NRR24 Preliminary Program (subject to change) | Sunday | | | | | | | | | |-------------|---|--|-----------|--|-----|---|--|--| | 12:30 | Registration | | | | | | | | | | Workshop 1 Workshop 2 | | | | | | | | | 13:00-15:00 | Engineering meets Microbiology for optimisation of full-scale Towards net zero: Connected thinking on minimising NRR process | | | | | | | | | | pro | cesses – BNR myths-facts-reality | emissions | · | | | | | | 16:00-18:00 | Welcome Function | | | | | | | | | Monday | | | | | | | | | | 8:30 | Reg | istration Opens | | | | | | | | 09:00-10:30 | Sess | sion 1– Opening Ceremony and Keynote | | | | | | | | 10:30-11:00 | | rning Tea | | | | | | | | | 2 | Anammox | 3 | Pilot/Full Scale Nitrogen Removal | 4 | N2O Monitoring and Mitigation 1 | | | | | 1 | Temperature-resilient superior performances by coupling partial nitritation/anammox and iron-based denitrification with granular formation Jia Meng Harbin Institute of Technology China Developing granular sludge and | 2 | Selected lab- and pilot-scale insights advancing shortcut nitrogen removal for sewage treatment Siegfried Vlaeminck University of Antwerp Belgium Guidance for the operational | 2 | Dynamic prediction of nitrous oxide emissions in full-scale industrial activated sludge reactors Tianyu Lei Technical University of Denmark Denmark Understanding and mitigating nitrous | | | | 11,00,12,20 | 2 | maintaining high nitrite accumulation for anammox to treat municipal wastewater high-efficiently in a flexible two-stage process Zhihao Peng Beijing University of Technology China | 2 | transition from conventional high
DO to suboxic process operation in
Biological Nutrient Removal facilities
Tanja Rauch-Williams Metro Water
Recovery USA | 2 | oxide emission from a pilot-scale hybrid membrane aerated biofilm reactor (MABR) Ziping Wu The University Of Queensland Australia | | | | 11:00-12:30 | 3 | Maximizing nitrite-oxidizing bacteria suppression for mainstream partial nitritation/anammox: optimization of a multi-parameter return-sludge treatment Michiel Van Tendeloo University of Antwerp, Belgium | 3 | Long-term robustness and tunability
of electrochemical ammonia
stripping
William Tarpeh Stanford University
USA | 3 | N2O mitigation and GHG cost-efficiency-
analysis in two advanced full-scale
WWTPs
Kati Blomberg Helsinki Region
Environmental Services HSY Finland | | | | | 4 | Mechanistic Insights into Microbial
Communities in The Partial
Nitritation/Anammox-Ion Exchange
(IX-PN/A) Process For Mainstream
Wastewater Treatment
Leiyu He Penn State University USA | 4 | Total ammoniacal nitrogen removal from real reject water via a combination of electrodialysis reversal and bipolar membrane electrodialysis losif Kaniadakis Technical University of Delft Netherlands | 4 | Modeling-based development of N2O mitigation strategies in two full-scale wastewater treatment plants Ewa Zaborowska Gdańsk University of Technology Poland | | | | Pitch | 5 | Feasibility of simultaneous optimization of Anammox start-up and nitrogen removal performance by intermittent dosing of nanoscale zerovalent iron Zongshuo Han Hohai University China | 5 | Evaluation of side impacts of using primary sludge fermentate for shortcut N removal in chemical P removal plants Shafkat Islam George Washington University USA | 5 | From theory to Tier 3 – Insights from
N2O measurement across 14 WRRFs
Emma Shen Jacobs Australia | | | | Pitch | 6 | Integrated anoxic biological phosphorus removal with anammox under high organic carbon loadings in a hybrid single-stage bioprocess Zhen Jia Northwestern University USA | 6 | The impact of operational variables on the performance and mechanism of the SULFAMMOX process in wastewater treatment Yang Liu University of Alberta; Queensland University of Technology Canada | | | | | | 12:30-13:30 | Lun | 1 | | | | | | | | 13:30-15:00 | 1 | MABR "Full-Scale implementation of an MABR for Sidestream PN/A: a deeper look into the significance of aeration management" Oliver Das TU