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ABSTRACT 
The in-land production of green hydrogen and hydrogen derivatives as a low-emission fuel for 
long-haul transport and fertiliser in Australia must co-exist with other water-dependent 
agribusinesses that drives this regional and rural economies1,2. This coexistence requires 
careful assessment of water resource competition and evaluation of climatic risks3, as inland 
production lacks access to desalinated seawater available at coastal facilities. Herein, process 
simulation and economic modelling was used to evaluate the value of economic return to water 
(ERTW) and quantify the climatic risks for co-located green hydrogen in cotton production 
areas of Gwydir and Murrumbidgee, New South Wales (NSW), Australia. Water demand 
forecasts were modelled using a previously published numerical model4 using low-temperature 
multi-effect distillation and proton exchange membrane electrolysis (LT-MED-PEM) as the 
base model. A sensitivity analysis was conducted by varying water allocation (WA) between 
cotton and hydrogen production. Different climatic conditions were also considered using 
historical data, with 2019 (El Niño) representing dry conditions, 2011 (La Niña) representing 
wet conditions, and 2013 representing a typical meteorological year5. 

Green hydrogen production demonstrates significant climate sensitivity, with ERTW values 
more influenced by climatic variations than water allocation percentages. Figure 1 illustrates 
this relationship through contour plots where vertical climate gradients dominate horizontal 
WA gradients. At any fixed climate condition, ERTW maintains either positive or negative 
values across all WA ranges. Contrary to intuitive expectations, dry conditions yielded optimal 
ERTW as hydrogen production costs are primarily influenced by electricity costs rather than 
water costs. Gwydir consistently outperformed Murrumbidgee with ERTW increased by 
sevenfold in dry years (6.56E+04 vs 7.8E+03 A$/ML) and maintained positive returns in a 



typical meteorological year (2.84E+04 A$/ML) while Murrumbidgee showed negative values 
(-2.45E+04 A$/ML). This regional disparity persisted even at WA%=0, indicating areas 
suitable for cotton production also favor hydrogen economics, intensifying resource 
competition. Preliminary estimate shows that under favorable climate conditions, even a 
modest reallocation of just 10% of water resources to hydrogen production yields ERTW values 
(approximately 800 - 8100 A$/ML) that significantly exceed cotton's ERTW (400 - 600 A$/ML). 
This indicates that, the implication is that if correctly managed an inland hydrogen industry 
could utilise a portion of water allocations to offset emissions associated with both road 
transport and fertiliser use. 

 
Figure1: Comparison graph of ERTW (Unit: A$/ML) by location and climatic condition under different water allocation 

percentage.  

In conclusion, the findings demonstrate that despite hydrogen's superior ERTW potential, 
complete water resource reallocation to hydrogen production proves suboptimal across 
varying climatic conditions. This research contributes strategic insights for inland hydrogen 
facility placement, underscoring the necessity of incorporating regional climatic variability 
into planning frameworks and implementing adaptive water allocation mechanisms that 
facilitate integration of hydrogen infrastructure within established agricultural ecosystems. 
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