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How do we know things? 
These notes are about the harm to health that may come from too much exposure to a 
harmful agent.  How do we know about those things? 
 

Much of what we know comes from personal experience or from what is told to us by 
those of status whom we trust.  Personal experience is most potent when a harmful effect 
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happens quickly and always, e.g. grasping a very hot object, or sniffing strong ammonia 
gas.  Information gained by personal interaction is most believable when the teller is a 
person of stature and when their line of argument is reasonably consistent with what we 
already consider to be true. 
 

Sometimes, though, rather than being told, we seek to act on published information.  This 
happens particularly when harmful health effects are slow to appear – things such as 
cancer, birth defects, or changes to brain function.  These published authors invite us to 
believe that a specified substance or ray has caused this sort of harm, so more control is 
required than happens now.  The rest of what I say will be about such a situation. 
 

However, there is potential for confusion when we attempt to satisfy ourselves whether 
an exposure causes slow-appearing harmful health effects.  This potential for confusion 
comes for two reasons: 
 

• not all of those exposed suffer the effect – indeed, usually it is a minority; and 
• people without such exposure also suffer the effect. 

 

As a result, we can never be certain that a particular exposure has caused a slow-
appearing disease.  Nor can we be certain that it hasn’t.  An assertion about a causal1 link 
between exposure and the disease can only honestly be couched in terms of probability.  
It is a matter of “how likely” not “is” or “isn’t” 
 

To find out how likely it is that an exposure will cause slow-appearing harmful health 
effects, we rely on both animal experiments and human studies.  The term epidemiology 
embraces health studies on groups of people. 
 
What is epidemiology? 
Epidemiology is the study of which people in the world get what diseases and why.  A 
typical unit of epidemiology is a comparative study of two or more groups of people 
ranging in number from dozens to tens-of-thousands.  Mostly, this requires several 
investigators and substantial funding to enable on-going gathering of data about exposure 
and health status.  The data is analysed for causal trends.  In drawing conclusions, the 
investigators will often say that the findings from their study are likely to apply more 
generally – to all people in the world in similar circumstances.  That generalisation is 
likely to be accurate only if: 

• the group studied has features that are mirrored in many other places; and 
• there is a firm basis for assuming that the exposure has caused the health effect. 

 

Of course, not all causal factors require epidemiology to bring them out.  So, let’s for a 
moment consider a world without epidemiology. 
 
A world without epidemiology? 
The study of individual cases will satisfy us that grasping a live high-voltage electrical 
wire causes electrocution, or that ammonia, when heavy in the air, causes eyes to water.  

 
1 Sometimes my students misread ‘causal’ [implying a cause] and think I mean ‘casual’ [unconcerned or 
happening by chance].  To avoid this risk, I do not use the word ‘casual’ in these notes. 
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This is so because the effect happens immediately on exposure, and because it always 
happens.  Also, where a cluster of an extremely unusual cancer occurs in a group that is 
homogeneously and heavily exposed to a particular agent, then causal association 
between the cancer and the exposure would most likely be presumed. 
 

However, when persons’ exposure to a suspected substance or physical agent is well 
separated in time from an alleged health effect2, then any serious effort to associate such 
human exposure with that effect will always employ epidemiological methods, i.e. it will 
employ the systematic study of groups, not simply perusal of individual case histories. 
 

Without epidemiology, any assertion that linked smoking and heart disease, human 
papilloma virus and cervical cancer, or cadmium and kidney disease would be a barely 
educated guess. 
 

Of course, epidemiology has its limitations.  One situation where it loses its potency is 
with exposures of very low-intensity.  We shall come to this later.  
 

Now let us look at some types of epidemiological study.  Our purpose is to examine how 
well each study type helps us to: 
 

• observe differences between groups; and 
• explain why this may be. 

 
Before I speak of the different studies and what they yield, I offer some words of 
guidance.  I do this because most of my students have found some ideas in epidemiology 
to be difficult to grasp.  So there are some things to do so as to make it easier to learn. 
 
Being part of the culture of epidemiology 
If we get employed in a new job, we very likely find that things are done there somewhat 
differently from where we’ve been.  We want to be well thought-of by new workmates.  
So, as part of fitting-in, we may adopt some of the ways that others speak or even their 
informal dress code – all part of the superficialities of conveying that “I am one of you”. 
 
So it was when, thirty plus years ago, I entered a “Land” of epidemiology – (what is now) 
the Monash University School of Public Health and Preventive Medicine.  I faced a forest 
of new terminology and felt that, to be ‘cool’, I needed to speak nonchalantly about 
significant, standard error or sensitivity; to roll off my tongue ARR, SEM or NNT; to 
have a formula to calculate chi-square or likelihood ratio.  So I fitted in.  But, when I 
came to teach, my students saw terminology more as a barrier than a gateway to 
understanding.  I faced legitimate questions such as, “Why do we have to learn this 
sh*t?’, “What’s that mean?”, or assertions such as “Maths freaks me out!”.  I found that 
most student mistakes, especially in the use of a formula, were because my student didn’t 
really know (or sometimes didn’t care) what he or she was trying to achieve by using it, 
or because my student didn’t understand the notion of ratio, proportion or why dividing 
by a number is the same as multiplying by its reciprocal. 
 

 
2 E.g. Does living near power lines for 10 years increase our likelihood of getting cancer? 
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My students were smart people with wide interests.  Their difficulty with epidemiology 
was occasioned by the adage, “If you don’t use it, you lose it”.  Many had practised 
capably in medicine or other health fields for several years, but had no reason to bring 
their high school maths into their working lives.  
 
So, that’s why I say to you what I now do.  I suggest you firstly skim-read the next four 
pages.  Then, if you feel confident that you know these things, carry on with the rest of 
the document.  Otherwise come back here and go over the parts that could aid your 
understanding. 
 
Explaining ideas to others 
You know best when you’ve learnt something if you can explain it to others in a 
convincing way.  And, in explaining, you will feel more empowered if you can vocalise 
your ideas using terms or analogies that are familiar to your everyday life. 
 
Some of the most profound thoughts can be expressed in simple words.  Many of the 
great books illustrate that.  If you tell a person something using your own, plain language, 
then he or she will know that you have brought the concept into your own personal area – 
that you are attempting to say: “I have thought about this and here is my perspective: ….”  
It also respects the person with whom you are communicating.  It says, “Hey, this is what 
I believe”.  Merely reciting a textbook or formal definition is like a proclamation from on 
high, or a call from far, far away.  It lacks the softness or the sort of pleasure-in-giving 
that a truly personal message can bring.  Yet expressing sophisticated or abstract ideas in 
lay terms can risk embarrassment if what you say comes out all wrong.  You can feel less 
vulnerable, less exposed, if you hide behind a technical term. 
 
The ability to persuade another person depends upon creation of understanding plus a 
sincere attempt to try to see the world from the other person’s point of view.  You cannot 
persuade a person who doesn’t understand you nor who believes you don’t care about 
what is important to him or her. 
 
When technical terms that occur in pairs sound similar, it can be confusing.  For example, 
specificity and sensitivity often appear together.  It's a bit like seeing a friend with her 
twin girls.  One has to pause a moment to tell the twins apart and address each by her 
right name. 
 
On using numbers  
This short passage may seem to be a particularly strange thing to offer to you who have 
survived school, a medical course and are now undergoing physician training.  However, 
I have met many medical students, and even doctors, who are not at all relaxed with 
numbers. 
 
In modern society, numbers tend to speak with a ‘loud voice’; politicians, economists and 
many others take them very seriously indeed.  The risk in doing this is that the number 
itself becomes the focus and we lose sight of the broader pattern to which it belongs. 
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Realise that numbers are simply adjectives.  A word such as four or twenty-one simply 
tells us more about people, things or events.  The use to which a number is put is what 
determines the importance of that number. 
 
Some numbers are important enough to remember, and that’s easier to do if the number is 
simplified.  The front of a number is usually more important than its rear end.  For 
example, it is nearly always more useful to know whether we have 423 or 923 dollars left 
in our bank account than whether we have 423 or 428.  Very often this gives us latitude 
to simplify numbers by ‘rounding off’ their rear ends – thus 21.8 may become 22 or 
perhaps, depending on the circumstances, a suitable approximation may be 20. 
 
Many calculations can be done in one’s head.  Mental arithmetic is made relatively easy 
by rounding off numbers.  For example, the product of 22.6 × 37 is, for most purposes, 
near enough to 20 × 40.  Rounding off numbers, so that operations such as multiplication 
and division can be done in the head, makes the act of calculating brief.  That way, the 
effort of calculating does not long distract us from the people, things or events that the 
numbers are telling us about.  Certainly, it’s helpful to get a rough estimate done in your 
head before using a calculator. 
 
If a calculator is used for multiplication or division, it may display more digits after a 
decimal point than are needed.  This makes a number appear more complex and more 
difficult to recognise for what it is.  Before using a calculator to multiply or divide 
numbers, it helps to decide how many digits (if any) we need after the decimal point.  
This way we may simplify a long number by rounding off any digits that are superfluous. 
 
Appropriate rounding-off also shows that you are aware of the limitations of your 
measuring instrument.  Other professionals will respect your recording of a patient’s 
temperature as 37.5oC, but not a systolic blood pressure reading of 151.6 mmHg nor a 
sound level measurement of 87.2 decibels. 
 
Ratio 
Quite often, we seek to compare two numbers, e.g. shoppers comparing prices in a store.  
Formally, comparison can be achieved in two ways.  By subtracting one number from the 
other, the difference between them tells you how much more one is than the other.  
Alternatively, dividing the larger number by the smaller one, tells you how many times 
more one is than the other.  If you divide the smaller number by the larger one, you 
obtain a fraction which tells you how many times less is one than the other. 
 
A ratio is a comparison of two numbers achieved by dividing one by the other. 
 
I’ll start with a simple example.  Say you have a bowl of fruit with three apples and two 
oranges.  The ratio of apples to oranges is 3:2.  For some purposes, it is nice to have the 
number on the right hand side of the colon, ‘:’, equal to 1.  This can be achieved by 
dividing the number on each side of the colon by (in this case) 2, thus, 

3
2
 : 2
2
 = 1.5:1.  

Quite often then, the ‘:1’ is left off and the ratio is expressed simply as 1.5. 
 

So a ratio is a comparison of numbers where that comparison is likely to be useful or 
have some meaning, e.g. big/small, red/black.  In epidemiology, a ratio can be the 
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number of observations with a characteristic of interest compared with the number 
without that characteristic, e.g. 43 : 26.  Such a ratio is usually easier to remember when 
the right hand number is scaled down to 1.  This is achieved by dividing the left-hand 
number by the right-hand one, thus, 43 : 26 = 

26
43  : 

26
26  = 1.65 : 1.  Usually, in 

epidemiology, the “: 1” is left off and, if that were done here, this ratio would be simply 
expressed as 

26
43  or 1.65. 

Some ratios are more sophisticated, e.g. relative risk and odds.  The common unit of 
sound level measurement, the decibel, is a ratio; zero decibels is not zero sound. 
 

Comparing numbers by difference maintains the units of measurement, e.g. dollars and 
cents for price.  Comparing numbers by ratio cancels out the units of measurement. 
 
Proportion 
When something is part of a whole and we want to say how large a part it is, then we use 
words like half, three-quarters or a percentage.  The general term used for such words is 
proportion. 
 

Proportion is the number of items or observations with a characteristic of interest divided 
by the total number of items or observations.  An example of proportion is prevalence or 
probability; so is sensitivity and specificity.  In epidemiology, a proportion typically 
appears as a decimal fraction between 0 and 1, or as a percentage. 
 

To come back to the bowl of fruit, the proportion of apples in the bowl is 
3 apples

5 pieces of fruit
 or simply 3

5
.  The proportion of oranges in the bowl is 2 oranges

5 pieces of fruit
 or 

simply, 2
5
.  A proportion is a part divided by the whole. 

 

In conversing about proportion, it often seems easier to talk in percentages than decimal 
fractions with a value less than one.  However, the simplest form of many equations uses 
the decimal fraction rather than the percentage.  Please make sure you know if your 
equation calls for a decimal fraction rather than a percentage, and be able to slip quickly 
from one to the other in your own mind, e.g. 5% = 0.05,  20% = 0.20,  75% = 0.75. 
 

And, just as counted numbers can be compared as ratios, proportions can too, e.g. relative 
risk (risk ratio). 
 
Dividing – numerators and denominators 
A common indicator of dividing is to put the number to be divided in the numerator, and 
the number by which the numerator is divided into the denominator.  Thus 6 divided by 3 
may be written 

6
3
,  or 1 divided by 2 may be written 1

2
.  With algebra, using symbols in 

place of numbers, x divided by y may be written 
𝑥𝑥
𝑦𝑦
.  If the numerator and denominator are 

the same, e.g. 
6
6
 or 𝑥𝑥

𝑥𝑥
, then the division of numerator by denominator equals 1. 
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So, 𝑥𝑥
𝑥𝑥
 – 𝑦𝑦

𝑥𝑥
 can be expressed as 1 – 𝑦𝑦

𝑥𝑥
 or it can be given a common denominator, 𝑥𝑥−𝑦𝑦

𝑥𝑥
.  

Or, turning it around,  
𝑥𝑥−𝑦𝑦
𝑥𝑥

 = 1 – 𝑦𝑦
𝑥𝑥
. 