Darmstadt, Germany MABR-DAS — Coupling MABR & | 2 | Nitrogen Removal Novel N/P Ultra-rapid achievement of denitrifying nitrite accumulation using anoxic starvation treatment Ji Zhao Qingdao University China Stable partial-nitrification and co- | 1 2 | N2O Monitoring and Mitigation 2 Sidestream treatment with ANITA Mox as a tool to mitigate N2O emissions Magnus Christensson Veolia Water Technologies, AnoxKaldnes Sweden Reduction of N2O emissions by | | | | | 2 | densification for enhanced biological selection | | existence of nitrite-resistant phosphorus accumulating organisms | | nitrification-promoted operation of activated sludge in municipal | | | | | | Nadine Oschman Veolia Water
Technologies & Solutions | | activity in treating high-strength
manure digestate
April Gu Cornell University United
States | | wastewater treatment processes Yoshihiro Ishii National Institute for Land and Infrastructure Management Japan | |-------------|------|---|---|---|----|--| | | 3 | upgrading an advanced step-feed
membrane bioreactor plant with
gravimetric separation and membrane
aerated biofilm reactor (MABR) for
process intensification
Yangshuo Gu Pub Singapore | 3 | Barriers in phosphorus recovery
from manure via vivianite formation
Sophie Banke Wetsus/ TU Delft
Netherlands | 3 | Full-Scale Demonstration of N2O
abatement in exhaust gas from nutrient
removal processes
Anna Katrine Vangsgaard Envidan
Denmark | | | 4 | Subiaco MABR pilot trial outcomes –
implications for full-scale design
Julia Bailey Water Corporation
Australia | 4 | Removal of phosphate through
Feammox-driven crystallization of
vivianite
Kangning Xu Beijing Forestry
University China | 4 | Understanding the seasonal variation of N2O emissions from a full-scale wastewater treatment plant Kaili Li, The University of Queensland, Australia | | Pitch | 5 | Bipolar membrane electrodialysis for
citric acid and ammonia regeneration
from ammonium citrate scrubber
effluents
Gladys Mutahi TU Delft Netherlands | 5 | Nutrient removal from slaughterhouse wastewater using aerobic granules in pilot scale sequencing batch reactor. Farrukh Basheer Aligarh Muslim University India | 5 | Investigation of ammonium-based aeration control and microbial community dynamics on nitrous oxide emissions from a full-scale Modified Ludzack-Ettinger wastewater treatment plant Ngai Ning Cheng SA Water Australia | | Pitch | 6 | Evaluation of ethanol addition on rice-
washing wastewater treatment in
single-chamber air-cathode microbial
fuel cell
Kharisrama Trihatmoko Nagaoka
University of Technology Japan | 6 | TBC | 6 | TBC | | 15:00-15:30 | Afte | ernoon Tea | | | | | | | 8 | N/P Removal | 9 | Phosphorus Removal | 10 | Contaminants of Emerging Concern | | 15:30-17:00 | 1 | HRSD's Journey from pilot to full-scale implementation of mainstream partial denitrification/Anammox (PdNA) IFAS Megan Bachmann Virginia Polytechnic Institute and State University USA | 1 | Insights on biological phosphorus removal and short-cut nitrogen cycling in a single sludge via free ammonia and free nitrous acid dosing Xuanyu Lu City University Of Hong Kong Hong Kong | 1 | Using zeolite to improve the removal of Ibuprofen and Diclofenac in a nitrifying sequencing batch reactor: Insights on bioreactor performance and microbial community. Cesar Huiliñir Universidad De Los Andes, Chile | | | 2 | Integrating efficient anammox with enhanced biological phosphorus removal process through flocs management for sustainable ultradeep nutrients removal from municipal wastewater Qiongpeng Dan Beijing University of Technology China | 2 | Performance of a novel cellulose-
based anion exchange hydrogel for
nitrate and phosphate removal from
wastewater
Sepideh Ansari University of
Canterbury New Zealand | 2 | The fate of PFAS in pilot plant scale pyrolysis of Victorian biosolids to produce Biochar. David Bergmann. South East Water, Australia | | | 3 | Efficient granular sludge bioreactor treatment for ammonia and organic nitrogen removal in leachate wastewater Yang Liu University of Alberta; Queesland University of Technology Canada | 3 | Elucidating the impact of low DO on
