Scalable Thin-Film GaSe Epitaxy and Chemical Conversion into Ga:03
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Van der Waals (vdW) semiconductors offer new avenues for advanced technologies beyond the constraints of
Moore’s law [1]. However, their widespread application necessitates precise and scalable manufacturing processes.
Here, high-quality GaSe vdW semiconductor crystals are grown by molecular beam epitaxy (MBE) [2] with elec-
tronic properties controlled during growth or post-growth thermal oxidation. High-temperature annealing of GaSe
in an oxygen-rich environment triggers its full conversion into the crystalline oxide Ga,0Os, providing multiple-
functionalities on a unified platform, from electrical insulation to deep ultraviolet (UV) optoelectronics [3].

High-quality wafer-scale GaSe crystals with a range of layer thicknesses are produced by MBE on 2-inch c-
plane (0001) sapphire (Al,Os3) wafers (Fig. 1a). The grown GaSe layers feature a dominant D34 polymorph, referred
to as y’-GaSe (Fig. 1a) [2]. Thermal annealing in a tube furnace under a controlled atmosphere of oxygen (0.5
sL/min) and argon (2.0 sL/min) and a range of annealing temperatures 7, (from 400 to 900 °C), produces a se-
quential conversion of GaSe into the intermediate Ga,Ses phase, followed by transformation into amorphous Ga,Os,
and ultimately the formation of crystalline Ga>Oj3 (Fig. 1b). This process departs from a Fickian oxygen-diffusion
model and indicates that the diffusion and reaction kinetics in thin layers is assisted by strain.

The absorption spectra of as-grown GaSe and Ga,Os reveal a lower absorption coefficient in the oxide across
a wide spectral range and a clear shift of the absorption edge from 2.3 eV in GaSe to 4.5 eV in Ga;O; (Fig. 1c).
Due to their wide bandgap, both amorphous and crystalline Ga,Os are transparent across a broad spectrum that
extends from UV to visible wavelengths with selective absorption the UV-C band (200-280 nm) that provides a
platform for sensors in this important technological spectral range. The UV-C band is free of solar background at
ground level, enabling deployment of wide field-of-view receivers for better signal detection and low background
noise for non-line-of-sight and line-of-sight communication. The devices have low (< 0.1 nA) dark current, high
(> 10%) on/off ratio and fast (< 1 ms) UV-C photoresponse under low (V' =2 V) applied bias (Fig. 1d).
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Fig.1. a) Photograph of GaSe on sapphire and schematic of crystal structure. b) Schematic of the conversion of GaSe into
Gay03 by thermal annealing and high-resolution STEM images of GaSe and Ga,Os. ¢) Absorption spectra for GaSe and Ga>Os.
Inset: optical image of device with interdigitated Au-contacts (scale bar: 1 mm). d) Temporal modulation of the photocurrent
in GaSe and Ga;O3; under UV-C excitation (4 =260 nm, P = 3.3 uW).
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