 
Reciprocals 
In ordinary conversation, the adjective reciprocal refers to the giving of something in 
return, a mutual exchange.  In maths, though, when you start with a number, its 
reciprocal is what you must multiply this number by in order to get 1.  For example, the 
reciprocal of 2 is ½ because 2 × ½ = 1.  Similarly, the reciprocal of 4 is 

1
4
, and the 

reciprocal of 10 is 1
10

 or 0.1, and the reciprocal of 4
3
 is 3

4
 because 4

3
 × 3

4
 = 1.  Similarly, 

by replacing numbers with symbols, we have the reciprocal of x is 1
𝑥𝑥
 because x × 1

𝑥𝑥
 =1, 

and the reciprocal of  
𝑥𝑥
𝑦𝑦
 is 𝑦𝑦

𝑥𝑥
. 

 
When you multiply by a fraction, e.g. 5 × ½ = 2½, it’s fairly easy to see what happens 
and why.  However, it is less intuitive when you divide by a fraction, e.g. 5 ÷ ½.  This 
division asks “How many halves go into 5?”  It’s actually something that mothers do all 
the time.  You have five oranges but more than five mouths to feed.  So, what do you do?  
Cut them in half!  How many half oranges do you get out of five oranges?  Ten, i.e. 5 × 2 
halves.  This means that dividing by 

1
2
 is the same as multiplying by its reciprocal, i.e. 

2
1
 

or, simply, 2. 
 

So 5 ÷ ¼ = 5 × 4 = 20, and 4 ÷ 
1
10

 = 4 ×10 = 40.  Too, 6 ÷ ¾ = 6 × 
4
3
 = 8.  Similarly, with 

symbols: x ÷ 
1
𝑦𝑦

 = x × y = xy.  Or 
𝑎𝑎
𝑏𝑏
 ÷ 𝑐𝑐

𝑑𝑑
 = 𝑎𝑎

𝑏𝑏
 × 𝑑𝑑

𝑐𝑐
.  And 𝑎𝑎

𝑏𝑏
 × 𝑑𝑑

𝑐𝑐
 may be condensed to 𝑎𝑎𝑑𝑑

𝑏𝑏𝑐𝑐
. 

 
Equations 
Equations help us to calculate a number that we want to know from related numbers that 
we already know.  Equations are usually written in symbols to make them generally 
available for whatever appropriate numbers we’d like to insert. 
 
The ‘look’ of an equation may, at first seem formidable.  For example, an equation at the 
top of the next page can be used when a patient is given a diagnostic test.  Before the test 
is done, we make our own estimate of the probability that our patient has the disease of 
interest.  In symbols, let’s call that p1.  Its numerical value will be between 0 and 1.  We 
choose a test that is known to distinguish people with this disease from those that don’t 
have it.  How well the test does this is measured by what is called the positive likelihood 
ratio which we’ll give the symbol L.  The values of L can be anything from 1 to double 
figures; the higher the value of L, the better its ability to distinguish diseased from not. 
 
If the result of the test is positive, we may calculate the probability p2, that our patient has 
the disease based on the numerical values of p1 and L. 
 
The equation used to calculate p2 directly from p1 and L is: 
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1

2
−+

=
L

p

Lp  

 
The equation might look formidable, but just pause and let it speak to you.  ‘Take a 
history’ from it.  Look at the way the terms are laid out on the right-hand side of the 
equation to form a pattern, just as, say, the pattern of fever, rhinorrhoea, cough, 
conjunctival suffusion and Koplik spots signal the pre-eruptive stage of measles. 
 
By examining the individual terms on the right-hand side of this equation, you will see 
that if 1p  is small, say less than 0.1, then 

1

1
p

 (>10) will dominate the denominator, and 

hence diminish the value of 2p  , unless L is large.  If L is very, very large, its presence in 
both numerator and denominator will cause the right-hand side of the equation to 
approach 1. 
 
Studies that reveal differences 
Ecological studies 
 

When I first heard the term ‘ecological’ given to a type of epidemiological study, I 
imagined forests and wetlands and furry, burrowing animals.  In fact, an ecological study 
simply means the comparison of two (or more) naturally-occurring communities.  You 
may thus compare two countries, two suburbs, or a group of foundry workers with a 
group of workers in the extrusion area.  The investigator asks the question: “How does 
this community differ from that community in respect of exposures and health 
outcomes?”  The study compares previously-gathered descriptive statistics of each group; 
it does not go down to individual level. 
 

As a result, an ecological study can, relatively cheaply, identify differences between 
communities and maybe suggest possible causes.  The study reveals approximately how 
many people within each group had the exposure of interest and how many got the 
disease, but its weakness is that we don’t know how many exposed people got the 
disease.  So, although it usefully identifies inequalities between two groups; it cannot 
effectively penetrate why those inequalities exist.  Nevertheless, it can usefully point to 
situations where a more penetrating form of study may be appropriate. 
 
Cross-sectional studies (surveys) 
 

Surveys are common; the most obvious example is political polling and, on a large scale, 
the fifth-yearly Australian census.   
 

Like an ecological study, a survey that compares two communities or groups may 
identify current differences between groups in regard to exposures and health outcomes, 
and so it may provide suggestions of association between them that can be followed up.  
However, because the information about both the health outcomes and the exposures is 
collected all at the same time, clear links or associations cannot usually be established. 
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So, ecological studies and surveys can describe differences between groups or 
communities but not usually explain them.  Now we come to studies that are designed to 
probe the reasons for differences.  All of these study types require collection of detailed 
information from individuals.  This involves time and substantial cost. 
 
Studies that explore the reason for differences 
The reason for a difference in a health outcome following exposure to a substance or 
form of radiation can be either a harmful or a therapeutic effect.  Harmful effects may be 
studied either by starting with people that have already experienced harm and asking 
them about past factors that may be thought to have caused the harm.  The results are 
compared with the results from a group who are healthy and who are also asked the same 
questions about their exposure in the past.  This is called a case-control study.  
Alternatively, a group with what is thought to be a harmful exposure may be followed up 
to see how many individuals suffer harm to health when compared with a group without 
that exposure.  This is called a cohort study.  It is an exposure-control study, i.e. in its 
simplest form, one group has the exposure, the other group doesn’t. 
 

Yet, this research work is important to the extent that it leads to new action in preventive 
toxicology, or that it confirms the value of action taken already. 
 
Case-control studies 
A case-control study begins with cases of a nominated disorder and control subjects who 
do not have the disorder.  It then looks backward to identify possible precursors or risk 
factors.  It’s a bit like a ‘reverse quiz’ that says “Here is the answer; now, what is the 
question?”  Case-control studies are of medium cost and are an effective way to 
investigate rare disease. 
 
Bias in case-control studies 
Case-control studies have strong potential for bias.  If that occurs, the findings may be 
idiosyncratic, i.e. not fairly generalisable to all people in the world in similar 
circumstances.  Without the ability to generalise, the findings of a study are a mere 
curiosity, not a widely usable set of facts.  Unless the studied group reasonably fairly 
represents a wider population, then one cannot generalise reliably from it. 
 

Bias is of two main types: 
• bias in selection of participants to act as controls; and 
• bias of recall. 

 

I’ll take these in turn.  Many case-control studies are conducted by telephone 
questionnaire.  Partly because of the frequent and intrusive telephone calls made for 
commercial purposes by call-centres, people getting ‘cold-called’ to be controls in a case-
control study are now more likely than not to say “No”.  This means that those who agree 
to be controls in the study are not a random group – it’s possible that they have special 
characteristics.  This is called a selection bias, i.e. a bias that occurs when there is a 
difference between the characteristics of the people participating in a study and the 
characteristics of those who would have been eligible but who did not participate. 
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In case-control studies, the study participants are questioned about their past experiences.  
People with serious disease may be more reflective (“Why did this happen to me?”) than 
the control subjects who are well.  The past is then differently (selectively or more 
vividly) recounted by people in one group than by those in the other.  This is termed 
recall bias; it typically comes out as under-reporting of exposure when questions about 
the past are asked of members of the control group.  The bias will be greater where there 
is a self-interest (e.g. compensation) associated with recalling particular experiences. 
 
Cohort studies 
The form of cohort study that is simplest and easiest to understand is where a group with 
exposure to a particular substance (or family of substances) is identified along with a 
comparison group that does not have that exposure.  The members of each group are 
followed forward in time, perhaps for ten or twenty (or more) years.  At the end of the 
period of study, the proportion of those that suffered a disease of interest in the exposed 
group is compared with the proportion of those that suffered that disease in the non-
exposed group. 
 

Of course, things are almost never that simple.  Cohort studies are expensive and time-
consuming, so there are typically many comparison groups.  For example, there may be 
several levels of exposure-intensity compared.  Several disease outcomes may be studied.  
Exposed and unexposed groups may be further subdivided according to age, sex, 
smoking habits or other concurrent exposures.  Sometimes there is no control group; the 
occurrence of disease in the exposed group is instead thoughtfully compared with 
population statistics.  Sometimes, the assignment of participants to ‘exposed’ and ‘non-
exposed’ groups is done on the basis of historical records. 
 

Potentially, one strong feature of the cohort design is that exposure can be measured.  
Unfortunately, unless continuous monitoring is performed, truly representative readings 
are forever difficult to obtain. 
 

A cohort study is also prey to bias.  Selection bias occurs when study participants are lost 
to follow-up as the study proceeds, so that their health outcome is unknown.  The 
personal characteristics and lifestyles of those who remain in a study will often differ 
from those who drop out.  As well as this, a bias of measurement occurs if: 

• exposure measurements are not representative, or  
• participants are followed for a period that is too short for the disease of interest to 

become manifest, or  
• the disease of interest is ill-defined (e.g. multiple chemical sensitivity), or difficult 

to diagnose, or if its occurrence is not reliably recorded. 
 
Intervention studies 
All substances have potential for harm but some, at low exposure, can have a therapeutic 
effect.  Substances without therapeutic effect can be studied only by observing what 
happens to the health of people who are ordinarily exposed, e.g. in a particular 
occupation.  Thus case-control and cohort studies are referred to as observational. 
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Where exposure to a substance has potential for benefit, people who stand to benefit may 
actually be selected for deliberate exposure, i.e. to receive a measured dose of a substance 
on a daily basis for a period of time.  This is known as an intervention study. 
 
The classical type of intervention study is a clinical trial of a new drug.  The members of 
one group get the new drug and members of another matched group get conventional 
therapy.  Because (ideally) the groups differ essentially by just a single factor – i.e. 
whether a study participant gets the new drug or not – an intervention study is a powerful 
probe of cause and effect.   
 
With some drugs, the range of exposure at which they are therapeutic can overlap with 
the range at which they are toxic.  Therefore, an intervention study may look for benefit 
or harm (or both).  Let’s for discussion today consider a new anticancer drug being 
investigated for neurological side-effects (neuropathy) if therapy is sustained for long 
periods, i.e. alteration one’s sense of feeling for hot and cold. 
 
The analysis of the data obtained in an intervention study will produce a number (or 
multiple numbers) that summarise the result.  Let’s say that of 200 people randomly 
assigned to take the drug on trial, 20 experienced neuropathy – changes to their sense of 
feeling.  In a control group of 250 – who received different therapy – there were 15 
people with this neuropathy.  In other words, for those taking the drug on trial, there was 
a proportion of 

200
20  = 0.1 of people experienced neuropathy, compared with 

250
15  = 0.06 

in the control group. 
 

If the two proportions had been the same or almost the same, then we would have simply 
concluded that our study found whether people had one drug or the other made no 
difference to the incidence of neuropathy.  However, these two proportions are clearly 
different. 
 

So a comparison can be made.  This comparison may simply be written as a ratio, thus: 
 

0.1 : 0.06 
 

This is interesting but those ‘ugly’ numbers are hard to carry around in one’s head.  What 
makes it easier to grasp is if we ask, how many times more likely is neuropathy among 
those taking the drug on trial than in those taking other therapy.  This is called the 
relative risk or risk ratio3. 
 
To obtain it, we convert the number on the right hand side of the colon to 1.  This is done 
by dividing the number each side of the colon by (in this case) 0.06 thus: 
 

i.e. 
06.0
1.0  : 

06.0
06.0  = 1.67 : 1 

 
3 In statistics, the term risk differs from its use in occupational health.  In statistics, it refers to the 
proportion of events of interest that occurred during a period of study.  Such information, drawn from what 
has already happened, may be used to predict what could happen were the situation to persist, i.e. the 
information gathered during the period of study can be used to work out the probability of future 
occurrences.  
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Typically, the “:1” is left off and the relative risk is (in this case) expressed simply as 
1.67. 
 

This is the estimate, obtained from comparison of the two groups, of how much more 
likely it is that neuropathy will occur among those taking the drug on trial than among 
those taking the other therapy.  It is an estimate of the effect of the association between 
exposure to the drug on trial and neuropathy. 
 

This estimate may be generalised to other people who also take this new drug.  However, 
for them, the relative risk is unlikely to be exactly 1.67.  This brings me to the topic of 
confidence intervals. 
 
Confidence intervals4 - so VERY important.  Please read carefully. 
Commonly, a team of investigators will compare the health outcomes of two groups of 
people and generalise those findings to all people in the world in similar circumstances.  
By reasoning in this way, the team is regarding the members of each group to be a sample 
of a much larger population.  In pursuing this line of argument, a careful investigative 
team will try hard to ensure that the groups that were studied and generalised from do 
indeed resemble what might be expected elsewhere in the world. 
 

However, of two or more samples drawn from a much larger population, it is rare to find 
that they each have identical characteristics.  Instead, they generally differ from each 
other, often just a little, occasionally quite markedly.  This, in turn means that no sample 
is a perfect miniature of the population from which it is drawn.  It is likely to be just a 
little different but occasionally a lot different.   
 