enhanced biological phosphorus
removal under aerobic and anoxic
conditions at full-scale
Riley Doyle HRSD USA | 3 | Highly sensitive passive sampling of emerging pollutants in urban reclaimed water using hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane Xiaozhong Gao, Beijing Forestry University, China | | | 4 | Investigating biological selection in low-energy biological nutrient removal through low dissolved oxygen operation Jose Jimenez, Brown and Caldwell, United States | 4 | Extreme P removal using the BioPhree® adsorption technology. Pim De Jager Aquacare Netherlands | 4 | Foams – a potential PFAS removal route
in the biological nutrient removal
process
Angel Chyi En We, The University Of
Melbourne, Australia | | Pitch | 5 | An innovative technology for the simultaneous removal of dissolved methane and nitrogen in anaerobically treated mainstream wastewater Yan Lu The University of Queensland Australia | 5 | Biomineralization of phosphorus
during anaerobic treatment of
distillery wastewaters
Lei Zhang Queensland University of
Technology Australia | 5 | Fate of antibiotics and hormones during
hydrothermal carbonization of poultry
litter: degradation kinetics and toxicity
assessment of filtrates and hydrochars
Keke Xiao, Guangdong-Israel Institute of
Technology, China | | Pitch | 6 | Interaction between sulfur and nitrogen cycle in denitrifying bioelectrochemical systems at low temperatures Francesco Savio Dtu Sustain, Technical University of Denmark Denmark | 6 | A long-term comparison between conventional biological nutrient removal processes and the return sludge side-stream process for P removal Hongmin Wang The University Of Queensland Australia | 6 | Aeration rate impact on nitrification and micropollutant removal: Using Natural zeolite to improve performance in a nitrifying sequencing batch reactor. Jorge Leiva-Gonzalez, Universidad Bernardo O'Higgins, Chile | | Tuesday 12 Sep | | | | | | | | |---------------------|---|--|-----|--|----|---|--| | 8:30
09:00-10:30 | Registration Opens Session 11 Day 2 Plenary | | | | | | | | 10:30-11:00 | Morning Tea | | | | | | | | 11:00-12:30 | 12 | Modeling and Control 1 | 13 | Novel N Removal Technology | 14 | Utility Practice 1 | | | | 1 | Reduced-order modelling to tune
ammonia-based aeration control at a
full-scale WRRF
Alexandria Gagnon HRSD United
States | 1 | CANDAN process — A novel "4E" technology for nitrogen removal to advance carbon-neutral wastewater treatment Shenbin Cao Beijing University of Technology China | 1 | Beyond energy neutrality: a programmatic approach to energy independence and decarbonization at a large nutrient removal facility in Denmark Julian Sandino, Jacobs | | | | 2 | Short cut nitrogen removal – design
for full scale implementation at
Melbourne Water's Western
Treatment Plant
Aprilia Vellacott Jacobs Australia | 2 | Assessing the effectiveness of dual carbon source approaches in denitrification processes Chengpeng Lee Northwestern University USA | 2 | Fate and transport of microplastics
through water recycling plants
Li Gao South East Water Australia | | | | 3 | Refine liquid-based N2O monitoring in
wastewater treatment
Shuting Wang The University of
Queensland Australia | 3 | Combining four-pass step-feed BNR with densification: improving process robustness through hydraulic super-intensification Kevan Brian Watercare Services Limited Australia | 3 | Nutrient Management: Measuring and
driving performance at wastewater
treatment plants
Peter Donaghy Urban Utilities Australia | | | | 4 | Quantifying, predicting, and mitigating nitrous oxide emissions in a full-scale partial nitration/anammox reactor treating reject water. Xavier Flores-Alsina Danmarks Tekniske Universitet Denmark | 4 | Effect of different carrier fillers on
wastewater treatment efficiency
Hongyu Yu Tongji University China | 4 | Densification: Combining biological,
