## Spin Transfer Using Chiral and Purcell-Enhanced Quantum Dots Embedded in a Glide-Plane Photonic Crystal Waveguide

Xuchao Chen<sup>1\*</sup>, Savvas Germanis<sup>1</sup>, Hamidreza Siampour<sup>1,2</sup>, René Dost<sup>1</sup>, Dominic J. Hallett<sup>1</sup>, Edmund Clarke<sup>3</sup>, Pallavi K. Patil<sup>3</sup>, Maurice S. Skolnick<sup>1</sup> and A. Mark Fox<sup>1</sup>

1. Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

2. Centre for Quantum Materials and Technologies, School of Mathematics and Physics,

*Queen's University Belfast, Belfast BT7 1NN, UK.* 

3. EPSRC National Epitaxy Facility, Department of Electronic and Electrical Engineering,

University of Sheffield, Sheffield S1 3JD, UK.

\*xchen154@sheffield.ac.uk

The strong interaction between the charge carrier spin of a quantum dot (QD) exciton and photons enables a scalable, photon-mediated quantum spin network [1]. Via a specially designed spin-photon interface, the QD spin could be entangled with the propagation direction of the emitted photon, taking advantage of the chiral light-matter interaction [2, 3]. Here we present our study on a GaAs glide-plane photonic crystal waveguide (GPW) with embedded InAs QD emitters, where strong Purcell enhancement and high chirality criteria are satisfied for a single QD. Preliminary result shows a near-unity chiral contrast in the transmission geometry Fig.1(b), indicating a polarisation-dependent spin transfer between a QD and the waveguide mode. Additionally, the directional coupling gives rise to a non-linear single-photon phase shift, and a maximum phase shift of  $\pi$  could be achieved when the QD is chiral and perfectly coupled to the waveguide. This marks the basis of scalable implementations for a quantum phase gate and other on-chip spin-photonics based on chiral quantum optics [4]. Furthermore, the photonic devices are optimized for better transmission by introducing partially etched grating couplers and high-efficiency mode adaptors, with the aid of inverse design techniques.



Fig.1.(a): SEM image of the single-mode glide-plane waveguide. (b): Photoluminescence spectra of the emission from a quantum dot exciton driven by a quasi-resonant CW laser (p-shell excitation) under +3T magnetic field in Faraday geometry. The experiment is done by exciting the QD from one out-coupler and collecting the PL signal from the other.

References :

[1] Warburton R. J. et al. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483–493 (2013).

[2] Lodahl P. et al. *Chiral quantum optics*. Nature **541**, 473–480 (2017).

[3] Siampour H. et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide. npj Quantum Information, 9, 15 (2023).

[4] Dietrich, C. P. et al. *GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits.* Laser Photonics Rev. **10**, 870–894 (2016).