So, the sample finding of a relative risk of 1.67 is most unlikely to be the exact value of 
the relative risk that applies worldwide.  Therefore, it becomes necessary to calculate a 
range of values within which we can reasonably claim that worldwide reality5 lies – such 
reality being impracticable to ascertain by direct measurement. 
 

What we have then is a range of values, drawn from a sample, within which we believe 
the world value of the relative risk most likely lies.  This range is called a confidence 
interval.  When that interval is calculated by a method that gives the correct answer 95% 
of the time, it is called a 95% confidence interval.  The numerical values at either end of 
the interval are known as the 95% confidence limits.  The width of a confidence interval 
is determined by the size of the sample and the level of confidence required (e.g. 99% 

 
4 Here, the term interval means ‘a space between limits’.  Nowadays, in ordinary speech, the term is more 
often applied to a period of time, e.g. a theatre interval.  However, interval originally meant ‘between the 
walls’ (inter-vallum), a space between two concentric ramparts of a mediaeval castle. 
5 Normally, when we speak of ‘reality’ we mean what is actual, definite, existing, even tangible, plain to 
see or touch.  We exclaim "Get real!" when someone shows too little regard for what is likely or obvious.  
Normally, reality is the opposite of what is abstract, hidden, or difficult to grasp. 
 

However, in epidemiological research, an investigator is trying to find reality.  When the research is started 
(and even sometimes when it is finished) reality is not plain to see or touch.  Reality is not what is known 
but what is being searched for.  It is hidden or veiled which is therefore a confusing twist to its normal 
meaning.  It is important to be aware of this perversity, this contradiction, when we use the imperfect 
vehicle of epidemiology to elucidate reality. 
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instead of 95%).  The smaller the sample or the higher the level of confidence that you 
demand, the wider the interval. 
 

In summary, a 95% confidence interval takes a representative characteristic of a sample 
(e.g. a relative risk or a mean or proportion) and indicates how closely this will be 
mirrored in all similar situations in the world at large.6 
 

The mathematical calculation of a confidence interval is nowadays performed by 
statistical software.  It involves a fraction that has within its denominator the square root 
of n where, in the case of a relative risk, n is essentially the number of people in each of 
the two groups that that got the disease of interest.  There are two ways to make the 
magnitude of a fraction bigger – either increase the size of the numerator or decrease the 
size of the denominator.  As n (in the denominator) gets smaller, so the confidence 
interval gets wider. 
 
Cohort studies and clinical trials commonly have an exposed or drug-on-trial group and a 
control group.  A comparison of two groups can be expressed as a difference or a ratio, 
each with its attendant 95% confidence interval.  For a difference, the confidence interval 
is symmetrical – its numerical value is the arithmetic mean of the numerical values of the 
upper and the lower confidence limits, i.e. ½ × (upper limit + lower limit).  On the other 
hand, the confidence interval of a ratio is asymmetrical – its numerical value is the 
geometric mean of the numerical values of the upper and the lower confidence limits, i.e. 
square root of (upper limit × lower limit). 
 

A relative risk that has the numerical value of 1 means that there is no difference in the 
proportion of people with the disease of interest, be they exposed or not.  Therefore, if the 
calculated 95% confidence interval includes the numerical value of 1, then the usual 
interpretation is that any observed difference between the groups – leading to an 
estimated relative risk that differs from 1 – could be explained simply by random 
variability between two samples, i.e. that the study has failed to show that being exposed 
makes any difference to health outcomes. 
 

The 95% confidence interval for the study cited here, as always, is built around the 
estimated relative risk – in this case 1.67.  The lower limit is 0.88 and the upper limit is 
3.18.  In this case, there is a suggestion that taking the drug on trial is associated with an 

 
6 The notion of confidence interval is important.  In an attempt to reinforce it with you, I’d like to share one 
more analogy with you which was offered to me by Dr Arul Mylvaganam, previously a statistician at 
Monash University, although I believe it originated elsewhere. 
 

I have an idiosyncratic friend, a Collingwood supporter, who favours black attire but who owns a small 
white dog that goes everywhere with her.  I often see my friend in the street with the dog on a old fixed-
length lead.  Sometimes, I see my friend but not the dog because it is sniffing behind a rubbish bin or 
whatever – but I know the dog is near because the length of the lead sets the limit of the distance of the dog 
from its owner.  Tonight is dark.  I am in the street and I see the white dog but not my friend.  However, I 
can tell roughly where my friend will be because I know the length of the dog’s lead. 
 

With most research, including epidemiological, we start off ‘in the dark’.  In epidemiology, we observe the 
location of some aspect of a sample (the dog) then, based on that sample, calculate a range (the length of 
the dog’s lead each side of the sample) within which the corresponding feature of the population at large 
(the person) is likely to be located.  Such a range is known as a confidence interval. 
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increased incidence of neuropathy (with a relative risk of 1.67).  However, simple 
sampling variability remains a reasonable explanation of the difference between these 
two samples, one of 200 with 10% affected and one of 250 with 6% affected.  The way 
that such information is usually expressed is: RR = 1.67, 95% CI = 0.88 to 3.18. 
 
Questions 
1.  Does a 95% confidence interval mean that: 
 

 (a) we are 95% sure that the values fit in the interval; or 
 

 (b) 95% of the values fit within the confidence interval. 
 
ANSWER: Neither.  A confidence interval is a range of values generated from a sample (in this case, just 
450 people) within which lies the unknown value of the relative risk for all people in the world in similar 
circumstances, i.e. the unknown value of the ‘population parameter’.  A 95% confidence interval is worked 
out by a method that gives the correct answer 95 times out of 100. 
 
2.  Why is a 99% confidence interval wider than a 95% confidence interval? 
 

ANSWER: A confidence interval is drawn from a sample estimate.  A 99% confidence interval includes a 
greater range of possible values for what is true in the world at large than will a 95% confidence interval.   
 

• The range of a 99% confidence interval is calculated to include 99 out of every 100 of the possible 
values for the parameter (e.g. relative risk, odds ratio, mean, proportion, rate, count … whatever) 
whose true value is unknown for all people in the world in similar circumstances – simply because 
it’s impossible to measure everyone in the world so you have to infer what is likely for everyone 
from the findings from a mere sample that you hope represents all similarly-affected people. 

• the range of a 95% confidence interval is calculated to include include 95 out of every 100 (19 out 
of every 20) of the possible values for the parameter for all people in the world in similar 
circumstances;  

• the range of a 90% confidence interval is calculated to include include 90 out of every 100 (9 out 
of every 10) of the possible values for the parameter for all people in the world in similar 
circumstances;  

• the range of a 50% confidence interval is calculated to include include half, 50 out of every 100, of 
the possible values for the parameter for all people in the world in similar circumstances. 

 

Summarising confidence intervals 
The calculation of confidence intervals in epidemiology: 
• starts by comparing rates of harm (in this case neuropathy) in a group of people 

taking a drug on trial to rates of harm among those with different therapy; 
• obtains a numerical value for this comparison (a relative risk); 
• realises that there are others in the world in similar circumstances and that this 

result may apply to them as well; 
• defines all others in similar circumstances as the population of interest, and the 

group studied as a sample of that population; 
• knows that samples drawn from the same population will vary in their content 

and may not be perfect miniatures of the population from which they are drawn; 
• hence recognises that the numerical value (the relative risk) obtained from the 

sample may not have exactly that value in the population of interest; 
• calculates a range within which that value (the relative risk) for the population of 

interest is very likely to lie. 
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P-values – another way to account for chance variability between samples 
Finding a relative risk, calculating its 95% confidence interval, then seeing whether this 
interval includes within it the numerical value 1.0 is one way to determine whether an 
observed difference between the health outcomes is likely to be due to random sampling 
variability or not. 
 

There is an alternative way to do this.  It is called hypothesis testing.  Here a research 
investigator starts by proposing that any difference between groups in the proportion of 
people with neuropathy is purely a coincidence.  He or she argues that if many similarly-
treated groups of people had been studied then, taken over all, we’d expect to see no 
consistent association between treatment and neuropathy.  In other words, in the case 
above, he or she would argue that those taking the drug on trial that showed 1.67 times 
the rate of neuropathy was just a sample variant; it would be be just as likely that another 
group similarly treated would have, say, two-thirds the rate of neuropathy of a control 
group. 
 

This negative stance is called the null hypothesis.  Then, based on the size of the sample 
and the nature of the sampling distribution, an equation is used to calculate the 
probability that chance explains the association, i.e. that it would be reasonable to accept 
the null hypothesis.  This probability is called the P-value.  This P-value is compared 
with an arbitrary standard, usually 0.05.  This standard is called the level of statistical 
significance: if the P-value is less than 0.05, then it would be argued that the null 
hypothesis was untenable, i.e. that there truly is association between use of the drug on 
trial and increased rate of neuropathy.  The use of an arbitrary standard introduces the 
potential for error – if we set the level too high then we are likely to reject the null 
hypothesis too often, and if we set the level too low then the opposite applies.  Rejecting 
the null hypothesis when we should have accepted it is called a Type I error; accepting it 
when we should have rejected it is called a Type II error. 
 
Summary of hypotheses and P-values 
 

In summary, the starting point of any epidemiological study is a research question, e.g. 
“Does a new drug cause a different rate of neuropathy than conventional therapy?”  This 
definite proposition, put forward in an attempt to ascertain whether use of the drug is 
associated with a changed rate of neuropathy, is termed a hypothesis7. 
 

This hypothesis is tested by comparing the incidence of neuropathy in the group taking 
the drug on trial with another group taking conventional therapy.  Seldom does this 
comparison show an outstandingly clear association; more likely the prima facie answer 
is “maybe” and this is addressed by statistical analysis. 
 

Because the usual end-purpose of enquiry is to make decisions, the statistical analysis is 
couched to draw decision from uncertainty – it sets rules to ascribe ‘black’ or ‘white’ to a 
shade of grey.  Instead of saying “there’s probably an association”, we say “there is an 
association” or “there’s no association” and “the probability of our being wrong is ...”  

 
7 People who want to sound flash will say “an hypothesis”.  This would make sense if the ‘h’ was silent. 
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Typically we accept the positive assertion – that there is an association – only when 
there’s a probability less than 0.05 (one in twenty) that such association is due to chance. 
 

Formally, hypotheses are expressed in the negative, e.g. “that the taking of this drug on 
trial does not change the rate of neuropathy”.  This negativity-in-expression underlines 
the status quo, the presumption of non-association.  It indicates that we must obtain an 
out-of-the-ordinary result in order to rightfully declare that an association exists.   
A hypothesis expressed in this negative form is called a null hypothesis. 
 

Questions:  
 

1.  What is the difference between the use of a P-value and a 95% confidence interval? 
 

A P-value is the result of a statistical test of significance; the P-value is a measure of the strength of 
evidence against the null hypothesis.  The null hypothesis is typically that there is no difference between a 
pair of means or a pair of proportions.  If we find a difference we may calculate the probability that a 
difference at least as large as this could have occurred by chance sampling variability.  This is the P-value; 
if it is low − typically less than 0.05 − we reject chance as the explanation. 
 

In using a P-value we start with the null hypothesis, whereas in using a confidence interval we sort of do it 
the other way around.  There we start with an estimate of a difference or a ratio from a study and calculate a 
range (called a confidence interval) in which the value of the parameter in the population of interest is 
likely to be.  If that interval includes the null value −  0 for a difference, 1 for a ratio − then we generally 
decide against the alternative hypothesis in favour of the null.  An exception may be if a very wide 
confidence interval included the null value; there we’d attempt to repeat the study using more subjects.   
 

To quote both P-value and confidence interval is ‘belt and braces’ but it’s reassuring when their outcomes 
agree with one another. 
 
2.  Why is the arbitrary standard of significance for a P-value set at 0.05? 
 

There is an article relevant to this by Gerard Dallal called (curiously) "Why P=0.05?" Its web address is 
http://www.tufts.edu/~gdallal/p05.htm 
 

There are probably two major influences: 
(1) it ‘feels’ about right – as I shall attempt to explain here with a story about tossing a coin several times; 
(2) on the normal curve, two (actually 1.96) standard deviations either side of the mean includes 95% of the 
area or excludes 5% (0.05) of the area. 
 

My gut feel is that, if two standard deviations either side of the mean of a Normal distribution had instead 
excluded 4% or 6% of the area, then 0.04 or 0.06 would have been instead chosen as the level of 
significance. 
 
However, let’s say that for the next Federal election, you decide to newly establish a party called “The Wee 
Pee Point O-Three Party” whose platform was to reduce the level of significance of P-values from 0.05 to 
0.03.  Now, strange as it may seem, you get the deciding vote in a close Senate result and introduce a 
private member’s bill to achieve your party platform.  Some less honourably-behaving members may call 
you a P-nut or P-leaf and heckle “P’s-on-you”, but they would not be able to show that you were wrong.  
The 0.05 level is indeed arbitrary but most people think that it’s around about right, rather like the idea of 
three meals a day. 
 
I borrowed a coin-tossing idea from Prof Andrew Forbes, Head of the Statistics Unit in the Monash 
University School of Public Health and Preventive Medicine.  I tossed a coin several times in front of a 
group of students.  I said that I’d call tails each time and see how often I was right. 
 

I tossed it once.  Result: heads.  The probability of one head by chance in one throw of a fair coin is 0.5.   
Students’ reaction: “OK”. 
 

I tossed it again.  Result: heads.  Probability of two heads by chance in two throws of a fair coin is 0.25.   
Students’ reaction: “OK”. 

http://www.tufts.edu/%7Egdallal/p05.htm
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I tossed it again.  Result: heads.  Probability of three heads by chance in three throws of a fair coin is 0.125.   
Students’ reaction: “Bit sad, eh!” 
 