chemical and physical selection
approaches
Richard Brice Cmp Group Australia | | | Pitch | 5 | Densification Index/SVI Model: A
potential way to predict benefits of
biomass densification in full-scale
membrane systems
Ronald Bean Veolia WTS Canada | 5 | Nutrients recovery from hydrolysed
urine by Electrodialysis: Ammonium
loss and water transport
Yi Zhang The University of
Melbourne Australia | 5 | Panel Discussion | | | Pitch | 6 | Reinvestigating thiele modulus in
granule and carrier modelling
Eugenio Giraldo Carbon Materials LLC
USA | 6 | TBC | 6 | | | | 12:30-13:30 | Lune | | 1.0 | Barrer Branch 4 | 4- | LUCE - Describer 2 | | | | 1 | Modeling and Control 2 Modelling byproduct generation during bio-electrochemical denitrification of groundwater Borja Valverde Pérez Technical University of Denmark Denmark | 1 | Resource Recovery 1 Pilot scale production of biopolymers from residual streams using mixed microbial cultures – How the substrate affects yield and chemical properties Cora Laumeyer University Kaiserslautern-Landau Germany | 1 | A "Benjamin Button" BNR Plant from full load to minimum load. Process modelling, civil and mechanical design issues Peter Griffiths Ph Water Consultants Pty Ltd Australia | | | 13:30-15:00 | 2 | Hydrogen sulfide: a key factor
negatively affecting sulfur
disproportionation process
Guijiao Zhang Harbin Institute of
Technology China | 2 | Applying photogranules for simultaneous biogas upgrading and biogas slurry purification towards net-zero carbon emission Feixiang Zan Huazhong University of Science and Technology China | 2 | A foundation towards energy net zero -
the Upper South Creek AWRC Damien
Sharland Jacobs Australia | | | | 3 | Enhancing prediction and understanding of sulfur-driven autotrophic denitrification processes through a hybrid modeling approach Xu Zou The Hong Kong University of Science and Technology Hong Kong | 3 | Biogas conditioning via microalgal cultivation in anaerobic digestion effluent Dayoung Ko Ulsan National Institute of Science and Technology South Korea | 3 | Biological treatment shock events at a
municipal resource recovery centre
Thakshila Balasuriya Urban Utilities
Australia | | | | 4 | Full-Scale applications of digital twins
in nutrient management
Bruce Johnson Jacobs United States | 4 | Photogranular technology for wastewater treatment with resource recovery Tania Vasconcelos Fernandes Ihe Delft - Institute for Water Education, Netherlands | 4 | Operating results of nutrient removal at
Quakers Hill WRRF – Application of AGS
(NEREDA) utilising sustainable principles
Monita Naicker Aquatec Maxcon
Australia | | | Pitch | 5 | A novel model of fermentative and conventional polyphosphate accumulating organisms: metabolic insights and synergy Adrian Oehman The University Of Queensland Australia | 5 | Integrated approach for nutrient recovery and wastewater treatment: anaerobic digestion-DHS system Pranshu Bhatia Soka University USA | 5 | Panel Discussion | | | Pitch | 6 | Nutrient removal performance in practice –does process configuration matter as much as process modelling indicates? Cameron Staib Stantec Australia | 6 | Impact of biochar as a soil
amendment on crop growth and
agricultural non-point source
pollution control
ChingJung Lin Department of
Bioenvironmental Systems | 6 | | | | | | | | Engineering, National Taiwan
University Taiwan | | | |---------------|-------|--|----|---|----|---| | 15:00-15:30 | | ernoon Tea | 10 | Posourco Posource 2 | 20 | Workshop 2 | | 15:30-17:00 | 18 | Net Zero The carbon footprint of typical wastewater treatment plants in China and Europe: Towards carbon neutrality Hongtao Wang Tongji University China | 19 | Resource Recovery 2 Unlocking simultaneous nitrogen, phosphorus, and carbon recovery from wastewater: Leveraging the assimilatory power of microbial communities abundant in waste stabilisation ponds Dilani Jayathilaka CSIRO Australia | 1 | Workshop 3 | | | 2 | Digestate degassing: Is it financially
feasible at Beenyup WRRF, Perth,
Australia?
