THE FUTURE OF TRANSPORT

Crash data systems: Himachal Pradesh Case study

July 2021

About TRL

Vision

World leader in creating the future of transport and mobility, using evidence-based solutions and innovative thinking

300

engineers, scientists, psychologists, IT experts and statisticians

Challenge and influence our chosen markets, driving sustained reductions (ultimately to zero) in:

- Fatalities and serious injuries
- Harmful emissions
- Barriers to inclusive mobility
- Unforeseen delays
- Cost inefficiencies

Providing world-leading technology and software solutions for surface transport modes and the related markets of automotive, motorsport, insurance and energy

Unlocking Transport Science through Software

About Transport Research Laboratory

Over 80 years' experience in road safety

- Established in 1933 by the UK Government
- Privatised in 1996
 - Research organisation status
- Owned by the Transport Research Foundation (TRF), a Non-profit Distributing Foundation

The Zebra Crossing was offically introduced to the UK in 1951

and it was designed by TRL)

Crash data systems

Crash data is essential to good Safe Systems strategy development

© 2021 TRL Ltd LMICs = Low & Middle Income Countries; KSI = Killed & Seriously Injured

Why data is essential

Safe Systems framework for improved road safety

- Access to crash data means Safe System project development can be properly focussed
- Lack of robust evaluations that prove pilot corridor activities have really been successful

iMAAP is a tool for crash data management

Effective modern crash data system has a central role in safety management

- Target setting Vision Zero
- · National losses & economic impact
- Strategy development
- Strategy monitoring
- Crash Modification Factors development
- Safety Performance Models
- Trends/ priorities
- Resource assignment
- Blackspots/ route identification
- Site investigation
- Economic appraisal
- · Scheme prioritisation
- · Manage schemes
- Monitoring/ evaluation
- · Targeted enforcement

Practical management of crash data

Data collection and storage have changed through time – rapidly at present

Himachal Pradesh

State in the Western Himalayas

- Western Himalayas beautiful, cool, hilly
- Population approx.700 million
- Tourism, Agriculture (apples)
- 13 Districts
- Good development, but high rate of crash fatalities

Himachal Pradesh: RADMS project 2014/15

Road Accident Data Management System (RADMS)

- Crash data systems review
- IT systems review
 - Vehicle registrations
 - Medical systems
- iMAAP Implementation
- Training Police, Road Agency Staff
- Mobile devices (around +300 police stations)
- Set up Accident Data Management Cell
 - Standard Operating Procedures (SOPs)

Rapid capture of crash data

Mobile devices – fast systematic web-based system

Vidend for 3 server(). Vidend Sabha Road Vidend S

Accurate crash locations:

Scene photos:

Injury numbers by crash types (5 years data – mid 2015-2020)

In-depth patterns – top 3 – fatalities and serious injuries

Understanding severity of injury outcome help to prioritise

Crash numbers:

Casualty numbers:

Serious/ fatal casualties per crash type

Using rates or % allows a better comparison to help make prioritisations

Run off road focus: district

© 2021 TRL I

In-depth patterns – road types

Link roads are the biggest crash and casualty problem

Crash numbers:

Casualty numbers:

© 2021 TRL Ltd

Run off road greater proportion darkness

Run off road crashes

Other crashes

Run-off road - driver and passenger casualty age bands

© 2021 TRL Ltd

Age band

Police assigned factors

Understanding of contributory factors can help to select safety measures

Horizontal road features

Buses are in comparatively smaller number of crashes, but have a larger number of casualties

Number of crashes

Number of casualties

Safe systems Road Safety Management

<u> IS</u>

What Safe Systems really means

- Do more approaches to tackle single road safety issues and risks
 - Multiple sectors or 'Pillars' applied
- Prioritise issues where best scope to reduce fatal/serious casualties
 - Avoid crashes occurring if possible
 - Reduce severity when crash is unavoidable
- Use data to plan strategies targeted at the real risks/problems
- Use data to monitor and evaluate

Evidence based strategies

Following approaches linked to the evidence

- Based primarily on rapid crash data analysis above but also familiarity with Himachal Pradesh
- Far more analysis would need to be done to develop the ideas fully – which TRL will be doing
- Run off road problem focus here:
 - Repeat for pedestrian and head-on crash types

the future of transport

© 2021 TRL Ltd

Roads Pillar

19:00

3

no street

lights

Blind

bend

Sharp

curve

19:45

5

Darkness

-no street

lights

Speed

Straight

road

Defining a road strategy

- Systematically put barriers on Link roads
- Prioritise crash prone sections using cluster/ route analysis:
 - **Barrier** improvements
 - Lighting at some locations?
 - Parapets at bridges
- Apply iRAP area wide treatment at high risk locations

Vehicle pillar

Defining a vehicles strategy

- Vehicle technical testing improved
- Focus on bus technical standards:
 - Tyres
 - Brakes
 - Head lights
- Focus on jeeps they seem safe but are highly unstable
 - Awareness campaign?

People pillar

Defining a behaviour strategy

- General driver training improvement
- Higher standards for bus driver training
- Awareness campaigns linked to police action on speed and dangerous driving focus
- Review and enforce seat belt laws

Speed pillar / Post-crash pillar

Defining a speed strategy / post-crash strategy

- Speed limit reviews
- Targeted speed enforcement based on crash data and where people speed

Post crash Pillar

- Review resources distribution
- Optimise and invest
- Improve time to attendance and to EMR

Crash Data Systems & Processes - Sustainability

Key success factors	
Need local commitment	Collaboration/ responsibility Police buy-in essential for country wide/ region adoption
Clear responsibility to collect data	BAU – Business as Unusual activity OPs – Standard Operating procedures
Training	Should be a continuous process – long term
Support & quality checks on-going	safety unit
Systems & IT	Cloud based; 'GPS' Location; Scene photos Mobile app capability Other data held/ links

the future of transport

SL

Long term successes – MAAP/ iMAAP

Mix of development stages

Himachal Pradesh (India)	Dubai
Jamaica	Abu Dhabi
Sir Lanka	Qatar
Ghana	Kuwait
Botswana	Papua New Guinea
Mauritius	Fiji
UK - Extensively	Malaysia (PLUS)

Building on RADMS/ iMAAP success

Successful work continues with a road safety corridor project

Extensive use of the crash data – further development

USD 1.3M road safety project with Himachal Pradesh

iRAP - Engineering measures on a pilot corridor

Strengthening police capacity enforcement activities

Conclusions

Crash data management is at the heart of a good road safety strategy

- Collect crash data of sufficient quality and volume
 - Provides insights to crashes that enable selection of safety measures
 - Helps to define safe systems pillar strategies
- Intermediate Indicators / Safety
 Performance Indicators challenging
 - Speed targeted measure before and after activities
 - Ensure investment is impacting KSIs
- Link strategies to targets for KSI reduction – need crash data
 - Longer term Vision Zero

Dr John Fletcher jfletcher@trl.co.uk +44 1344770381 Tony Mathew tmathew@trl.co.uk +91 9711806692

TRL | Crowthorne House | Nine Mile Ride | Wokingham Berkshire | RG40 3GA | United Kingdom