I tossed it again.  Result: heads.  Probability of four heads by chance in four throws of a fair coin is 0.0625.  
Students’ reaction: “Hey, I reckon there’s something suspicious!” 
 

I tossed it again.  Result: heads.  Probability of five heads by chance in five throws of a fair coin = 0.03125. 
Students’ reaction: “There’s DEFINITELY something skew about that coin!” 
 
This is, of course, a single example – but, on the face of it, it seems like a realistic human reaction. 
 
So, somewhere between a probability of 0.06 and 0.03, this little group of people made up their mind that 
the probability of this event was so small that pure chance was no longer accepted by them as the 
explanation.  On that (perhaps flimsy) basis, it seems that a figure of 0.05 is roughly in the ‘right ballpark’. 
 
Comment: P-values can be hard because everything is expressed in the negative!! 
 

When we are attempting to understand an elusive item of knowledge or to master a skill, it is easier to do 
this when the words we use are positive rather than negative.  For example it’s better to start a novice in a 
factory with “Always push the blue button” rather than “Never press the red button”.  In general, health 
messages expressed in terms of a gain are more imperative than those expressed as a loss. 
 

So it is with P-values.  If we haven't fully grasped P-values, then to try to talk ourselves through it using 
negatives, e.g. reject, or even technical negatives, e.g. null-hypothesis, gives us a pretty slippery path.  Of 
course, once we gain an understanding, then we can use the negatives quite fluently – and so we should – 
but I suggest that they can be mean and awkward guides for a person who is just feeling his or her way in 
an unfamiliar arena. 
 

So let’s escape for a moment from health, and take the situation of Alexis Smart, newly-appointed town 
planner at the City of Sunny Rises.  She notices that of the city’s 2000 streets, eight of them have names 
starting with X as compared with the average rate in cities which is, say, 1 in 5000.  She wonders whether 
such a finding suggests X-ist tendencies among the city’s planners or could it be simply a chance variation. 
 

The first and most fundamental thing that Alexis realises is that if you take a sample from any larger body 
of items, then its characteristics are likely to be a bit different from any other sample that you take.  
Therefore, she recognises that having 8 in 2000 street names that start with X could simply represent the 
sorts of ups and downs in numbers that tend to happen across different municipalities. 
 

Alexis then decides to work out how likely it is that you would get eight (or more) street names in her city 
starting with X just by chance, when you would expect fewer than one.  She gets out her statistical software 
and calculates a probability of 0.00001 that this would occur by chance. 
 

She then faces a decision: “Does this indicate an X-ist tendency or not?”  The probability that 8 street 
names starting with X occurred by chance is very low indeed and so she decides that there is indeed an  
X-ist tendency in her municipality.  Be aware though, that there is a very small probability that this actually 
represents random variation.  If that were indeed so (and I cannot tell you whether it is), she has made what 
is called a Type I error. 
 

I could have used a more technical explanation of this story. It would go like this. Alexis obtained a P-value 
of 0.00001 and so decided to reject the null hypothesis. 
 
A further question: What do you mean by bias and why is it important in epidemiology? 
 

Epidemiology is largely about seeking information on what agent causes what health effects (good or bad).  
If we had infinite wealth, we could study everyone in the world that comes in contact with an agent of 
interest (e.g. a nominated drug) and find out what happens to their health as a result of that contact.  
However, our resources are always limited and so we must make do with just a sample of people who come 
in contact with that agent.  We then find out what happens to the health of people in that sample and then 
use those results to predict what is likely to happen to all others in the world who may come in contact with 
that agent – the target population or population of interest.  This process of projecting the results of a 
sample on to the target population in the world-at-large is called extrapolation or generalisation. 
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We can only fairly generalise when the sample has essentially the same important features as the 'target 
population'.  If the people in the sample differ in any more than minor ways from those in the target 
population, then the sample cannot be fairly said to represent the target population.  It is then said to be 
biased. 
 

Text books on epidemiology talk about several types of bias.  Essentially, it happens in two ways.  There is 
bias in selection of the people for the sample, i.e. they have a different age range or state of health from the 
target population, or there is a bias in measurement so that information about health or the level of exposure 
to the agent is missing or recorded inaccurately. 
 

Bias is about whether a sample is fit to make a generalisation from.  If you cannot generalise, then the 
things that you found out about the people you studied apply only to them.  It is a story about them but is 
not particularly useful for the world at large. 
 

Association and causation. 
We have referred to measuring the health outcomes in two groups with different 
exposures.  If an observed difference appears very unlikely to be due to chance variation, 
(the sort of random variation that happens between samples drawn from the same 
population) then the research investigator will argue that the taking of a drug and the side 
effect of interest are associated. 
 

Thus, a study will start with a research question that goes something like: “Will the 
taking of a particular drug adversely affect the health of people in a particular way?”  The 

research question asks about cause, however the study can provide merely an association, 
i.e. it can tell that particular health effects occur consistently when the drug is taken, but 
it cannot formally account for that.  Epidemiology indicates what happens but it does not 
(on its own) account for that, i.e. it cannot alone prove causation. 
 

In the English language the terms cause and effect correlate.  Their mutual relationship is 
a cliché.  We often hear people say: “cause and effect”.  The Oxford English Dictionary 
defines cause in terms of effect and vice versa.  Thus it is difficult to disarticulate these 
linked words in order to interpose the intermediary concept of association.  Our mindset 
doesn’t easily allow it hence, in all but the most disciplined minds, association becomes 
tainted with the smell of causation whether that is appropriate or not. 
 

So, over centuries our language has developed a vocabulary of terms which go with 
cause and effect.  There is no such vocabulary that fits with the more abstract notion of 
association.  Accordingly we borrow terminology from cause and apply it to association.  
Hence the term used to describe the strength of association is relative risk; yet the very 
use of the word “risk” tends to imply causation. 
 

Thus the important distinction between debutante association and well-savoured and 
justified causation may easily blur for all but careful and discerning readers. 
 

I have a birthday card that says: 
 

“Birthdays are good for you.  Statistics show that people who have most birthdays 
live the longest.” 

 

Now, I ask you: “Does this indicate that having birthdays truly causes the effect of 
longevity?!” 
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Components of causation 
 

A cause is the factor that brings an effect, a change.  Some change may occur only when 
or after a particular factor is present.  More often, no such specific factor is identified and 
enough of several component factors must join to bring a change. 
 

Let’s take an example from toxicology. Absorption of the metal lead into a person’s body 
is necessary in order for lead poisoning to occur; lead poisoning cannot happen without 
absorption of lead.  However, some little absorption of lead will not be enough to bring 
lead poisoning; sufficient dose is required to bring poisoning.  Sufficient dose inevitably 
brings poisoning. 
 

Where a cause inevitably produces its effect then it is designated a sufficient cause.   
However, most causes that are of interest to population health studies are mere 
components of sufficient cause; they are not sufficient in themselves.  If some (not 
necessarily all) of these component causes are identified and removed, then the sum of 
the remaining components may well become insufficient to bring the disease – or, at least, 
cause its appearance to be delayed. 
 

Epidemiological studies may identify sufficient causes and the components of sufficient 
causes, be these several components acting in parallel (such as cardiac risk factors) or in 
series (such as the several mutations that occur over a period of time before some cancers 
start).  Repeated studies may reveal several sufficient causes.  Any component common 
to all sufficient causes is designated a necessary cause. 
 
The following figure summarises the three steps from association to cause.   
 

 SUGGESTED 
ASSOCIATION 

  

 ⇓   
Look for evidence of bias 

⇒ 
Bias in selection or 

measurement? 
 

no 
⇓ 

yes 
⇒ 

can’t generalise 
from the findings 

Statistically test ⇒ Could chance explain 
the findings? 

 

very unlikely 
⇓ 

perhaps 
⇒ 

discount the 
association 

Allow for obvious 
confounders ⇒ 

Use Bradford Hill 
criteria to discern 
presence of hidden 

confounders  

Confounding factors 
accounted for? 

 

yes 
⇓ 

no 
⇒ 

acknowledge the 
alternative 

explanation(s) 

 CAUSE   
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An association between an exposure and a harmful health effect may be explained as: 
• exposure causing the health effect; 
• the health effect causing exposure; 
• exposure and health effect being related through some third factor (e.g. lung 

cancer and heavy alcohol consumption are related through smoking rather than 
through cause and effect).  This artefact of association is termed confounding. 

 

The middle one of these dot points may, at first sight, seem almost silly.  However, in 
retrospective studies, i.e. case-control studies, it is sometimes difficult to be sure which 
came first – the exposure itself or the early, sub-clinical stage of a disease of slow onset.  
For example, does increased intake of lead cause children to have a low IQ or vice 
versa8?   
 

A confounder is something that provides an alternative explanation for what seems to be 
a relationship between exposure and disease.  Confounding happens where both exposure 
and disease are linked by their association with a third factor.  It has the potential to bring 
an error in the interpretation of the results of a study. 
 
When a confounding factor is known or likely, then a study may be designed to cope with 
it by: 
• randomising - good, but suitable only for intervention studies; 
• restricting entry to the study - e.g. eliminating or separately categorising smokers 

from a study of occupational lung disease; 
• matching controls so that potential confounding factors, e.g. age, gender, smoking, 

are distributed similarly to the cases or exposure group. 
 
However, if study design did not take sufficient account of confounding, then it may be 
coped with in the analysis stage of a study by:  
• stratifying the subjects, e.g. into age-strata, then using multipliers to align the age mix 

of one group with that of the other – standardisation9; 
• using sophistocated statistical methods such as multivariable analysis. 
 
Sometimes, though, confounders are not easily recognised.  In that case, we use criteria 
of causation to help take fair account of their hidden presence. 
 

 
8 de Silva PE & Christophers AJ.  Lead exposure and children’s intelligence:  do low levels of lead in blood cause 
mental deficit?  J Paediat Child Health 1997; 33: 12-17. 
9 Standardisation is a change made to findings that makes them more readily comparable with other facts that refer to 
similar things.  Standardisation may be direct or indirect.  The maths of this is not directly relevant to you except to say 
that: 
• direct standardisation starts with rates of disease (or death) obtained from a study and arranged in five-year or 

ten-year intervals of age.  The age-mix of the population (from a recent census or other relevant, reliable record) is 
then used to calculate an overall predicted disease rate.  This is compared with the overall disease rate obtained in 
the study; 

• indirect standardisation starts instead with numbers of cases of disease (or death) obtained from a study and 
arranged in intervals of age.  Knowledge of the relevant age-related incidence of that disease (e.g. from national 
health statistics) is used to calculate an overall number of ‘expected’ cases.  This is compared with the number of 
cases obtained in the study. 
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Bradford Hill criteria of causation 
We use criteria to try to sort causal associations from those which are not.  The most 
widely quoted criteria were enunciated by Bradford Hill in 196510 and are paraphrased 
here as eight questions. 
• Did the exposure occur before the disease happened? 
• How strong is the association, i.e. is the relative risk or odds ratio large? 
• Are larger exposures associated with higher rates of disease? 
• Is reduction in exposure associated with lower rates of disease? 
• Is a plausible mechanism known from, say, animal experiments that is consistent with 

the natural history and biology of the disease? 
• Is the result consistent with other studies, especially different populations using 

different study designs? 
• Is there similarity to other cause-effect relationships? 
• Are the findings specific, i.e. does exposure give a narrow, identifiable range of health 

outcomes? 
 
These various criteria of causation are mutually supportive, overlapping and 
complementary.  By themselves, the individual criteria are only sometimes decisive.   
 
An association may be confidently rejected as causal only if:  
• disease precedes exposure, or 
• there is incoherence with known facts or  
• where enough other well-conducted and relevant studies have found no basis for 

causation. 
 

Strong evidence of a causal relationship between an exposure and a disease exists when 
the association is strong, there is a standard dose-response relationship, or the supposed 
relationship has been successfully used to predict other related causal links. 
 

Sometimes we lean from association toward causation when, after reflection and asking a 
range of informed others (perhaps in a special closed meeting), we can think of no other 
way to explain the existence of an association. 
 

Ultimately, for two events long separated in time such as some past chemical exposure 
and the development of cancer, a decision to assert that these are cause and effect is a 
belief, a judgment.  We should ever remain open to continuing good information and be 
prepared to change our preventive policies and legal precedents accordingly, even when 
this means stopping action that we once diligently and energetically pursued in the name 
of prevention. 
 
  

 
10 Bradford Hill A.  The environment and disease:  association or causation.  Proc Roy Soc Med 1965; 58: 295-300. 
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Question 
 
Why do I say that the decision to assert that ‘this exposure causes that chronic disease’ is a matter of 
judgment rather than fact?  Doesn’t the application of the Bradford Hill criteria exclude confounders? 
 

Application of the Bradford Hill criteria assists detection of hidden confounders but does not reliably 
exclude them.  Even if, say, three of the criteria are met, it is still possible that confounding factors explain 
the association.  Thus, in the face of this uncertainty, it often becomes a social (even political) process to 
accept an association as causal.  This particularly relates to causes of cancer where the time-lag between 
early cell change and diagnosis is so long – years, even decades.  If you are too ready to accept an 
association as causal you’ll be chastened as a “Chicken Little” (who thought the sky was falling when an 
acorn fell on his head).  If you’re over-cautious to accept an association as causal, you’ll be accused of 
“sitting on your hands while people die”.  Particularly if the health effect is severe and the preventive 
remedy is carries a large cost, then it may be a very tough call as to how much evidence is enough to regard 
an association as causal.  Inevitably, a too-hasty decision will drag preventive dollars from useful projects 
into something that will do little to aid community health.  And there are always special-interest groups in 
the arena that will arm themselves with whatever selected information promotes their particular preventive 
or compensation interests.   
 