Gokul Bharambe Jacobs Australia | 2 | Novel porous membrane with
embedded zirconium hydroxide for
recovery of high-purity phosphoric
acid from wastewater
Takayuki Kakuda Chuo University
Japan | 2 | | | | 3 | First laboratory-scale study
demonstrating methane emission
mitigation from open wastewater
sludge lagoons
Sarah Aucote SA Water Corporation
Australia | 3 | Nutrient recovery from human urine using bioelectroconcentration: Upscaling from laboratory to pilot scale Veera Koskue University of Melbourne Australia | 3 | Workshop: Urine separation for a circular economy of nutrients Stefano Freguia | | | 4 | Basic study on nutrients management
and GHG emission reduction in the
sewage treatment plant
Toshiki Fukushima Metawater Co.,
Ltd. Japan | 4 | Cycle conversion of FeSx and ferric
(hydr)oxides: a new opportunity for
sulfur recovery from sulfide-bearing
water
Daheng Ren, Harbin Institute of
Technology China | 4 | The University of Melbourne Australia | | Pitch | 5 | Ammonia to energy: a key
decarbonisation strategy for the water
sector
Mark Powders Cranfield University
United Kingdom | 5 | Rapid sludge reduction and
stabilization through a Novel
Biofilm-Based Acidic Aerobic
Digestion System
Xi Lu, The University of Queensland,
Australia | 5 | | | Pitch | 6 | Holistic assessment of management strategies and technological solutions handling reject water. Xavier Flores-Alsina Danmarks Tekniske Universitet Denmark | 6 | TBC | 6 | | | 18:30 – 23:30 | Con | ference Dinner | | | | | | Wednesday 13 | Septe | mber | | | | | | 9:45-10:30 | Sess | sion 21 Day 3 Plenary | | | | | | 10:30-11:00 | Moi | rning Tea | | | • | | | 11:00-12:30 | 22 | City and Precinct Outcomes | 23 | Microbiology and Biochemistry Advances 1 | 24 | Pilot/Full Scale Phosphorus Recovery | | | 1 | Urine fertilizer production using a
hybrid acidic strategy
Zhiqiang Zuo, The University of
Queensland, Australia | 1 | Enrichment and application of extracellular nonulosonic acids containing polymers of Accumulibacter as a value-added product Yuemei Lin, Delft University of Technology, Netherlands | 1 | Full-scale conversion from biological to
chemical phosphorus removal and
magnetic vivianite recovery technology
integration
Ha Nguyen Tu Delft/ Wetsus
Netherlands | | | 2 | Can 'Nutrient Net Zero' Halt Moreton
Bay's Environmental Decline?
Cameron Jackson, Urban Utilities,
Australia | 2 | Propioniciclava accumulated in an
EBPR process can be a novel
potential polyphosphate
accumulating organism
Yongmei Li, Tongji University, China | 2 | Pilot-scale assessment of sidestream
enhanced biological phosphorus
removal and recovery: impacts on
performance and economics
Albie Zuo Meng Gan The University Of
Queensland Australia | | | 3 | Could we manage sewage overflow using biofilters? Prasanna Egodawatta, Queensland University of Technology, Australia | 3 | Nitrogen bioconcentration and recovery as the nitrogen-rich biopolymer cyanophycin in denitrifying phosphorus accumulating organisms McKenna Farmer, Northwestern University, United States | 3 | Taking the missing steps in promoting cost-effective and sustainable phosphorus recovery from sewage sludge ash via wet chemical leaching Andrea Turolla Politecnico Di Milano Italy | | | 4 | Onsite greywater and blackwater
management: nature-based solutions
for water and nutrient reuse
Virginia Pinto, Federal University Of
Mato Grosso Do Sul, Brazil | 4 | Adaptive resilience of a coculture system: harnessing high-level hydrogen sulfide stress for enhanced biogas utilization Baorui Zhang Nanyang Environment & Water Research Institute Singapore | 4 | Recycling by-products of wet-chemical
phosphorus recovery from sewage
sludge ash as a precipitant for
wastewater treatment
Sarah Müller Institute of Environmental
Engineering Germany | | Pitch | | Absorbent hygiene products for | 5 | The impact of long-term P | 5 | Sea urchin waste shells for phosphate | | | | landfill
Emma Thompson Brewster, Southern
Cross University, Australia | | community selection and
performance of S2EBPR
configuration.
