The importance of hepatitis B prevention intervention during HIV PEP visits and the inefficacy of hepatitis B immune globulin Penichet D¹, Alphonsus L¹, Mahmood S¹, Pico-Espinosa OJ¹, Tan DHS^{1,2,3}

Introduction

- Hepatitis B (HBV) disproportionately affects people at risk of HIV and active vaccination is the standard of care for prevention.
- While Hepatitis B immune globulin (HBIG) is an effective tool for HBV PEP, its usefulness in people seeking HIV PEP is unclear.
- We quantified susceptibility to HBV among HIV post-exposure prophylaxis (PEP) seekers at St. Michael's hospital, Toronto, and estimated the number needed to prevent (NNP) HBV in this setting using HBIG.

HIV PEP visits are important opportunities for hepatitis B prevention interventions

HBIG should not be routinely administered to patients seeking HIV PEP if source patient HBV status is unknown

Takeaway 2

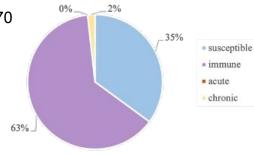
1.Division of Infectious Diseases, St. Michael's Hospital; 2. MAP Centre for Urban Health Solutions, St. Michael's Hospital; 3. Department of Medicine, University of Toronto

Takeaway 1

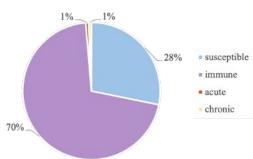
(1) HBV Prevalence & Immunity

Methods

- Ongoing retrospective chart review
- St. Michael's Hospital, Toronto, ON
- Cohort: patients requesting PEP
- Time frame: 2001-2020
- Classified patients as HBV infected, immune, or susceptible, stratified by exposure type (sexual vs. parenteral)
- HBV infection: self-report of chronic HBV or reactive HBsAg, and HBV susceptibility as HBsAb<10IU/mL (plus non-reactive HBcAb, if available)
 HBV susceptible: HBsAb <10mIU/mL
- HBV active PEP regimens: regimens containing tenofovir/emtricitabine


Results

- N° of HIV PEP episodes reviewed to date: 370
 - Sexual exposures: 298 (83.9%)
 - Parenteral exposures: 57 (16.1%)
- N° of unique patients reviewed: 277
- Mean age: 34.5 (SD=10.8)
- Men who have sex with men (MSM): 74.6%
- 95.7% PEP regimens were HBV-active


Among susceptible patients (n=109):

- 39 (35.8%) received HBV vaccine
- 16 (14.7%) received HBIG
- No source patient was known to be HBV-positive

HBV status among those with parenteral exposures

HBV status among those with sexual exposures

(2) HBIG NNP Calculations

Doculto

Methods

Calculations were accomplished with the published estimates presented in Table 1.

Table 1. Summary of values used for NNP calculations				Results
Description	Estimated Value (measure)	Error range	Source	Estimated NNP among MSM:
Baseline <i>active</i> HBV prevalence among MSM	1.79 (%)	[1.5, 2.08]	Pitasi <i>et al</i> . (2014) Remis <i>et al</i> . (2016)	40,928 (range: 9,640-218,833)
Risk of transmission per- sex act of MSM	0.00973	[0, 0.0191]	Lu <i>et al</i> . (2021)	
HBV vaccine efficacy	67.3%	[0.65, 0.69]	Ip <i>et al.</i> (1989) Szumess <i>et al.</i> (1980) Xu <i>et al.</i> (1995)	Estimated NNP for a known HBV-positive
HBIG efficacy	57,1%	[0.254, 0.899]	Beasley et al. (1983) Palmović D (1987) Winsnes and Siebke (1985)	source [*] : 733 (range: 200-3,282)

HBIG=hepatitis B immune globulin; HBV=hepatitis B virus; MSM=men who have sex with men

Equation

NNP = 1 / (CER - TER)

Control event rate (CER) = HBV prevalence among MSM*risk per sex act*(1-HBV vaccine efficacy)

Treatment event rate (TER) = HBIG efficacy*CER

References & Acknowledgements

Acknowledgements DHST is supported by a Tier 2 Canada Research Chair in HIV Prevention and STI Research

References

- Beasley, R.P., Hwang, L.Y., Stevens, C.E., Lin, C.C., Hsieh, F.J., Wang, K.Y., Sun, T.S., & Szmuness, W. (1983). Efficacy of hepatitis B immune globulin for prevention of perinatal transmission of the hepatitis B virus carrier state: final report of a randomized double-blind, placebo-controlled trial. *Hepatology, 3*(2), 135-141.
- Ip, H.M.H., Wong, V.C.W., Lelie, P.N., Kuhns, M.C., & Reesink, H.W. (1989). Prevention of hepatitis B virus carrier state in infants according to maternal serum levels of HBV DNA. *Lancet*, 333(8635), 406-410.
- Lu, M., Shu, Y., Huang, J., Ruan, S., Zhang, X., & Zou, L.(2021). Modelling homosexual and heterosexual transmissions of hepatitis B virus in China. *Journal of Biological Dynamic*, 15(1), 177–194. doi:10.1080/17513758.2021.1896797
- Palmović, D. (1987). Prevention of hepatitis B in health care workers after accidental exposure. Journal of Infection, 15(3), 221-224.
- Pitasi, M.A., Bingham, T.A., Sey, E.K., Smith, A.J., & Teshale, E.H.(2014). Hepatitis B Virus (HBV) Infection, Immunity and Susceptibility Among Men Who Have Sex with Men (MSM), Los Angeles County, USA. *AIDS and Behaviour, 18*(S3), 248–255. doi:10.1007/s10461-013-0670-2
- Remis, R.S., Liu, J., Loutfy, M.R., Tharao, W., Rebbapragada, A., Huibner, S., Kesler, M., Halpenny, R., Grennan, T., Brunetta, J., *et al.* (2016). Prevalence of Sexually Transmitted Viral and Bacterial Infections in HIV-Positive and HIV-Negative Men Who Have Sex with Men in Toronto. *PLoS ONE, 11*(7). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938580/. doi:10.1371/journal.pone.0158090
- Szmuness, W., Stevens, C.E., Harley, E.J., Zang, E.A., Oleszko, W.R., William, D.C., Sadovsky, R., Morrison, J.M., & Kellner, A. (1980). Demonstration of efficacy in a controlled clinical trial in a high-risk population in the United States. *The New England Journal of medicine*, *303*(15), 833-841.
- Winsnes, R. & Siebke, J.C. (1985). Efficacy of post-exposure prophylaxis with hepatitis B immunoglobulin in Norway. Journal of Infection, 12(1), 11-21.
- Xu, Z.Y., Duan, S.C., Margolis, H.S., Purcell, R.H., Ou-yang, P.Y., Coleman, P.J., Zhuang, Y.L., Xu, H.F., Qian, S.G., Zhu, Q.R., *et al.* (1995). Long-term efficacy of active postexposure immunization of infants of hepatitis B virus infection. *The Journal of Infectious Diseases*, *171*(1), 54-60.