Interpretation of findings – two types of error 
In using an arbitrary standard to determine whether an association found between an 
exposure and disease in a sample of people is statistically significant, a statistical test 
may be correct in two ways and in error in two ways.  This is shown in the Table below.  
A type I error is saying there’s an association when there really isn’t.  A type II error is 
saying there’s no association when there really is. 
 

Relationship between the results of a statistical test on a sample of people and the 
actual (usually unknown) situation for the population 

 
                                                             ASSOCIATION TRULY EXISTS 
                                                          (which we never really know for sure) 
  YES NO 
 

STATISTICAL TEST 
FINDS ASSOCIATION 

 
Positive test result 

is correct 
 

 
Type I error 

 

STATISTICAL TEST FINDS 
NO ASSOCIATION 

 

 

Type II error 
 

Negative test 
result is correct 

 

There is a trade-off between type I and type II errors.  Type I errors are like when a 
smoke alarm near the kitchen is set off by normal cooking.  To continue the analogy, a 
type II error occurs when a smoke alarm fails to respond to a house fire.  The probability 
of type I errors may be brought to zero by removing the battery from the smoke alarm, 
but this maximises the risk of type II errors.  The appropriate solution is inevitably a 
compromise between the two types of error11.  The use of a 95% confidence interval or a 
‘level of statistical significance’ for a P-value of 0.05 means that the probability of a 
Type I error has been set at 0.05.  A common setting for the probability of a Type II error 
is 0.2. 

 
11 The smoke-alarm analogy was drawn from Gonick L, Smith W.  The cartoon guide to statistics. New 
York: HarperCollins, 1993. 
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The P-value is compared with the set probability of a Type I error.  On the other hand,  
the power of a study, i.e. the ability to detect an association, difference or real effect 
when one in fact exists is one minus the probability of a Type II error, i.e. commonly  
1 – 0.2 = 0.8. 
 
Lack of power: when a negative result may be wrong 
Conventionally, the probability of getting a particular array of numbers on a table has to 
be small before we reject chance as their explanation.  The stringency of this practice 
means that a weak association sometimes passes unnoticed, particularly if the number of 
subjects studied was small.  That negative result belies the association; it means that the 
study lacks sufficient statistical power. The form of a power statement is something like: 
 

“This study is designed to detect a difference of 15% with a probability of 0.8.” 
 
Standard textbooks of statistics discuss power and ways to calculate the number of 
subjects required for a study to be of sufficient power.  Particularly for a study to assess 
the effects of an intervention, it would be unethical to set out to perform an under-
powered study because you are subjecting individuals to risk without likelihood of a 
worthwhile result. 
 
QUESTION: How do you work out the sample size, i.e. the number of patients needed for a study?  
 

The sample size depends on four critical factors: 
1) the type I error rate (α) that the investigator sets usually at 5%; 
2) the type II error rate (β) that the investigator sets usually at 20%; 
3) the variability of the data (this variance may be estimated from previous studies or a pilot study);  
4) the size of the effect that the investigator is seeking. 
 
It seems intuitively easier to work out the sample size for a clinical trial than for a case-control study.  In a 
case-control study where cases are few, then up to four times the number of controls as cases are used in 
order to boost the power of the study. [It is rare for a worthwhile case-control study to have fewer than 100 
subjects.] 
 
Multiple hypotheses: when a positive result isn’t necessarily true      

[also called multiple comparisons] 
 

There is an almost universal practice in epidemiology that makes statistically significant 
findings really less ‘significant’ than is claimed.  This is the practice of making dozens or 
even hundreds of comparisons between test and control groups on the one set of data. 
 

Because epidemiological studies are costly, investigators compare their groups in regard 
to various disease outcomes and various types, intensities and periodicity of exposure.  In 
the midst of a plethora of hypothesis tests on the same set of data, chance positive results 
can be expected. 
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You should expect to find the misleading effects of multiple hypotheses in the following 
three common situations: 
• where it is clear that an investigator has performed many hypothesis tests on the same 

set of data; or 
• where there is a cluster of cases at a particular location or during a particular period; or 
• where an investigator has undertaken a study without a clear purpose but, on the basis 

of some of their findings, has formulated a hypothesis during analysis of the data 
rather than at the commencement of the study.12 

 

Question: The probability of a test giving the right answer each time it is used is 0.95.   
(a) If three such tests were performed, each independent of the other, what is the probability of 

getting the ALL 3 answers correct?  Answer: (0.95)3 = 0.86 
(b) If fifteen such tests were performed, each independent of the other, what is the probability of 

getting the ALL 15 answers correct?  Answer: (0.95)15 = 0.46 
(c) If thirty such tests were performed, each independent of the other, what is the probability of 

getting the ALL 30 answers correct?  Answer: (0.95)30 = 0.21 
(d) If fifty such tests were performed, each independent of the other, what is the probability of getting 

the ALL 50 answers correct?  Answer: (0.95)50 = 0.08 
(e) So, if fifty such tests were performed, each independent of the other, what is the probability of 

getting at least one wrong answer?.  Answer: 1 – 0.08 = 0.92, i.e. a very high probability of at 
least one wrong answer. 

 

Three common situations where multiple hypotheses occur 
(i) Where many questions are asked 
Multiplicity happens when the investigator (or group of investigators) starts with a quite 
broad research question (e.g. that exposure to chemicals brings adverse outcomes to 
pregnancy).  This splinters into a bundle of subordinate hypotheses based, say, on 
occupation, type of chemical, nature of health outcome, each of which the investigator 
tests individually.  In this situation, the investigator should rightfully signal to the reader 
the possibility of some associations occurring by chance.  A naïve or artful investigator 
will fail to do this. 
 

(ii) Clusters (= multiple hypotheses by stealth) 
Let’s take an example: three children in a particular suburban street get leukaemia in a 
particular year. 
 

By knowing the rates of leukaemia and the number of children in the street, it seems at 
first glance that three cases of leukaemia in one year in this population is a very unlikely 
event.  Residents then hypothesise: “Could this occurrence be due to a local 
environmental toxin?” 
 

However, leukaemia is just one cancer of many, and this is just one street among many in 
one year among many.  In a large city, there is a moderate probability of getting a cluster 

 
12 This is akin to an archer entering a forest, shooting an arrow without specific aim, hitting a tree and then 
asserting “that’s the tree I meant to hit”.  Any of the nearby trees could have been hit by the arrow - the late 
nomination of one convenient tree cannot get away from the large clutch of other possibilities. 
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of three cases of cancer among children in one of its ten thousand streets in any year 
simply by chance. 
 

One may liken the chances of the situation to an investigator observing that one Saturday 
night all cars in serious accidents in Melbourne had a double 7 in their number plate, and 
then proceeding to postulate that the road toll could be reduced by removing from the 
road all cars with such number plates.  A person seriously interested in accident 
prevention would recognise that this was just one of many Saturday nights and that 
‘double 7’ was just one of many ‘special’ number combinations; e.g. it could have been a 
double 6, a 123, or whatever.  Any hypothesis that is made up after an event is inevitably 
one among many possibles.  On the other hand, if a cluster of leukaemias or double 7s 
was predicted and then occurred, the finding is far more arresting. 
 

The occurrence of clusters alert us to possibilities in the same way as the boy that cried 
“Wolf!” in the children’s tale13.  In fact, most clusters are coincidences.  Unnervingly, 
however, the people who raise the alert will usually remind us that on one occasion the 
wolf in the children’s tale really did come. 
 
(iii) Starting a study without a clear initial purpose 
Charles Dickens’ classic, David Copperfield, featured a character, Mr Wilkins Micawber, 
whose schemes were ill-conceived yet who remained ever-optimistic that something 
would “turn up”. 
 

In parallel vein, some investigators do not plan their statistical analyses before their data 
are collected.  Instead of formulating precise hypotheses, they collect data then use 
computer packages to comprehensively analyse it in the hope of turning up associations.  
This exploratory type of analysis is legitimate only if the authors report that this is what 
they’ve done [which too often they don’t].  It is, in a sense, a means of artificially 
generating clusters.  Further data should then be collected to test the hypothesis generated 
by the exploratory analysis.  On the rare occasions that a lot of data are available, then 
one part may be used to explore and the rest used to test the hypothesis generated by the 
exploration. 
 

Whenever a hypothesis is formulated after the data are collected, then other hypotheses 
will inevitably lurk although the investigator may choose to ignore them. 
 
The problem with multiple hypotheses 
When multiple hypotheses are applied to a single set of data, their very multiplicity degrades 
the strength of the conclusions that can be drawn from the statistical analysis unless special 
allowance is made.  P-values (and levels of confidence) lose their true meaning in an absolute 
sense14 although not in a relative sense; P-values drawn from the same set of data may still be 
usefully compared with each other. 
 

 
13 The boy that cried wolf is one of the fables credited to Aesop, a story-teller who lived in ancient Greece. 
14 The definition of a P-value is the probability due to chance of observing a result as extreme or more 
extreme than the one actually observed.  When more than one hypothesis is made on the data then the 
probability due to chance of some extreme result becomes greater than any of the P-values calculated 
individually.  When very many hypotheses are made, it becomes quite likely that a few extreme results will 
occur by chance. 



26 
 

The existence of multiple hypotheses can be a major source of misinformation in 
epidemiology because repeated generation of P-values will bring one or more that falls below 
the arbitrary standard of 0.05 simply by chance, so generating false associations between 
exposures and diseases.  If such falsehood is something scary but plausible – like an 
association between an occupational exposure and an increase in cancer – then the impact of 
its revelation leads to anxieties, enters compensation courtrooms and pushes policy-makers to 
spend in one area and so lose opportunity elsewhere.  Particularly if the association is scary or 
attractive to litigants, social forces cause the moral onus to shift to those who would argue 
against the association to prove it is not so.  Of course such rebuttal is impossible – because 
no-one can prove such a negative – so the ‘smell’ lingers on.  Health policy-makers seem 
inevitably pushed to act – especially when the findings are roundly and noisily touted as 
“significant’; and probably, the more of these that there are, the more likely is such wasteful 
action. 
 
Coping with multiple hypotheses 
There are mathematical ways of coping with multiple hypotheses.  The problem is that these 
ways all serve to diminish the statistical power of a study, i.e. the ability of a study to find a 
difference or real effect when one in fact exists.  So it becomes harder for an investigator to 
obtain a positive result unless a larger sample size is used.  To do this adds cost and delay. 
 

The prominent American epidemiologist, Rothman,15 in 1990 stated his opposition to 
mathematical adjustment for multiple comparisons (multiple hypotheses).  He said that such 
adjustment suppresses the opportunity to accept and later explore some ‘odd’ finding that may 
lead to exciting new knowledge of causation.  He considers that science could be the poorer 
for this.  He styles adjustment for multiple hypotheses as a ‘penalty for peeking’ – a 
discouragement to question too widely because investigators will be penalised for  
so-doing by having to put their findings through a statistical sieve that is tightened in rough 
proportion to the number of questions asked.  In other words, Rothman fears that mathematical 
adjustment for multiple hypotheses will thin out the ‘byplay’.  However, the problem is now 
that many authors seize the byplay and pretend it's the main game.  They want to both: 
 

 •  explore widely; 
 •  proclaim without humility the significance of any positive finding. 
 

Some investigators will test, say, eighty hypotheses, get two low P-values, and then exclaim 
“Gee whiz!” when, instead, a realistic response would be “Ho Hum”.  They will promenade 
“It’s significant!” with nigh as much fervour as a new father proclaims, “It’s a girl!” or “It’s a 
boy!”  And, for most of us, the term statistically significant holds power that is augmented by 
the very fact that there are numbers proffered by the authors to shore it up.16  Also, with 
positive results, authors typically recommend that “further research is needed”. 
 

 
15Rothman KJ.  No adjustments are needed for multiple comparisons.  Epidemiology 1990; 1: 43-46. 
16 Many would-be critics are nervous to argue about the quality of numbers - there is no escape from 
embarrassment if one makes a critical comment that proves foolish.  With words or ideas one may at least 
feign misunderstanding; with numbers, you are usually either right or wrong. 
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The issue then has potential to become a ‘tar baby’17 because, although some of the false 
positives will be later shown up for what they are, new ones will be generated.  If you keep 
asking questions, you’ll get stuck with the answers! 
 

QUESTION 
 

Why is it a problem to make lots of hypotheses on a single set of research data? 
 

A hypothesis test using a 95% confidence interval or setting a level of significance for a P-value of 0.05 is 
using a method that gives the correct answer 95 times out of 100.  So an incorrect answer will appear, on 
rough average, about 5 times in 100 hypotheses.  That’s OK − it’s inevitable.  However, where very many 
hypotheses are tested, an honest investigator will signal the risk of false findings to the reader or perhaps 
attempt to make some adjustment to the level of significance, e.g. a P-value of 0.01 (≡ 99% confidence 
interval). 
 
Limits of epidemiology 
Very low exposures 
Airborne asbestos fibres are the best-known of occupational carcinogens.  One issue is 
how low an exposure must be before the added risk of mesothelioma becomes negligible.   
 

Compensation has been received by workers with mesothelioma whose past asbestos 
exposure has appeared to be minor.  Of course, it is impossible to tell in retrospect 
whether the minor asbestos exposure was the culprit and equally impossible to prove that 
it wasn’t.  The courts, faced with this evidential vacuum, tend to decide on the basis of 
“when in doubt, favour the injured”.  This is a humanitarian expedient; the reality is we 
simply don’t know. 
 

