Magnetoresistance Oscillations from Collective Ballistic Dynamics in Two-dimensional Systems
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Ballistic electron transport occurs when electrons
scatter predominantly against the device boundaries [1,
2, 3]. A requirement is a long mean-free path, as in the
high-mobility 2D electron systems in GaAs/AlGaAs
heterostructures used here (65 ym at 4 K) [1, 2, 3]. Un-
der strong electron-electron scattering, hydrodynamic
transport occurs, leading to collective charge flow akin
to a fluid [1, 4]. Yet due to interactions of electrons
with the boundaries, ballistic transport can also lead
to collective phenomena, experimentally studied here.
Unlike diffusive transport (governed by local resistiv-
ity and Ohm’s law), ballistic and hydrodynamic trans-
port are non-local and exhibit complex non-Ohmic cur-
rent flow patterns, including current vortices [1, 3].
We studied several types of confined device geometries
with specular boundaries in the ballistic regime, exem-
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. . i . Fig. 1. (a) Example of confined geometry with L = 15 um,
plified by Fig. 1(a), with internal size L and current source/drain/measurement PCs with w ~ 0.6 um, and Lyq =

source and drain point contacts (S and D PCs) near two 13.8 um. (b) 3-terminal measurement configurations referring
corners distanced by Lsq < L. Figure 1(b) depicts cur- (o (c). (c) Experimental Ry, vs B at 4 K for L, = 2,4,6 pum,
rent and voltage 3-terminal configurations. Under per- showing peaks for n. = 1,2, 3 and novel resonance peaks for
pendicular magnetic field B, electrons undergo semi- n =1,2,...5[3].

classical cyclotron orbits with diameter d.(B) (Fig.

1(a)). Measurements at 4 K are shown in Fig. 1(c) where R, is the voltage measured between a detector PC (at
L. < Lgq from S) and D divided by injected current. R, shows a positive peak whenever d. = L./n. (n. = 1,2,3
and L. = 2,4,6 pm, Fig. 1(c)) representing transverse magnetic focusing prototypical of single-particle ballistic
transport. In Fig. 1(c) peaks also occur at low B for d. = Lgq/n (n = 1,2, ...5), denoting a novel source-drain
resonance corresponding to d. as depicted in Fig. 1(a), independent of the location of the detector PC. The reso-
nances occur for fractional n, = n(L./Lsq), seen in Fig. 1(c). The experiments joined with Boltzmann equation
simulations show that the fractional peaks cannot be attributed to any particular particle trajectory: they only oc-
cur from the collective dynamics arising from a particle distribution. The magnetoresistance is further correlated
with current flow vorticity, a collective phenomenon. Our experiments on other geometries in 3- and 2-terminal
configurations have revealed additional examples of magnetoresistance due to collective ballistic dynamics.
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