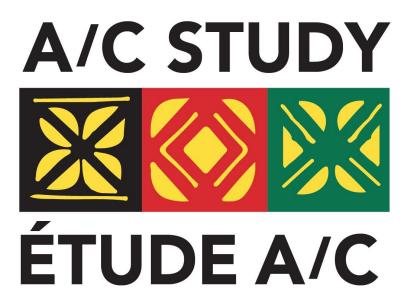
A gender-based analysis of the social determinants of HIV knowledge among ACB people in Ontario

Poster presented at the 31st Canadian Conference on HIV/AIDS Research (CAHR 2022) April 27- 29, 2022


www.cahr-acrv.ca

Authors

E.B.Etowa*1, W. Tharao², S. Baidoobonso³, L. Mbuagbwu⁴, W. Husbands⁵, L. Nelson⁶, B. Kohoun^{7,} S. Yaya⁸ & J. Etowa⁹

¹Daphne Cockwell School of Nursing, Ryerson University, Toronto ² Women Health in Women Hands, Toronto ³African and Caribbean Council on HIV/AIDS in Ontario, Toronto ⁴Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario ⁵Dalla Lana School of Public Health, University of Toronto, Toronto ⁶School of Nursing, Yale University, West Haven, Connecticut, USA ⁷Canadians of African Descent Health Organisation, Ottawa, ⁸School of International Development & Global Studies, University of Ottawa, Ottawa ⁹School of Nursing Sciences, University of Ottawa, Ottawa

*Correspondence email: eetowa@ryerson.ca

INTRODUCTION

Gender, race, and class interactions influence health equity and access to health information including HIV knowledge.

We explored effects of the intersection of gender and;

- Class related socioeconomic factors
 - education
 - employment
- other sociodemographic factors
 - age categories,
 - language groups, etc.

on HIV knowledge among African, Caribbean, and Black (ACB) population in Ottawa and Toronto. The study will inform gender-specific HIV prevention programming.

METHODS

Data were drawn from the 2018-2019 A/C Study survey on HIV transmission and prevention among ACB adults self-identified as:

- women (n=842)
- men (n= 481).

We estimated HIV Knowledge using an 18-item HIV Knowledge Questionnaire (scale =18).

We used difference-in-difference estimation in hierarchical linear regression modelling to determine interaction effects of gender and:

- class,
- other sociodemographic factors

on HIV Knowledge.

RESULTS

Final output of seven blocks hierarchical linear modelling

Independent variables	В	95% CI
Other sociodemographic factors		
City of residence (Totonto =1, Ottawa=0)	0.4	-0.4 , 1.2
Gender (Woman =1, Man =0)	-3.1*	-5.9 , -0.2
Age categories (15-19 =1, 20-29 =2,, 60-64 =6)	0.2	-0.2 , 0.5
Ethnoracial identity (Black Canadian =1, African or Caribbean =0)	0.9	-0.2 , 2
Class related factors		
Education (University or college =1, High school or lower =0)	0.9**	0.3 , 1.3
Employment (Employed =1, not employed =0)	0.6*	0.1,1
Language fluency (Speaks English =1, otherwise =0)	-1.5	-3.1 , 0.1
Health Seeking behaviours		
HIV testing behavioue (Ever tested =1, otherwise =0)	2.0***	1,2.9
Utlization of healthcare (score)	0.1	0,0

Independent variables	В	95% CI
Intersection of gender and other sociodemgrphic factors		
Gender* City	0.4	-0.7 , 1.4
Gender*Age	-0.2	-0.5 , 0.3
Gender*Ethnicity	0.2	-1.3 , 1.5
Intersection of gender and class related factors		
Gender*Education	0.5	-0.1 , 1
Gender*Employment	-0.1	-0.6 , 0.5
Gender*Language	2.5*	0.6 , 4.4
Intersection of gender and other sociodemgrphic factors		
Gender*HIV Testing	-0.8	-1.9 , 0.5
Gender*Healthcare Utilisation	-0.1	<.1,<.1

RESULT (..2)

HIV knowledge scores were not statically different (*Mean difference* = .28, p = .37, 95% CI = -.18, .73) in women and men.

However when moderated by other factors being a woman has positive association with HIV knowledge.

At statistically significant levels each of the following factors were positively associated with increased HIV knowledge

Being a woman

Having higher education

Being employed

Having had an HIV test

Also, when being a woman is moderated by the ability to speak English, HIV knowledge increases even more.

DISCUSSION

HIV prevention programming needs to bridge the knowledge gaps in:

- non-English speaking population relative to English speaking population
- ACB men relative to ACB women

Tailoring HIV prevention to specific knowledge needs of transnational city residence, persons with lower education, and the unemployed is recommended.

CONCLUSION

HIV testing programs should increase HIV knowledge through its concurrent information sessions.

RFERENCES

Mbuagbaw L. et al. (2020). A/C study protocol: a cross-sectional study of HIV epidemiology among African, Caribbean, and Black people in Ontario. BMJ Open 2020;10: e036259. DOI: 10.1136/bmjopen-2019-036259

Bidoobonso S. et. al. (2020). A/C Study community report: HIV among African Caribbean and Black People in Ontario. URL: https://acstudy.ca/

Etowa, J. et. al., (2022). Community perspectives on addressing and responding to HIV-testing, pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) among African, Caribbean and Black (ACB) people in Ontario, Canada. BMC Public Health, 13093. DOI: 10.1186/s12889-022-13093-0