Epidemiology can never clarify the lower limits of risk because, in trying to tell the 
difference between health outcomes with minimal exposure and health outcomes with no 
exposure, the epidemiologist always faces an unforgiving mathematical operation – 
dividing by the square root of n.  Where n, the number of cases is small, as inevitably it is 
when exposures are low, it becomes impossible to show that minimal exposure differs in 
any health-related way from no exposure. 
 

Asbestos is a ‘celebrity’ hazard.  Years of adverse publicity has given it horror 
symbolism, so that many frightened people consider that disaster starts with one fibre – 
as if having a tiny bit of asbestos is like having a tiny bit of mesothelioma.  Because we 
have no good evidence for what happens at low levels of exposure, asbestos tends to be 
treated in a qualitative way, i.e. “better out than in”, rather than the quantitative approach 
of sufficiently lowering the extent of exposure.  Measurements of asbestos in air are done 
but results are essentially treated on a dichotomous basis – below the level of detection or 
above it. 
 
  

 
17 The tar baby features in the late 19th century ‘Uncle Remus’ children’s stories by Joel Chandler Harris 
where animals were personified and named “Brer Rabbit”, “Brer Fox” etc. (‘Brer’ or ‘Br’er’ is a 
contraction of ‘Brother’).  Brer Rabbit encountered a child-shaped sculpture made of sticky tar and hit it 
with his paw.  This stuck in the tar.  As he tried to free his paw, his leg stuck.  As he tried to free his leg, the 
other paw stuck 
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When the health outcome is ill-defined 
 

Disease (or injury) is about pathological change whereas illness is about the reporting of 
symptoms and a change to behaviour.  There is substantial but not complete overlap 
between disease and illness.  Disease happens; falling ill can be a choice.  There is 
pathology without illness (e.g. degenerative changes to joints) and sometimes illness 
without recognisable or comparable pathology (e.g. some arm or spine pains). 
 

Sometimes, a condition brought by a person to a health practitioner cannot be diagnosed, 
even after a careful history, physical examination and a handful of special investigations.  
The person is clearly distressed but, with symptoms only, the practitioner finds it very 
difficult to define his or her illness.  In the context of occupational health, it takes an edge 
to it when the person asks the practitioner for support in their making of a compensation 
claim.  If the practitioner has no proper diagnosis then he or she can neither predict the 
natural course of the patient’s illness nor choose the most effective intervention.  Nor can 
the practitioner advise on appropriate prevention, nor feel confident about return to work.  
If you don’t know what’s there, you cannot tell when it’s gone.  It’s like feeling that you 
are being stalked whilst you are walking at night or in a fog.  
 
Counting occupational cancers 
 

Reliably establishing the causes of any one cancer-type is very difficult because cancer 
proceeds from a combination of events affecting a cell in the body.  This series of events 
occurs over a period of years or decades, and causal factors seldom lay their fingerprint 
on the cancer histology.  So disputes are commonplace about what cancers are 
occupational and what are not.  Protagonists bring their individual values to address this 
uncertainty; and key decision-makers, such as courts or standards-setting authorities, 
have different perspectives depending whether their main preoccupation is a 
humanitarian care for the afflicted or practical prevention of injury and disease.  Without 
a way of classing cancers as occupational or not, it is difficult to make a reliable count. 
 

There is only limited information on the type and intensity of occupational exposures to 
known and suspected human carcinogens in Australia.  Some overseas countries do 
better, e.g. Finland.  However, like medical practice itself, constant and rapid 
technological changes to workplaces make nigh impossible the task of finding out in 
broad-scale who is exposed to what.  This lack of exposure data adds uncertainty to the 
tally of cancers characterised as occupational.  And, as previously stated, one area of 
enduring dispute is the degree to which exposure to a carcinogen must be lowered before 
the risk of exposure becomes too small to be of concern. 
 

In May 2007, the Australian media made an initial suggestion that a cluster of breast 
cancers in a radio studio in Brisbane may have been due to non-ionising radiation.  The 
truth of such an allegation is extremely difficult to decide in retrospect, although courts 
are forced to attempt it because compensation is sourced on cause. 
 
Conclusion 
 

Epidemiology is a powerful method for finding out about whether exposures can increase 
the risk of harm to health.  Its terminology, and particularly the mathematical aspects, 
makes it hard for many to understand.  It also has its limitations and potential to mislead. 
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APPENDIX 
This appendix refers to two further issues. 

• Randomisation and ‘intention to treat’ analysis; 
• Absolute risk reduction. 
• Screening and diagnostic tests. 

 
Randomisation and intention to treat analysis 
The terms ‘intention to treat analysis’ and ‘per protocol analysis’ refer to randomised 
trials.  Let’s imagine a trial where the test group receives a new drug and the control 
group receives conventional therapy.  The term randomised means that anyone who is 
enrolled in the trial has a 50:50 chance of being in either the test group or the control 
group.  This is done in an attempt to make the general demographic features of each 
group very similar.  If the groups are indeed similar then, if the outcome for the test 
group differs from the outcome for the control group, we can reasonably argue that this 
difference has resulted from a difference in efficacy between the new drug and the 
conventional therapy.  Randomisation is of central importance to being able to sustain 
this line of argument. 
 
Intention to treat analysis holds that randomisation is so important that it should not be 
violated.  Accordingly, at the end of the trial, the outcome for all those originally 
designated as members of the test group is compared with the outcome for all those 
originally designated as members of the control group.  This is regardless of whether or 
not the members of each group completed the course of treatment as planned.  People 
who advocate intention to treat analysis argue that this method of analysis gives a better 
indication of how the new drug will perform when commercially released because there 
will always be patients who do not complete their course of treatment.  The disadvantage 
is that, by including patients who don't give the new drug a ‘fair go’, it tends to narrow 
the gap measured between the effect of the new drug and the effect of conventional 
therapy.  In effect, use of intention to treat analysis reduces selection bias but increases 
measurement bias. 
 
Some people disagree with the use of intention to treat analysis.  They argue that it is silly 
to count patients who have not adhered to the treatment protocol among those that have.  
The argument is that you get a better comparison of the actual effect of the new drug 
compared with its conventional counterpart if you count only those patients who properly 
adhered to the treatment protocol.  The others should be removed from consideration.  If 
only a small proportion are removed from consideration, this will not greatly affect 
randomisation.  This is called per protocol analysis.  The people who argue for per 
protocol analysis are prepared to accept some selection bias in order to reduce 
measurement bias. 
 
Top quality journals insist on intention to treat analysis.  But there is no reason why a per 
protocol analysis could not also be included. 
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Absolute risk reduction (compared with relative risk) 
Imagine a medical condition that, if left untreated, causes complications.  An example 
would be high blood pressure that, if left untreated, will increase a person’s risk of stroke 
or kidney disease. 
 

There is already treatment for this medical condition but we have a new drug that we 
hope will decrease the risk of complications of this condition.  We put the new drug on 
trial by comparing the rate of complications among a group taking this drug with the rate 
of complications among a group taking standard (or conventional) treatment.  Let’s 
specify a period of follow-up of one year. 
 

Now, let’s put in some figures.  Say that a group of 250 people were treated with the drug 
on trial and, among these, there were 15 who suffered complications.  This is a rate of 
15/250 or 6%/year, i.e. the incidence of complications was 6 per hundred people per year. 
 

A comparison group of 240 people were given conventional treatment and, among these, 
there were 30 who suffered complications.  This is a rate of 30/240 = 12.5%/year, the 
incidence of complications was 12.5 per hundred people per year. 
 

A relative risk simply compares these two numbers as a ratio, i.e. 6/12.5 = 0.48.  This is 
interpreted as “the rate of complications in the group that took the drug on trial is just 
below half the rate of complications of those taking conventional treatment”.  It may also 
be expressed as a relative risk reduction, 1 – relative risk, i.e. 1 – 0.48 = 0.52.  This may 
be interpreted as “taking the drug on trial more than halves the rate of complications 
compared with conventional treatment”.  Because relative risk (or relative risk reduction) 
is simply a ratio, it has no units. 
 

The absolute risk reduction is obtained by subtracting the incidence of complications 
for those taking the drug on trial with the incidence of complications for those taking 
conventional treatment, thus: 12.5%/year – 6%/year = 6.5%/year.  This may be 
interpreted as “the difference in incidence rate between those taking the drug on trial and 
those taking conventional treatment is 6.5% per year”.  Expressed another way, you could 
say: “If 100 people took the drug on trial, complications would be expected in 6 of those 
people in a year.  If 100 people took conventional therapy, complications would be 
expected in 12.5 of those people in a year.  The difference in complication rate is 6.5 
people in every 100 – in favour of the drug on trial”.  (Of course, it’s hard to imagine half 
a person, so you could say instead: “If 200 people took the drug on trial, complications 
would be expected in 12 of those people in a year.  If 200 people took conventional 
therapy, complications would be expected in 25 of those people in a year.  The difference 
in complication rate is 13 people in every 200 – in favour of the drug on trial”.) 
 

The absolute risk reduction retains the units of ‘cases per hundred people per year’.  In 
other words, the risk reduction is expressed in terms of the total number of people 
involved.  The reason for expressing incidence in terms of ‘per hundred’ is because the 
test group (of 250) and the control group (of 240) differed a little in size.  Expressing it as 
‘per hundred’ makes for a fairer comparison. 
 

Now let’s imagine a much lower rate of complications.  Let’s say that for the drug on trial 
the incidence of complications was 0.60% and for conventional treatment it was 1.25%.  
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The relative risk remains at 0.60/1.25 = 0.48 (with the relative risk reduction again equal 
to 0.52). 
 

However, the absolute risk reduction is 1.25% – 0.6% = 0.65%/year.  The relative risk 
reduction remains impressive, but the absolute risk reduction is minor.  In this case, 
because the complication rate is so low, the quite dramatic effect of the drug brings 
benefit to far fewer people.  Thus, if the drug on trial was a whole lot more expensive, it 
would probably not be favoured over conventional treatment. 
 
Number needed to treat 
Another way to think the absolute risk reduction, the ARR, is: 

the number of complications saved by use of the new drug
100 people

 

In the case of a 6.5% absolute risk reduction: 
6.5 complications saved by use of the new drug

100 people
 

 

If we turn this fraction on its head, i.e. 1
A𝑅𝑅𝑅𝑅

, we get: 
 

100 people
6.5 complications saved by use of the new drug

 

Since  
100
6.5

 = 15, this inverted fraction can be expressed: 

15 people
each complication saved by use of the new drug

 

 

So, on average, for every 15 patients treated with the new drug, there will be one fewer 
complication than had these patients been treated with conventional therapy. 
 

This is known as the number needed to treat.  It is 1
absolute risk reduction

 when the  

absolute risk reduction is expressed as a decimal fraction (not as a percentage). 
 

What happens if the rate of complications is low?  
Now let’s imagine a much lower rate of complications.  Let’s say that for the drug on trial 
the incidence of complications was 0.60% and for conventional treatment it was 1.25%.  
The relative risk remains at 0.60/1.25 = 0.48 (with the relative risk reduction again equal 
to 0.52). 
 

However, the absolute risk reduction is 1.25% – 0.6% = 0.65%, i.e. 0.0065.  The 
relative risk reduction remains impressive, but the absolute risk reduction is minor.   
 

Here, the number needed to treat would be  1
0.0065

 i.e. 154, i.e., on average, you’d need 
154 patients treated to be treated with the new drug in order to get one fewer with a 
complication than had these patients been treated with conventional therapy.  Because the 
complication rate is so low, the drug brings benefit to far fewer people. 
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Screening and diagnostic tests 
This topic is best introduced by presenting examples of questions.  The two questions 
were provided to me and I don’t know their source.  Question 1 refers to screening.  After 
this, I explain likelihood ratio.  Then Question 2 refers to a diagnostic test. 
 
First off, let’s define two terms that commonly appear in these tests. 
 

Sensitivity is the probability that a person who actually has the disease of interest will 
have a positive (abnormal) test result.   
Specificity is the probability that a person who does not have the disease will have a 
negative (normal) test result.  A test is considered highly specific if it is positive for only 
a very small proportion of those without the disease. 
 

Question 1 
You are trying to decide whether to institute a screening program for type 2 diabetes.  
You find data indicating that a HbA1c of 6.4% or greater has a sensitivity of 40% and a 
specificity of 80%.  You estimate the prevalence of undiagnosed type 2 diabetes in your 
community is 20%. 
What will be the ratio of true positives to false positives if you institute a screening 
program? 
 

Response to Question 1 
I shall respond to this question by providing a worked response.  In responding to any 
question about screening or diagnostic tests, I recommend that you give yourself some 
practice at quickly scribbling down a 2 × 2 table. 
 
Imagine you have 100 people.  From the question, 20%, i.e. 20 will have undiagnosed 
type 2 diabetes.  Of these the test with its sensitivity of 40% will pick up 40% of 20 = 8. 
 
Again from the question, 80%, i.e. 80 will not have type 2 diabetes.  Of these, the test 
with its specificity of 80% will show 80% of 80 = 64 as truly negative.  Therefore, there 
will be 80 – 64 = 16 as falsely positive. 
You have 8 true positives and 16 false positives, so the answer to the question is 1:2. 
 
