SIMPLIVIA BSTL / Compounding & Administration Transfer Device Comparison Using Potential Surrogate for NIOSH Protocol

Alan-Shaun Wilkinson^a, Kate Walker^a, Romana Bon^a, Elana A. Slutsky Smith^{b*} (a) Biopharma Stability Testing Laboratory Ltd., Nottingham, UK | (b) Simplivia Healthcare Ltd., Kiryat Shmona, Israel

Objectives

- To compare containment performance of five compounding and administration transfer devices within the NIOSH 2019 draft protocol
- Using a surrogate under evaluation by NIOSH, propylene glycol methyl ether (PGME), applicable to all CSTDs
- To quantify vapor, aerosol, and liquid leaks
- Surrogate concentration was increased to meet sensitivity requirements

Table 2Table showing mean LOD, LOQ, and maximum PGME signal for all repetitions for each type of transfer device.

	LOD (ppmv)	LOQ (ppmv)	Maximum signal (ppmv)	Outcome			
Chemfort®	0.25	1.02	0.17	<lod< td=""></lod<>			
PhaSeal™	0.33	1.08	0.31	<lod*< td=""></lod*<>			
ChemoLock™	0.27	1.05	1.16	>LOQ			
ChemoClave™	0.32	1.13	1.35	>LOQ			
Mini-Spike® Chemo + PureSite	0.26	1.00	3.86	>LOQ			
Needle & syringe	0.18	1.08	3.14	>LOQ			
* in 2/6 reps >LOD Mean PGME Release for Five Transfer Devices and Control							
Ê 4							
с. (ppi							
Mean LOQ Mean LOQ Mean LOD							

Methods

Table '

- FTIR gas analyzer (Gasmet DX4040) connected to 125 L chamber as in 2019 draft NIOSH protocol
- Task 1 of the 2019 protocol was performed in replicate
- 100 ml glass vials charged with 50 ml of 4 M PGME in water
- 45 ml solution transferred from one vial (Vial 1) to a second (Vial 2) using transfer device
- Five different transfer devices (n = 6 for each system)
- Positive controls using needle and syringe (n=2)
- Devices handled as per IFU

Transfer devices tested

• Limits of detection (LOD) and quantitation (LOQ) determined for each repetition based on blank measurements

Transfer Device	Manufacturer	Classification	Pressure equalization	Port connection
Chemfort®	Simplivia	CSTD	Activated carbon drug binding matrix + hydrophobic membrane	Membrane- to-membrane
PhaSeal™	BD	CSTD	Balloon	Membrane- to-membrane
ChemoLock [™] vented	ICU Medical	CSTD	Hydrophobic membrane only	Membrane- to-membrane
ChemoClave™ vented	ICU Medical	CSTD	Hydrophobic membrane only	Needle free (Luer)
Mini-Spike [®] Chemo	B. Braun	Dispensing pin	Hydrophobic membrane only	Needle free (Luer)

Figure 1 Transfer devices tested: vial and syringe adaptors from each of the 5 systems in Table 1. (A) Chemfort[®]; (B) ChemoLock[™]; (C) ChemoClave[™]; (D) Mini-Spike[®] Chemo with Puresite; and (E) Phaseal[™]

Figure 2 Graph showing mean maximum signals for all repetitions for each type of device, compared to overall mean LOD and LOQ. Error bars represent ± one standard deviation.

Chemfort

PGME

ChemoLock

Figure 3

Mini-Spike

Chemo

ChemoClave

Photographs showing droplets on connecting ports of (A) Mini-Spike® Chemo and (B) PureSite male connector after completion of Task 1 from the 2019 NIOSH draft protocol. The images are typical of all six repetitions. → Arrows indicate source of droplet release.

Needle &

syringe

Discussion & Conclusions

The results indicate three levels of containment:

PhaSeal

- Activated carbon drug-binding matrix (Chemfort[®]) or balloon-containing (PhaSeal[™]) devices with membrane-to membrane connectors provide full vapor, aerosol, and liquid containment.
- Vial adaptors utilizing hydrophobic membranes alone for pressure equalization (ChemoClave™ & ChemoLock™) may not be sufficient for vapor containment.
- Open systems (spikes and needles) may not be sufficient for liquid droplet containment.
- PGME (4M) was shown to be a suitable challenge agent for use in the 2019 draft NIOSH protocol for assessment of CSTD containment.

Presenting Author: Elana Slutsky Smith, Ph.D | elana.slutskysmith@simplivia.com

References ¹ "NIOSH [2019], A Containment Performance Protocol for Physical-Barrier Type Closed System Transfer Devices Used

Results

• Mean LOD and LOQ per device ranged from 0.18-0.33 ppmv and 1.00-1.13 ppmv, respectively.

• Maximum PGME vapor concentration from five transfer devices in Task 1 of 2019 draft NIOSH protocol using 4M PGME were as shown in Table 2.

• Mini-Spike[®] Chemo with Puresite displayed visible liquid leaks in some cases (Figure 3).

During Pharmacy Compounding and Administration of Hazardous Drugs." (Shared only with CSTD manufacturers)
² E. G. Westbrook, A. Doepke and R. P. Streicher, "Evaluation of propylene glycol methyl ether as a potential challenge agent for leak detection of liquid and headspace from closed system drug transfer devices using Fourier transform infrared spectroscopy," *Anal. Methods*, vol. 14, pp. 4393-4407, 2022.

Sponsored by Simplivia Healthcare Ltd, the manufacturer of Chemfort[®] CSTD.