Probing Magnetic Excitations in α **-RuCl**₃ Using Inelastic Electron Tunneling Spectroscopy

S. Dehlavi¹, P. Lampen-Kelley³, J. Q. Yan³, D. Mandrus³, S. E. Nagler⁴, K. Watanabe⁵, T. Taniguchi⁵, B. Reulet¹, J. A. Quilliam¹, M. Massicotte^{1,2}

¹Institut quantique, Département de physique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
²Institut Interdisciplinaire d'Innovation Technologique, Laboratoire Nanotechnologies Nanosystèmes – CNRS,
Département de génie électrique et génie informatique, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
³Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA and
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
⁴Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA

⁵National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

sam.dehlavi@usherbrooke.ca

The search for Quantum Spin Liquids (QSLs) intensified in 2006 when A. Kitaev proposed an exactly solvable model on the honeycomb lattice that now bears his name. The Mott insulator α -RuCl₃ was recently put forward as a candidate for this phenomenon, and has been potentially shown to host the anyonic excitations expected for this model [1,2]. However, probing this elusive phase of matter and its excitations has proven highly challenging. The observation of a half quantized thermal hall effect has been touted as a smoking gun evidence of the Kitaev QSL under applied field [3], but a lack of reproducibility has cast a doubt on these results [4].

Recently, several theoretical studies have proposed Inelastic Electron Tunneling Spectroscopy (IETS) as a method for probing fractional excitations in α -RuCl₃ [5]. This powerful tool, which provides information on the various excitations present in an insulating tunnel barrier, has been used to detect magnons in many 2D magnetic materials [6], including α -RuCl₃ [7].

Here, we present preliminary IETS measurements performed on mono- and bilayer α -RuCl₃, sandwiched between graphite contacts. We observe a peak in magnetoconductance with a width that appears to depend on the number of layers, and becomes constant for applied fields above ~ 2 T. This peak may be the result of a decrease in magnetoconductance due to quenching by hot electrons, as previously observed in other magnetic tunnel junctions [8]. We discuss future measurements to investigate the physical origin of this phenomenon.

References

- [1] Kitaev, A. Ann. Phys. 321, (2006).
- [2] Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Nat. Rev. Phys. 1, 264–280 (2019).
- [3] Y. Kasahara, K. Sugii, T. Ohnishi, et al. Phys. Rev. Lett. 120, 217205 (2018).
- [4] É. Lefrançois, G. Grissonnanche, J. Baglo, et al. Phys. Rev. X. 12, 021025 (2022).
- [5] Matteo Carrega, Ivan J. Vera-Marun, and Alessandro Principi Phys. Rev. B 102, 085412 (2020).
- [6] Hyun Ho Kim, Bowen Yang, Siwen Li, et al. Proc. Natl. Acad. Sci. U.S.A 116 23, 11131-11136 (2019).
- [7] Yang, B., Goh, Y.M., Sung, S.H. et al. Nat. Mater. 22, 50–57 (2023).
- [8] S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin Phys. Rev. Lett. 79, 3744 (1997).