Rates of obstetric complications in patients with a BMI over 50 - An audit

Authors: Dr Adeleena Mazid (SHO), Dr Emma O'Shea (Consultant Staff Specialist) Obstetrics & Gynaecology Department, Darling Downs Health Service, Queensland Health

Introduction:

Obesity is an important, increasingly prevalent public health issue with major implications on the general public and health services and is a leading cause of death and disability in Australia [1].

- 64% of Australian women are overweight or obese in regional areas compared to 53% in urban areas[2].
- In 2019 47.5% of mothers were overweight or obese [3].
- 39% of mothers who had >4 children were obese, compared to 21% of mothers with only 1 child [3] – highlights the importance of engagement with patients in inter-pregnancy and postpartum periods to encourage health modification.

Literature:

Previous studies have identified an association between adverse obstetric and neonatal outcomes including: emergency CS, PPH, Shoulder dystocia, LGA, GDM, Pre-eclampsia, amongst other complications [4-10].

Of mothers with overweight or obese BMI, the literature reports: A 7% increase in rate of CS for ever one unit increase in maternal BMI (south Australian study), Increase rate of PPH by 70%. The literature is variable regarding rates of small for gestational age babies (SGA) and Obstetric anal sphincter injuries (OASI) with some, but not all, reporting high BMI as protective [4,8,9].

<u>Reason for audit</u>: There is paucity of literature specific to patients with a BMI > 50 and this audit was completed out of interest. A study by Cedergren et al with 972 806 pregnancies, had 1.6% with BMI 35-40 and 0.6% BMI >40 [5] *Dodd et al* had 4% in the BMI > 40 group and no specific group of patients in the BMI > 50 group. *Sebire et al* had grouped all patients with BMI > 30 in a single group as 'very obese' [9].

References: 1. Australian Institute of Health and Welfare, Thep. e62-e106. health of Australia's females 2019 AIHW: Canherra 7. Dodd, J.M., et al., Maternal and perinatal health outcomes 2. Australian Institute of Health and Welfare, Rural, regional by body mass index category. Aust N Z J Obstet Gynaecol, and remote health: indicators of health system performance. 2011. 51(2): p. 136-40. 2008 AIHW: Canherra 8. Durnea, C.M., et al., Effect of body mass index on the 3. Australian Institute of Health and Welfare, Australia's incidence of perineal trauma. Int J Gynaecol Obstet, 2018. mothers and babies. 2021, AIHW: Canberra. 141(2): p. 166-170 4. Blomberg, M., Maternal body mass index and risk of 9. Sebire, N.J., et al., Maternal obesity and pregnancy obstetric anal sphincter injury. Biomed Res Int, 2014. 2014: outcome: a study of 287,213 pregnancies in London. Int J n 395803 Obes Relat Metab Disord, 2001. 25(8): p. 1175-82. 5, Cederoren, M.I., Maternal morbid obesity and the risk of 10, Ward, M.C., et al., Trends in obesity and impact on adverse pregnancy outcome. Obstet Gynecol, 2004. 103(2): obstetric outcomes in a regional hospital in Victoria, n 219-24 Australia. Aust N Z J Obstet Gynaecol, 2020. 60(2): p. 204 6. Denison, F.C., et al., Care of Women with Obesity in 211 Pregnancy: Green-top Guideline No. 72. Bjog, 2019. 126(3):

Acknowledgments: Conflict of interest: none. Funding: none. Ethics was approved. A copy is available for review on request.

<u>Aim</u>: This audit explores the obstetric outcomes amongst different BMI categories in a regional Australian Hospital.

Method:

- Data was collected from the local perinatal database between August 2017 and August 2021 in a local hospital, single centre only. Local birth rate around 2600 births/year. Information is manually put into the database at time of delivery staff involved.
- Patients with BMI < 18.5 were excluded
- Patients were grouped into the BMI categories by increments of 5
- Data analysis was completed using excel and SPSS.
- A basic statistical analysis has been completed for this audit looking at proportion/rate only and does not consider the impact of contributing co-variants which may affect results and statistical significance.

<u>Results</u>: Mean BMI = 31.3, Median = 30, Total sample size = 5177. 2% BMI > 50, 11% BMI > 40, 18% Normal BMI

Comparing normal BMI to those with BMI over 50:

- Spontaneous labour decreased from 55.8% to 19.2%
- Emergency Caesarean section increased from 18.1% to 34.6%.
- PPH appeared significantly increased by BMI. 3.4 % of normal BMI group had a PPH of 1-1.5L compared to 6.7% in the BMI >50 group.
- 0.5% of people with a Normal BMI had a PPH of 1.5-2 L compared to 1.1% of those with a BMI 45-49.9 and 1% of those with a BMI > 50.
- Birthweight (percentile for gestational age) > 90th percentile was significantly increased with increasing BMI and BW < 10th percentile appeared decreased.
- There was not a significant trend noted in the rate of 3rd and 4th degree tear, however the total sample size of this was small (96 total), as with shoulder dystocia (78 total) and stillbirth (total 29)

BMI								
		18.5-	25-	30-	35-	40-	45-	
	Outcome	24.99	29.99	34.99	39.99	44.99	49.99	>50
	Spontaneous Labour	55.8%	48.6%	42.1%	32.2%	23.2%	19.8%	19.2%
	SVD	62.80%	62.40%	55.40%	51.40%	51.40%	46.90%	37.50%
	Emergency CS	18.10%	17.90%	23.20%	23.80%	25.40%	26.00%	34.60%
	Elective CS	12.30%	12.30%	14.70%	19.40%	20.20%	24.30%	26.90%
	VBAC attempted successful	2.80%	2.20%	2.90%	2.00%	1.00%	1.10%	1.00%
	VBAC attempted unsuccessful	1.10%	1.00%	1.30%	0.50%	0.50%	1.10%	0.00%
	Reason for delivery type - Failure to progress	3.80%	4.20%	4.70%	6.00%	7.80%	8.50%	10.60%
	Reason for delivery type - Fetal distress	6.60%	6.10%	8.00%	7.10%	5.80%	6.80%	8.70%

Proportion in BMI Group with PPH

Proportion of patients in BMI group with Birth weight >90% and < 10% for gestational age

Discussion:

These trends are similar to those compared in previous studies with increased rates of PPH, LGA babies, emergency CS and reduced rates of SVD. This audit noticed a decrease in infants with birth weight <10% up to the BMI category 45-49.99 and then a slight increase in the BMI > 50 group. Rates of 3rd and 4th degree tears did not show a significant trend as with

Limitations:

- Limited sample size (n=104) of patients in the BMI > 50 category.
- However, relatively large sample size (n=488) in group BMI >40, results in this group would likely be more reliable than in the BMI > 50 group.
- Patients were excluded with BMI < 18.5. Comparison in this group would also be useful.
- Data relies on the accuracy of the staff inputting the data.
- Unable to confidently determine at what gestation the BMI is calculated at, typically BMI recorded is at time of delivery.
- Patients suspected to have a preterm birth are transferred to a tertiary centre which will skew data regarding pre-term birth rates.
- Patients with BMI over 60 are referred to a tertiary centre so this group will be limited.
- Basic statistical analysis, no log regression completed or analysis of co-variants (medical comorbidities, age, parity, gestation) which are important to consider and would likely affect the results analysis of this could be considered for a future project.

