environmental regulators
 - Economic regulators
- Owners/shareholders
 - WWTP operation
 - WWTP asset capacity
 - Sub-Contractor performance
- Funding agencies

Deciding on suitable KPIs

- Usually different stakeholders have different expectations into wastewater assets
- Discussing and agreeing on suitable performance indicators is an important stakeholder management process
- Well selected indicators are easy to measure and assess the performance of bigger parts of the asset
- It is usually required to define several indicators

BIIV

Topics for todays discussion

- Discuss the importance of performance assessment In context with Norbert's presentation
- What are suitable indicators to achieve intended outcomes?
- KPIs drive behaviour, do we select the right KPIs without contradicting other targets?
 - e.g. low energy consumption vs effluent quality
- Is it better to have many KPIs or to have fewer on a higher level?
- How often should KPIs be reported and to whom?

Institute for Water Quality and Resource Management

Flow based capacity indicators

27.04.2021

Flow based capacity indicators

27.04.2021

BI.ivr

Load based capacity indicators

27.04.2021

BI

Load based capacity indicators

	2008/2009	2009/2010	2010/2011	2011/2012	average of four years
BOD₅ in kg/d	772	680	764	1,040	814
P _{tot} in kg/d	32.3	30.5	30.1	38.8	32.9
TKN in kg/d	202	202	207	226	209
SS in kg/d	828	1,055	942	1,227	1,013

Institute for Water Quality and Resource Management

Load based capacity indictors

Load based capacity indicators

	average of four years	assumed load per PE in g/(PE d)	Resulting PE
AAF	2.82 ML/d	220 L/(PE d)	12,818
BOD₅	814 kg/d	60	13,567
P _{tot}	32.9 kg/d	2.5	13,160
TKN	209 kg/d	15	13,940
SS	1,013 kg/d	70	14,471

	Current (last four years)	Design ¹⁾	Spare capacity
AAF in ML/d	2.82	4.0	30%
PWWF (hydr.) in L/s	127	150	15%
BOD₅ in kg/d	814	1,000	19%
P _{tot} in kg/d	32.9		
TKN in kg/d	209		
SS in kg/d	1,013	1,200	16%

¹⁾ based on original design without N removal

Institute for Water Quality and Resource Management

Effluent quality perfomance indicator

Institute for Water Quality and Resource Management

Effluent quality perfomance indicator

27.04.2021

Institute for Water Quality and Resource Management

Effenciency based performance indicators

BIiwr

Effenciency based performance indicators Specific energy consumption - aerated lagoon plants

Effenciency based performance indicators

Ш Ы.імг

KPIs to asses WWTP operation standards

- Operator qualification
- Operator training
- Operator knowledge exchange
- Occupational Health and Safety targets (OHS)

Training of WWTP operator specialists according to ÖWAV guideline RB 15

*) for participants without electrical training

Institute for Water Quality and Resource Management

Operator exchange

Personal lessons learnt

- KPIs just do it!
- Start easy and take all level of stakeholders on board
- Link some KPIs to the design (capacity) to get an ideal about the remaining asset capacity and provide good data for future upgrades

Some suggestions for indicators

- Daily flow
- Volume of septic tank sludge accepted
- Solids, pH, C, N (and P) in the influent
- Solids, pH, C, N (and P) in the outlet
- Operational parameter depending on plant design (e.g. oxygen)
- Sludge produced and disposed
- Removal efficiency
- Energy consumed
- Chemicals consumed

Institute for Water Quality and Resource Management

Open Access references

• J. Krampe, M. Leak:

Strategic planning approach for optimising investment at WWTPs Water Practice and Technology, (2012), 7 (2) <u>https://doi.org/10.2166/wpt.2012.030</u>

• J. Krampe:

"Energy benchmarking of South Australian WWTPs"; Water Science and Technology, (2013), **67** (9); S. 2059 – 2066 https://doi.org/10.2166/wst.2013.090