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Incorporation of Sn in Ge to form Ge1−xSnx alloys has been theoretically predicted and experimentally con-
firmed to drive an indirect- to direct-gap transition. This signals significant potential for applications in optoelec-
tronic devices suitable for monolithic integration on Si, stimulating ongoing efforts to develop direct-gap group-IV
optoelectronic devices compatible with complementary metal-oxide-semiconductor (CMOS) fabrication [1]. Pro-
posed device applications of (Si)Ge1−xSnx alloys – including mid-infrared lasers for Si photonics, 1 eV absorber
layers for multi-junction solar cells, and tunneling field-effect transistors for post-CMOS electronics [3] – mandate
detailed understanding of carrier transport in the alloy, particularly in the presence of an applied electric field.

The indirect- to direct-gap transition in Ge1−xSnx, which occurs for Sn composition x ≈ 8%, reorders the Γ-
and L-point valleys in the lowest energy conduction band (CB), with the former being lower in energy for x > 8%.
This has long been predicted to drive strong enhancement of the electron mobility µ at low field, due to the low
Γ-valley effective mass [2]. However, there has to date been limited analysis of the impact of Sn incorporation on
the low-field µ, and no explicit analysis of field-dependent electron transport in the alloy. The direct-gap Ge1−xSnx
CB structure – characterized by a low effective mass zone-center Γ-valley minimum flanked by higher energy, high
effective mass zone-edge L- and X-point satellite valleys – can also be expected to give rise to negative differential
resistance (NDR) in the presence of an applied electric field. Achieving NDR – the so-called Gunn effect, which is
present in several direct-gap III-V semiconductors and is exploited to provide efficient microwave power generation
for sensing applications – represents potentially novel electrical functionality in a group-IV semiconductor.
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Fig. 1. Evolution of the low-field electron mobil-
ity µ with x in Ge1−xSnx, calculated with (solid
blue) and without (dashed blue) alloy scattering.
The alloy is direct-gap for x > 8% (dotted gray),
beyond which composition µ increases strongly as
electrons occupy the low effective mass Γ-valley.

We present the first explicit calculations of field-dependent
electron transport in Ge1−xSnx alloys, informed by recent devel-
opments in our understanding of the details of the CB structure [4].
We firstly analyze the evolution of the low-field electron mobility
with x, via direct evaluation of the Sn-induced intra- and inter-
valley alloy scattering rates based on atomistic alloy supercell cal-
culations. Our calculations demonstrate strong enhancement of the
low-field µ in the direct-gap regime which, in the absence of de-
fects, can exceed that of GaAs for Sn compositions x > 11%. We
then consider field-dependent transport, in which an electric field
drives the electron population out of thermal equilibrium. We solve
the Boltzmann transport equation in the relaxation time approxi-
mation, including inter- and intra-valley scattering of electrons by
acoustic and optical phonons, and by the alloy potential. Our calcu-
lations reveal strong dependence of the electron mobility and drift
velocity on the field strength F , characterized by prompt accelera-
tion of Γ-valley electrons and rapid intervalley scattering to L val-
leys. We verify the presence of NDR in the direct-gap regime, but
within a limited range of F vs. in III-V semiconductors, due to the
absence of polar-optical phonon scattering in group-IV materials.
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