On the next page, this is laid out on a 2 × 2 table.  I have labelled the four boxes of the    
2 × 2 table in a standard way – a, b, c and d.  For calculations about a screening or 
diagnostic test, I have added boxes for sub-totals on the bottom and right-hand edge, and 
a box for the grand total in the bottom right-hand corner.   
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  HAVE 

DIABETES 
DON’T HAVE 

DIABETES 
TOTAL 

 TEST POSITIVE a 
40% of 20 = 8 

b 
80 – 64 = 16 

a + b 

 

TEST NEGATIVE c 
20 – 8 = 12 

d 
80% of 80 = 64 

c + d 

 

a + c 
20 

b + d 
80 

a + b + c + d 
100 

 
The contents of the boxes on my table may be talked about in the following way: 
Box a: True positive test results, i.e. people with the disease and a positive test. 
Box b: False positive test results, i.e. people without the disease but with a positive test. 
Box c: False negative test results, i.e. people with the disease but with a negative test. 
Box d: True negative test results, i.e. people without the disease and with a negative test. 
The contents of the boxes containing sub-totals may be talked about in the following 
way: 
Sub-total box a + c: All people with the disease. 
Sub-total box b + d: All people that do not have the disease. 
Sub-total box a + b: All people with a positive test result. 
Sub-total box c + d: All people with a negative test result. 
Grand total box a + b + c + d: Everyone involved. 
 

Estimated prevalence of the disease in the population to be tested, i.e. pre-test 
probability: 

i.e.  pre-test probability= all those with the disease
everyone involved

 = 𝑎𝑎+𝑐𝑐
𝑎𝑎+𝑏𝑏+𝑐𝑐+𝑑𝑑

 

Sensitivity, i.e. proportion of those with disease that show a positive test result: 

i.e.  sensitivity=  those with the disease and positive test results
all those with the disease

 = 𝑎𝑎
𝑎𝑎+𝑐𝑐

 

Specificity, i.e. proportion of those without disease that show a negative test result: 

i.e.  specificity=  those without the disease and with negative test results
all those that do not have the disease

 = 𝑑𝑑
𝑏𝑏+𝑑𝑑

 
 
Sensitivity and specificity are properties of the test itself. 
 
Positive predictive value, i.e. the predictive value of a positive test result, i.e. proportion 
of those with a positive test result that actually have the disease: 

i.e. positive 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝 =  those with the disease and positive test results
all those with positive test results  = 𝑎𝑎

𝑎𝑎+𝑏𝑏
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A negative predictive value, i.e. the predictive value of a negative test result, may also be 
calculated. 
 

Positive predictive value (or post-test probability) is determined by the properties of the 
test together with the likely prevalence of the disease in the group that is tested, or your 
estimation of the probability that your patient has the disease before you conduct the test. 
 
There is a way to combine sensitivity and specificity by using a term called likelihood 
ratio.  There are two likelihood ratios – positive and negative. 
 
The positive likelihood ratio answers the following question: “How many times more 
likely is a positive test in a person with the disease than in a person without the disease?”  
So, if the test has the property of being three times more likely to show positive in a 
person with the disease than in a person without the disease, then the positive likelihood 
ratio of this test for this disease is 3.  A test with no ability to discern a person with the 
disease from one who doesn’t would have a likelihood ratio of 1. 
 
So, going back to this 2 × 2 table, the positive likelihood ratio of this test is: 
 
 the proportion of people 𝑤𝑤𝑤𝑤𝑤𝑤ℎ the disease that have a 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝 test result (i.e.the sensitivity)
the proportion of people 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑝𝑝𝑜𝑜𝑤𝑤 the disease that have a 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝 test result (1−specificity)

 

= 𝑎𝑎
𝑎𝑎+𝑐𝑐

 divided by 𝑏𝑏
𝑏𝑏+𝑑𝑑

 = 8
20

 divided by 16
80

 = 2. 
A positive likelihood ratio of 2 is not strong, i.e. a positive test result is a fairly weak 
indicator of whether the person has the disease or not.  This is largely because the 
specificity is quite a bit less than 1, i.e. a specificity of only 0.8 (80%) is of limited value 
for diagnosis (although sometimes it’s the best you can get). 
 
On the other hand, the negative likelihood ratio answers the following question: “How 
many times more likely is a negative test in a person with the disease than in a person 
without the disease?”  So, if the test has the property of being half as likely to show 
positive in a person with the disease than in a person without the disease, then the 
negative likelihood ratio of this test for this disease is ½ or 0.5. 
 
Going back to this 2 × 2 table, the negative likelihood ratio of this test is: 
 
 the proportion of people 𝑤𝑤𝑤𝑤𝑤𝑤ℎ the disease that have a 𝑛𝑛𝑝𝑝𝑛𝑛𝑎𝑎𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝 test result (1− sensitivity)
the proportion of people 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑝𝑝𝑜𝑜𝑤𝑤 the disease that have a 𝑛𝑛𝑝𝑝𝑛𝑛𝑎𝑎𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝 test result (specificity)

 

 = 𝑐𝑐
𝑎𝑎+𝑐𝑐

 divided by 𝑑𝑑
𝑏𝑏+𝑑𝑑

 = 12
20

 divided by 64
80

 = 0.75. 
A negative likelihood ratio of 0.75 is weak indeed, i.e. gaining a negative result with this 
test is not a helpful way to tell whether a person is clear of the disease.  This is largely 
because the sensitivity is a bare 40%.  In general, for a negative test result to be useful in 
excluding disease, the negative likelihood ratio of the test must be closer to 0 than to 1. 
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Likelihood ratio and using odds 
One essential life skill is to build new understandings upon what we already know.  A 
medical consultation is exactly like that.  Seeing a patient enter the room – his or her age, 
gender, ethnicity, facies, colour, mobility, breathing – will immediately make some 
diagnoses more likely than others.  After history-taking, a shorter list of probable 
diagnoses will appear, and physical examination will refine this further. 
 

The process of medical reasoning is partly about reducing uncertainty – adjusting earlier 
probability based on what has been newly ascertained by observing a patient, by history, 
by physical examination.  Doctors do this informally – without applying strictly 
numerical methods.  However, for the purposes of explanation, the thought-process may 
be demonstrated more explicitly by using numbers. 
 

In the diagnostic situation, the manipulation of numbers becomes easier if, rather than 
probability, we use a related term called odds.  Most people are familiar with use of odds 
at a racetrack which are the odds against a horse winning.  Thus, in the view of a 
bookmaker, a horse at 25:1 is quite unlikely to win.  Yet, in the process of diagnosis, we 
use odds in favour rather than odds against.  So the odds of “25:1 against” transforms 
into  

25
1 :1 or “0.04:1 in favour”.  This reversal introduces fractions which makes the 

concept a little less vivid.  Also, when diagnosticians refer to odds, the “:1” is usually 
omitted.  Hence, odds of 0.04:1 are spoken of simply as 0.04.  The absence of the “:1” 
gives the odds a similar appearance to probability, creating potential for confusion. 
Odds are related to probability, p, in the following way:   odds = 

p
p
−1

.   

The table offers equivalences: 
probability of 
diagnosis: 

1 in 100 
or 0.01 

1 in 20 
or 0.05 

1 in 10 
or 0.1 

1 in 5 
or 0.2 

1 in 3 
or 0.33 

1 in 2 
or 0.5 

equivalent 
odds in favour 
of diagnosis 

0.01:1 
or simply 

0.01 

0.05:1 
or simply 

0.05 

0.11:1 
or simply 

0.11 

0.25:1 
or simply  

0.25 

0.50:1 
or simply 

0.50 

1:1 
or simply  

1 
 

You can see that, below 10%, the odds are virtually the same as the probability so, 
effectively, when the probability is low, probability and odds can be used 
interchangeably. 
 
Let’s say that, based on your patient’s appearance and history, you estimate the 
probability of one diagnosis-of-interest to be about 20% (0.2), i.e. odds of 0.25.  You then 
conduct a physical examination.  You observe a particular set of physical signs. 
 

From a respected source, you ascertain that this set of physical signs is about three times 
more likely to occur in any person with your diagnosis-of-interest than in a healthy 
person that does not have that diagnosis.  This is a property of this set of physical signs in 
relation to that diagnosis.  They are independent of you and your patient, i.e. they are, in 
general, the same regardless of whichever patient they are applied to.  As stated on the 
previous page, this characteristic is given a special name – positive likelihood ratio. 
 

So how does the occurrence of this set of physical signs in your patient alter your odds of 
0.25 in favour of your diagnosis-of-interest – the odds you had estimated prior to 
conducting a physical examination of your patient.  Well, you simply multiply the prior 
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odds by the likelihood ratio to calculate your updated odds, thus: 0.25 × 3 = 0.75.  So 
now, your updated odds in favour of the diagnosis-of-interest are 0.75:1. 
 

Should you wish, these updated odds may be converted back to a probability: 
 

updated odds 0.25 0.33 0.50 0.75 1 2 3 4 5 6 
equivalent 
probability 

0.2 
20% 

0.25 
25% 

0.33 
33% 

0.43 
43% 

0.50 
50% 

0.67 
67% 

0.75 
75% 

0.80 
80% 

0.83 
83% 

0.86 
86% 

 

Probability = 
odds1

odds
+

.  Odds are able to have a value greater than 1 whereas probability, of course, has values only between 0 and 1. 
 

In this case, odds of 0.75 equate to a probability of 0.43. 
 

You then take another step.  You arrange a laboratory test for your patient.  From your 
medical website, you are aware that this test has the following properties: 

• The test has the property that a positive test result is 8× more likely in people with 
the diagnosis than in a same-sized group of people without the diagnosis.  Put 
another way, people with the disease are 8× as likely to show a positive test result 
as people without the disease.   This figure of 8 is the “likelihood ratio of a 
positive test result” or positive likelihood ratio, for short (abbreviated L+); 

• The test also has the property that a negative test result is 3× more likely in people 
without the diagnosis than in a same-sized group of people with the diagnosis.  
Put another way, people with the disease are one-third (0.33) as likely to show a 
negative test result as people without the disease.  This figure of 0.33 is the 
“likelihood ratio of a negative test result” or negative likelihood ratio for short 
(abbreviated L–). 

 

Let’s take two scenarios in turn.  Firstly, let’s say that your patient has a positive test 
result.  In this case, your prior odds (given the presence of the set of signs on physical 
examination) are 0.75.  The likelihood ratio is 8.  Multiplying these prior odds by 8, i.e. 
0.75 × 8 = 6.  Having odds in favour of a diagnosis of 6 (i.e. 6:1) equates to a probability 
of around 0.86 or 86% that your patient has this condition. 
 

On the other hand, let’s say that your patient has a negative test result.  Your prior odds 
are 0.75 and the likelihood ratio is now 0.33.  Multiplying these prior odds by 0.33, i.e. 
0.75 × 0.33 = 0.25, i.e. you are back to where you were before you conducted the 
physical examination.  Having odds in favour of a diagnosis of 0.25 (i.e. 0.25:1) equates 
to a probability of around 0.2 or 20% that your patient has this condition. 
 

A whole string of likelihood ratios may be multiplied together to give the odds of a 
particular diagnosis.  Some of these may be positive, some negative.  For example, let’s 
say that with another patient, you estimate from her age, nationality and presenting 
symptom that the odds of a particular diagnosis is around 0.20.  Following this, you 
proceed further with history, examination and test results and discover the following 
which I shall number in the order that you find them: 
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1 presence of symptoms with a positive likelihood ratio of 2, i.e. L1+ = 2 
2 absence of other symptoms with a negative likelihood ratio of 0.75, i.e. L2– = 0.75 
3 presence of physical examination findings with a positive likelihood ratio of 2.5, i.e. L3+ = 2.5 
4 a positive test result with a positive likelihood ratio of 5.0, i.e. L4+ = 3.5 
5 a negative test result with a negative likelihood ratio of 0.65, i.e. L5– = 0.65 
6 a positive test result with a positive likelihood ratio of 4.3, i.e. L6+ = 4.3. 

 

From this, the odds that your patient has this diagnosis = 0.20 × L1 × L2 × L3 × L4 × L5 × L6 
= 0.20 × 2 × 0.75 × 2.5 × 3.5 × 0.65 × 4.3 = 7.3 

which, using the formula, probability = 
odds1

odds
+

, is a probability of 0.88 (88%) 
 

There are few published figures for the likelihood ratio of symptoms so the figure that a 
doctor estimates for their positive or negative likelihood ratios will be based on his or her 
own experience.  What I’ve attempted to show is a simulated example of the reasoning 
behind reaching a diagnosis. 
 

Cautions 
 

Here, numbers have been used to illustrate the thought-process behind diagnosis.  
However, one great problem of using numbers like this is that it gives a false sense of 
precision.  Please be aware of this, be very aware! 
 

To start with, your prior estimation of the probability that your patient has this diagnosis 
is inevitably an educated guess – an approximation to the truth.  You may put it at 20%, 
but you would be unlikely to contradict stridently a colleague that chose instead to make 
it 15% or 25%. 
 

Secondly, the likelihood ratio for many physical signs is not known.  Perhaps no good-
enough sized study has been done or perhaps there is dispute about the ‘gold standard’ 
for diagnosis.  For example, what constitutes the ‘gold standard’ of diagnosis of carpal 
tunnel syndrome?  Is it the constellation of examination findings plus nerve conduction 
studies, or is it relief of symptoms following relevant surgery? 
 

Many quoted likelihood ratios have wide 95% confidence intervals so, in cases like that, 
it is misleading to quote precise odds or probabilities of diagnosis for your patient after 
having used such an imprecise likelihood ratio in a multiplication sum. 
 

What I am saying here is simply be cautious.  Recognise the imprecision of using prior 
probabilities and likelihood ratios.  Use the numbers as an aid to reasoning rather than as 
a stentorian driver to action. 
 

Also, have a feel for the threshold of odds or probability above which you will decide to 
treat.  If, say, your clinical findings have already delivered odds of around 6 (a 
probability of 0.86) that your patient has a particular diagnosis, then ask yourself whether 
you really need a confirmatory test with a positive likelihood ratio of, say, 5?  This will 
increase the odds in favour of the disease from 6 up to  6 × 5, i.e. 30, (a probability of 
0.97).  In most circumstances, it is unlikely that changing odds from ‘very high’ to 
‘extremely high’ will make a difference to your clinical decision to treat. 
 

