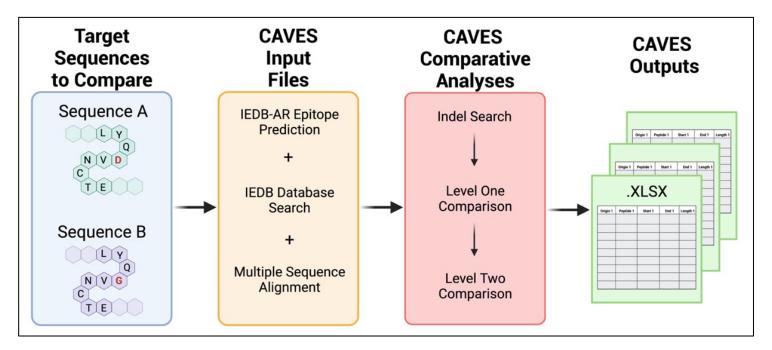


Agence de la santé publique du Canada

CAVES: A Novel Tool for Comparative Analysis of Variant Epitope Sequences

<u>Katherine Li</u>^{1,2}, Connor Lowey ³, Paul Sandstrom ^{1,2}, Hezhao Ji^{1,2}

¹ National Microbiology Laboratories at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada


² Department of Medical Microbiology and Infectious Diseases, University of Manitoba

³ Independent programmer

Correspondence: lik3456@myumanitoba.ca The authors have no conflict of interest to declare

Introduction

- Epitopes are part of an antigen that is recognizable by the host immune system and elicits a specific immune response
- Understanding how epitope recognition differs between pathogens is important for vaccine and therapeutic design
- Putative epitopes can be predicted using computational-based epitope analysis programs such as the IEDB-AR
- Manual comparison of massive lists of epitope sequences from different pathogen strains is laborious, timeconsuming, and prone to human error, often making it unfeasible

Comparative Analysis of Variant Epitope Sequences (CAVES)

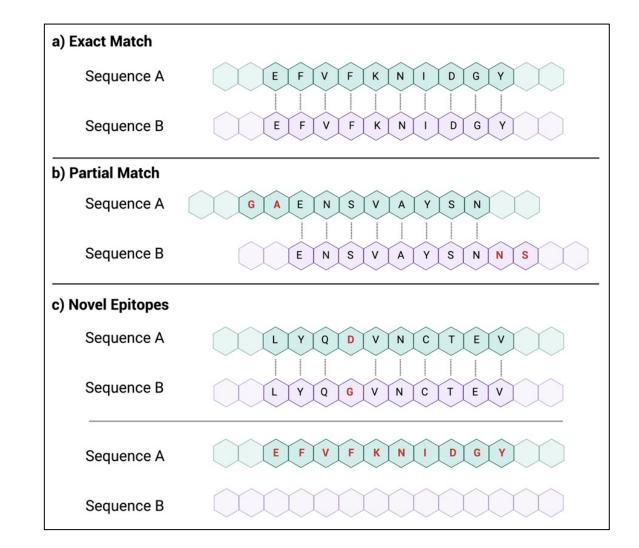
- A novel tool developed for automated comparative analyses of epitopes from two closely related pathogens (*Sequence A* vs *Sequence B*)
- Takes epitope data from the IEDB as input, and outputs results in .XLSX format (Microsoft Excel)
- Uses two comparison levels to determine the similarities/differences between epitopes from the compared sequences and their relevance in published literature
- Runs through a graphical user interface on Windows operating systems and is freely available at https://github.com/connor-lowey/CAVES

Matching Criteria

 CAVES compares epitope sequences (as amino acid peptides) between two given pathogens (Sequence A vs B)

Sorts each epitope into a category based on the degree to which it matches with epitopes from the opposing sequence

