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Christopher A. Broderick!+2, Sarita Das®>! and Eoin P. O’Reilly?!

LSchool of Physics, University College Cork, Cork T12 YN60, Ireland
2Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland

christopher.broderick @ucc.ie

Incorporation of Sn in Ge to form Ge;_,Sn, alloys has been theoretically predicted and experimentally con-
firmed to drive an indirect- to direct-gap transition. This signals significant potential for applications in optoelec-
tronic devices suitable for monolithic integration on Si, stimulating ongoing efforts to develop direct-gap group-IV
optoelectronic devices compatible with complementary metal-oxide-semiconductor (CMOS) fabrication [1]. Pro-
posed device applications of (Si)Ge;_;Sn, alloys — including mid-infrared lasers for Si photonics, 1 eV absorber
layers for multi-junction solar cells, and tunneling field-effect transistors for post-CMOS electronics [3] — mandate
detailed understanding of carrier transport in the alloy, particularly in the presence of an applied electric field.

The indirect- to direct-gap transition in Ge;_,Sn,, which occurs for Sn composition z ~ 8%, reorders the I'-
and L-point valleys in the lowest energy conduction band (CB), with the former being lower in energy for z > 8%.
This has long been predicted to drive strong enhancement of the electron mobility p at low field, due to the low
I'-valley effective mass [2]. However, there has to date been limited analysis of the impact of Sn incorporation on
the low-field i, and no explicit analysis of field-dependent electron transport in the alloy. The direct-gap Ge;_,Sn,
CB structure — characterized by a low effective mass zone-center I'-valley minimum flanked by higher energy, high
effective mass zone-edge L- and X-point satellite valleys — can also be expected to give rise to negative differential
resistance (NDR) in the presence of an applied electric field. Achieving NDR - the so-called Gunn effect, which is
present in several direct-gap III-V semiconductors and is exploited to provide efficient microwave power generation
for sensing applications — represents potentially novel electrical functionality in a group-IV semiconductor.

We present the first explicit calculations of field-dependent
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lations reveal strong dependence of the electron mobility and drift
velocity on the field strength F', characterized by prompt accelera- Fig. 1. Evolution of the low-field electron mobil-
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