And realise that a test with a likelihood ratio of 1 (or close to 1) for the situation at hand 
will afford no diagnostic value.  The further away from 1 is the likelihood ratio – whether 
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up or down – the better value a test will offer to assist you to make or, respectively, refute 
a provisional diagnosis. 
 

When a test may be used in several different diagnostic quests, be aware that the test will 
have a different likelihood ratio for each diagnosis for which the test is used.  For 
example, the likelihood ratio of a positive test result for serum bilirubin will differ 
depending whether the test is used in relation to haemolysis or liver cell disease.  And, as 
a clinician, you will need to decide what constitutes “positive” – it is not necessarily what 
falls to one side of the arbitrary line that delimits the edge of the normal range.  That is 
well-known to occupational physicians who commonly accept a higher blood level of, 
say, a metal in a work-exposed person than is recognised as the upper limit of the normal 
range for the population at large. 
 

Finally, you may happen to be more familiar with the terms sensitivity and specificity 
than with likelihood ratio.  Recognise that likelihood ratio is a way of combining these 
two terms.  Using the abbreviation Sn for sensitivity and Sp for sensitivity, the likelihood 
ratio of a positive test result (L+) is 

Sp
Sn
−1

, and the likelihood ratio of a negative test result 

(L–) is 
Sp

Sn−1 . 
 

What happens when you use a test for screening? 
When a test is used for diagnosis, the probability of that diagnosis is often reasonably 
high, e.g. 0.1 or more.  However, when a population is screened, the likely prevalence of 
the disease in the population being tested is often very low. 
 

Let’s take a situation where the prevalence of the disease in the population to be screened 
happens to be around 1%, i.e. the probability is 0.01 that a person selected at random 
from that population will have that disease.  Let’s say that the sensitivity of the test is 
0.99 and its specificity is 0.95.  In this situation, the likelihood ratio of a positive test 
result is 

95.01
99.0

−
 = 19.8, let’s say 20, which is a strong likelihood ratio. 

 

At 0.01, both probability and odds have the same value, so the post-test odds would be: 
 

post-test odds = pre-test odds × likelihood ratio 
 = 0.01 × 20 = 0.20 

 

Post-test odds of 0.20 translate into a post-test probability of 0.17.  This is the probability 
that the person has the disease, given a positive test result.  Putting it the other way 
around, there is a probability of 0.83 (83%) that the person does not have the disease, 
despite the positive test result. 
 

The post-test odds can be improved by increasing either the pre-test probability or the 
likelihood ratio.  Increasing the pre-test probability can be done by limiting the screening 
to a narrower population with a higher vulnerability to the disease in question.  If pre-test 
probability were increased to 0.05, the pre-test odds would be 0.05.  If the sensitivity and 
specificity of the test remained the same, then: 
 

post-test odds = pre-test odds × likelihood ratio 
 = 0.05 × 20 = 1.0 
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Post-test odds of 1.0 translate into a post-test probability of 0.50, i.e. a 50:50 chance that 
the person has the disease if the test is positive. 
 
Similarly, the post-test odds can be increased by increasing the specificity of the test.  If, 
say, the specificity of the test were increased to, say, 0.99 (with the same sensitivity), the 
likelihood ratio would be: 

99.01
99.0

−
= 99 

If the pre-test odds were 0.01, then: 
 

post-test odds = pre-test odds × likelihood ratio 
 = 0.01 × 99 = 0.99 

 

Again, this translates into a post-test probability of 0.50. 
 
Now, let’s consider doing both – increasing the pre-test probability to 0.05 and the 
specificity of the test to 0.99. Then: 
 

post-test odds = pre-test odds × likelihood ratio 
 = 0.05 × 99 = 1.0 = 5.0 (to two significant figures) 

 

Post-test odds of 5.0 are equivalent to a post-test probability of 0.83.  Most would agree 
that this level of probability requires action.  Putting it the other way around, there is a 
probability of a mere 0.17 that the person does not have the disease, given this positive 
test result. 
 

Essential point:  For a screening test to minimise the risk of false positive results, its 
specificity must be very high and the population screened should be limited to those with 
more than a trivial probability of having the disease. 
 

 

RELEVANCE TO YOUR EXAMINATION 
 

For your examination in occupational and environmental medicine, you would not be 
expected to quote the numerical value of a likelihood ratio.  However, the concepts of: 
 

• “more likely” versus “less likely”, or  
• “strongly supportive” versus ‘tending to dissuade” 
• ‘requiring action” versus “giving pause” 

 

should, of course, colour your path to diagnosis and patient care, even if raw 
probabilities and odds are not written in your thoughts. 

 

Question 2 
A new blood test for ulcerative colitis has been designed.  Colonoscopy [the gold 
standard] demonstrated disease in 50% of a study sample.  The blood test has a true 
positive rate of 89% and a false positive rate of 21%.  You see a child and estimate the 
child’s probability of having ulcerative colitis is 10%.  The blood test shows positive. 
What is the probability that the child has ulcerative colitis? 
A 10% 
B 30% 
C 50% 

D 70% 
E 72% 
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Response to Question 2 
Let’s first put aside the child’s test and look at the sensitivity and specificity of the test 
itself.  In the study that determined the sensitivity and specificity of the test, 50% of those 
in the study had ulcerative colitis and so 50% didn’t have it.  Let’s for argument sake say 
there were 200 people in the study.  Putting this on a 2 × 2 table would give the following 
numbers in the bottom row of sub-totals. 
 

  HAS 
U.C. 

DOESN’T HAVE 
U.C. 

TOTAL 

 TEST 
POSITIVE 

a 
 

b 
 

a + b 
 

 

TEST 
NEGATIVE 

c 
 

d 
 

c + d 

 

a + c 
50% of 200 = 100 

b + d 
also 100 

a + b + c + d 
200 

 

The question refers to a true positive rate of 89%.  This means that of those that have the 
disease, 89% will show a positive test result.  This is another way of saying that the 
sensitivity,  

𝑎𝑎
𝑎𝑎+𝑐𝑐

 , is 89%, i.e  
89
100

. 
 

The question refers to a false positive rate of 21%.  This means that of those that do not 
have the disease, 21% will show a positive test result.  So 

𝑏𝑏
𝑏𝑏+𝑑𝑑

 is 21%, i.e. 
21
100

.  So, the 
completed table will look like this: 

  HAS 
U.C. 

DOESN’T HAVE 
U.C. 

TOTAL 

 TEST 
POSITIVE 

a [true +ve] 
89 

c [false +ve] 
21 

a + b 
 

 

TEST 
NEGATIVE 

c 
100 – 89 = 11 

d 
100 – 21 = 79 

c + d 

 

a + c 
50% of 200 = 100 

b + d 
also 100 

a + b + c + d 
200 

 
This brings us to the positive likelihood ratio which is: 
 
 the proportion of people 𝑤𝑤𝑤𝑤𝑤𝑤ℎ the disease that have a 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝 test result (i.e.the sensitivity)
the proportion of people 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑝𝑝𝑜𝑜𝑤𝑤 the disease that have a 𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝 test result (1−specificity)

 

= 𝑎𝑎
𝑎𝑎+𝑐𝑐

 divided by 𝑏𝑏
𝑏𝑏+𝑑𝑑

 = 89
100

 divided by 21
100

 = 4.24. 
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So the positive likelihood ratio of this test is 4.24. 
 

Now we go back to the child who you estimate [based on history and examination] has a 
probability of 10% or 0.1 of having ulcerative colitis.  You perform this test on the child 
and it returns a positive result. 
Based on this test result, you want to know the probability that the child has ulcerative 
colitis, i.e. the post-test probability. 
A direct formula to convert the pre-test probability to the post-test probability using the 
likelihood ratio was shown on page 7.  However, a simpler formula uses odds rather than 
probability.  The formula using odds is: 

post-test odds = pre-test odds × likelihood ratio 

The formula to convert probability to odds is odds = 
probability

1−probability
 .  For a probability of 0.1, 

this converts to odds of 0.1
1−0.1

 = 0.11. 

So, post-test odds = 0.11 × 4.24 = 0.47. 

Convert back to probability:  probability = 
odds1

odds
+

 = 0.47
1+0.47

 = 0.32. 

Given the positive test result, this is the probability that the child has ulcerative colitis. 
This decimal fraction can be converted to the percentage of 32%. 
The nearest response option for the question is 30% which is the answer. 
 
And intuitively, 30% is the correct answer, even if you don't have much facility with 
numbers.  For the answer to be 10%, means that the test offers no benefit whatsoever, i.e. 
a positive likelihood ratio of 1.  That is not the case here.  And given a pre-test 
probability of just 10% (0.1), you'd need a test with a BIG likelihood ratio, i.e. 10, in 
order to get to a post-test probability of 50%.  Few new lab tests are that powerful. 
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Some definitions 
Confidence 
interval: a range of values calculated from a sample within which we believe the true value for the 

population lies.  A 95% confidence interval is calculated by a method that gives the right 
answer 95% of the time. 

estimate: a number which is inferred to be a plausible value for some parameter of interest. 
inference: process of drawing conclusions about a population on the basis of measurement or 

observations made on a sample of individuals from that population. 
odds: probability that an event will occur divided by the probability that the event will not 

occur.18 
odds ratio: the statistic used in case-control studies.  It is the odds of a particular exposure among 

people with a disease of interest divided by the corresponding odds of exposure among 
persons without that disease. 

parameter: a number that describes some characteristic of a whole population.   
probability: an assessment, based on experience or theory, of the proportion of outcomes of interest that 

are likely to occur. 
proportion: the number of people (or observations) with the characteristic of interest divided by the 

total number of people (or observations).  Thus, a proportion is always a value between 0 
and 1 although it may be expressed as a percentage.  An example of proportion is 
prevalence. 

P-value: the probability due to chance of observing a result as extreme or more extreme than the one 
actually observed. 

rate: a proportion that takes the additional dimension of time e.g. 6 new cases per thousand of 
population per year.  Over one year, this could also be expressed 6 cases per thousand 
person-years.  An example of rate is incidence. 

ratio: a comparison of two values – the number of observations with a characteristic of interest 
(e.g. exposure) divided by the number without that characteristic.  Odds is an example of a 
ratio (so an ‘odds ratio’ is, in fact, a ratio of two ratios). 

 The ratio 8:5 may be expressed  8
5

: 1,  i.e. 1.6 : 1 or, by leaving off the ‘ : 1’, as simply 1.6. 

relative risk: a comparison of the incidence of a disease among persons with exposure to an agent with 
the incidence of the disease among those without exposure.19  Formally, in mathematical 
terms, this comparison is expressed as a ratio.  Relative risk is also called risk ratio.  

statistic: a value that summarises one characteristic of a sample.  Examples of statistics include 
mean, proportion, count.  A statistic may also compare two parts of a sample, e.g. relative 
risk, odds ratio, or a difference between means or proportions 

type I error: rejection of the null hypothesis when it is actually correct.   
type II error: failure to reject the null hypothesis when it is actually incorrect.   
  

 
18 Because the results of an individual study may be used to predict the probability of future events, odds may also be 
defined using data from a single study as ‘the number of times that an event has occurred divided by the number of 
times that the event has not occurred’.  So, if there were 25 people exposed out of 100 with disease, then the proportion 
exposed would be 25/100 = 0.25.  If this proportion were used to predict what may be the case among people similarly 
afflicted in the future, then we’d say the probability of exposure was 0.25.  We could also say that the probability of 
non-exposure was 0.75 and so the odds of exposure was 0.25/0.75 = 0.33. 
 

19 In reality, relative risk is a comparison of the incidence of a disease among those with more exposure with the 
incidence of disease among those with less exposure. 
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Challenging for both learners and teachers 
With epidemiology, there are challenges for the learner but also for the teacher.  Here is a 
poem drawn from Head KJ, Blessinger P.  Teaching as a human experience.  An 
anthology of contemporary poems.  Newcastle upon Tyne: Cambridge Scholars 
Publishing, 2015. p 70.  It speaks about teaching standard error, the basis of confidence 
intervals, and how many students struggle but one ‘got it’ and used it. 
 
Standard error 
An inference that’s very often made –  
‘a population tends to closely share 
some feature that a smaller group displayed’ –  
is why my students need to be aware 
of standard error.  Yet, it’s hard to learn, 
and students’ drive to listen fades with each 
attempt of mine to strive for ways to earn 
attention till my message has its reach. 
 
The teaching cycle brings around today 
my yearly chance to make this topic clear. 
I’ll aid my students, shorten what I say, 
and they can later go and persevere … 
… ask how it differs from the things it’s like, 
and why we need it, what we couldn’t do 
if it weren’t here.  But can my students strike 
the hours in busy lives to see this through … 
… to think and tell themselves of things they know … 
related things … then try to make the link 
with standard error, find their gaps and so 
seek remedy where knowledge meets its brink? 
 
It’s four months on.  A student whom I taught 
then calls to see me and in measured way 
explains she liked the insight I had brought 
to ‘estimation’, then goes on to say: 

“My research gathered data from a group, 
defined a mob of which the group’s just part; 
a feature in the group at six per cent, 
would be, I thought, like echoed in the mob. 
I viewed the group as sample of the mob; 
but samples vary some from whence they’re drawn. 
Your standard error helped me calculate 
how far from six my estimate might stray.” 

 
She smiles and says she’d thought I’d like to know 
that standard error served to underlie 
her thinking.  Yes, I’m happy that is so – 
but more, she’d thought it worth enough to try. 
 

David Goddard 
June 2014 
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