Xinyu Shi, The University of
Queensland, Australia | | Moeen Gholami University of
Canterbury New Zealand | | |-------------|---------------|---|----|--|----|--|--| | Pitch | 6 | Solar-wind hybrid power drive reuse
type of rural domestic sewage
treatment system in northwest China
Pengyu Li, Research Center for Eco-
Environmental Sciences, Chinese
Academy of Sciences, China | 6 | Selective carbon sources influence
the carbon transformation and
metabolism of Purple phototrophic
bacteria
Siwei Yu Wuhan University of
Technology China | 6 | Phosphorus Recovery from Sewage as
Vivianite in an Fe-retrofitted UCT-MBR
System
Xiang Cheng Beijing Forestry University
China | | | 12:30-13:30 | Lun | ch | | | | | | | 13:30-15:00 | 25 | Product Innovation | 26 | Microbiology and Biochemistry
Advances 2 | 27 | Resource Recovery 3 | | | | 1 | Vivianite as a novel strategy for phosphorus recovery: latest developments, bottlenecks, and future perspectives Thomas Prot Wetsus Netherlands | 1 | Understanding the negative effects of biofilm thickening in elemental sulfur-based denitrification process and the novel moving-bed technical solutions Jia-Min Xu Harbin Institute of Technology Shenzhen China | 1 | "Pilot-scale demonstration of reducing
and upgrading anaerobically digested
sludge in an acidic aerobic digester"
Zhetai Hu, The University of
Queensland, Australia | | | | 2 | Biogas valorization for nutrient
recovery and resourceful microbial
protein production
Kashif Rasool, Hamad Bin Khalifa
University (HBKU), Qatar | 2 | The genomic and physiological characterization of the novel acid-tolerant comammox Nitrospira found in the process of producing NH4NO3 from urine Tingting Zhang, Tsinghua University, China | 2 | Valorization of the organic content of
sewage sludge from decentralized
treatment via acidogenic fermentation
Marco Pesenti, Politecnico Di Milano,
Italy | | | | 3 | Investigating conditions for enhanced ammonium bicarbonate formation and precipitation via CO2 sequestration with hydrolyzed urine Joseph Lybik University of Michigan United States | 3 | Shedding light on the complexities
of internal carbon driven denitrifiers
in biofilm & floc
April Gu, Cornell University, United
States | 3 | Centralised solids management:
unpacking the impacts to nutrient
management
Shannon Weaver, Urban Utilities,
Australia | | | | 4 | Cu-Ni nanoparticle-coated carbon cloth electrodes: advancing urea degradation and hydrogen production in urea-enriched wastewater Padmavathy Bagavathi Indian Institute of Technology Palakkad India | 4 | Formate as an alternative electron donor for the anaerobic methanotrophic archaeon Candidatus 'Methanoperedens nitroreducens' performing denitrification Mengying Xie, The University Of Queensland, Australia | 4 | Tannin-Based Coagulants Success in the
Food Processing Industry
Lucas Moreno, Tanafloc Australia | | | Pitch | 5 | Single cell protein production from
methane in a gas-delivery membrane
bioreactor
Yicheng Ma The University of
Queensland Australia | 5 | Autotrophic and Heterotrophic
Adaptation to Low Dissolved Oxygen
Lilian McIntosh, Hampton Roads
Sanitation District, United States | 5 | Integrated resource recovery system for resources (nutrient, water, and energy) mining from source separated urine. Sangeetha Vivekanandan Indian Institute of Technology Palakkad India | | | Pitch | 6 | Potential Roadmap to a Biorefinery;
Lessons from Crude Oil Refining
Callum Hickey Urban Utilities Australia | 6 | Exploring methanotrophs and methylotrophs for single-cell protein production in biomass enriched with oxygen and methane from paddy-rice rhizosphere Akihiko Terada Tokyo University of Agriculture and Technology Japan | 6 | Sludge pre-treatment can lead to
pathogen regrowth in mesophilic AD
Junfu Li The University of Queensland
Australia | | | 15:00-15:30 | Afternoon Tea | | | | | | | | 15:30-17:00 | Sess | sion 29 Closing Ceremony | | | | | | ## Special thanks to our sponsors Host Platinum Gold Best Paper Best Poster