Exact Match

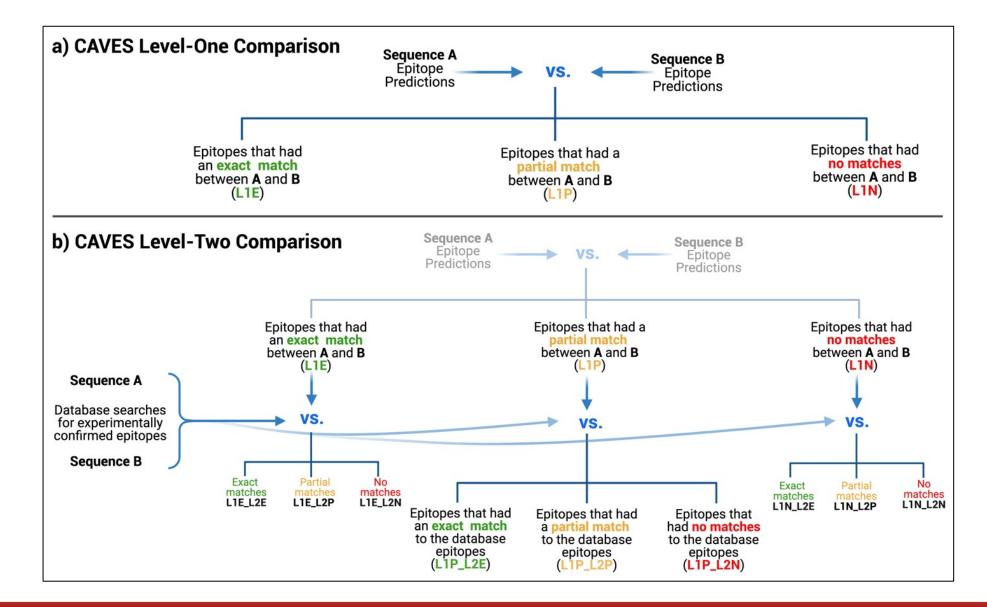

- When two epitopes have identical amino acid characters at the same sequence loci
- Must match for the entire length of at least one of the two epitopes being compared

Partial Match

- When two epitopes have identical amino acid characters at the same sequence loci but are offset from each other
- Offset sequences means the match cannot possibly cover the entire length of either epitope

Novel Epitopes

- When two epitopes create a match of any length (Exact or Partial) but contain a mutation (substitution, insertion, or deletion), making them distinctly unique epitopes
- **Or**, when an epitope did not find a match (of any length) with the opposing sequence



Two-Level Approach

Each comparison level sorts epitopes into categories of Exact matches, Partial matches, or Novel epitopes

CAVES Level-One compares epitope predictions between the two pathogens (*Sequence A* vs *B*) to determine their similarities and differences

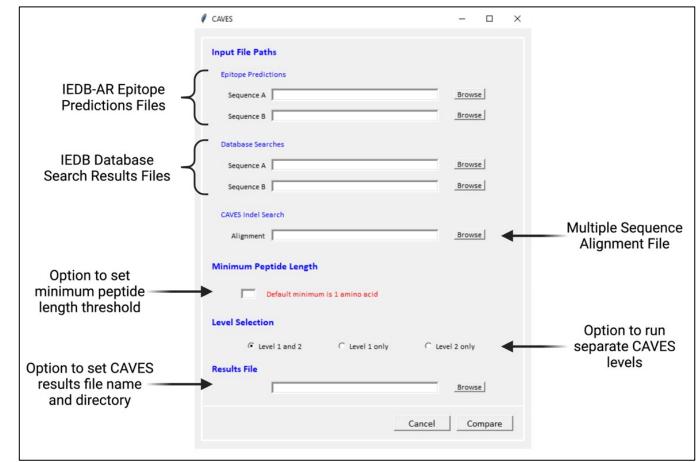
CAVES Level-Two compares epitopes from each sorted list (generated in Level-One) against epitopes from a database query to determine which epitope predictions have been experimentally confirmed in published literature

Test Dataset

Two SARS-CoV-2 spike protein sequences

(Wuhan strain vs. Alpha VOC strain)

- T cell HLA II epitopes predicted for each sequence using the IEDB-AR TepiTool
- The IEDB database of experimentally confirmed epitopes queried for each sequence


Results:

- CAVES accurately binned all epitopes into the Exact, Partial, and Novel categories for Level-One and Two
- CAVES Novel categories correctly identified all epitopes covering characteristic Alpha VOC mutations

Conclusion

- CAVES greatly reduces time and user workload
 - Compared and sorted test dataset (1,129 total epitopes) in 3.6 seconds
- Highly applicable for the study of any hypermutable pathogen such as HIV-1
- Can be used for evolutionary analyses or to compare epitopes from different prediction tools for computational validation

VOC - Variant of Concern; IEDB - Immune Epitope Database; IEDB-AR - IEDB-Analysis Resource

Manitoba

Public Health A Agency of Canada p

Agence de la santé publique du Canada