

Spinal Surveillance for Scoliosis in Children with Cerebral Palsy

Dr Kelly Petersen

Dual Paediatric Rehabilitation and General Paediatric Advanced Trainee

Paediatric Rehabilitation Fellow – Women's and Children's Hospital SA

Researcher - HNEkidsRehab Newcastle NSW

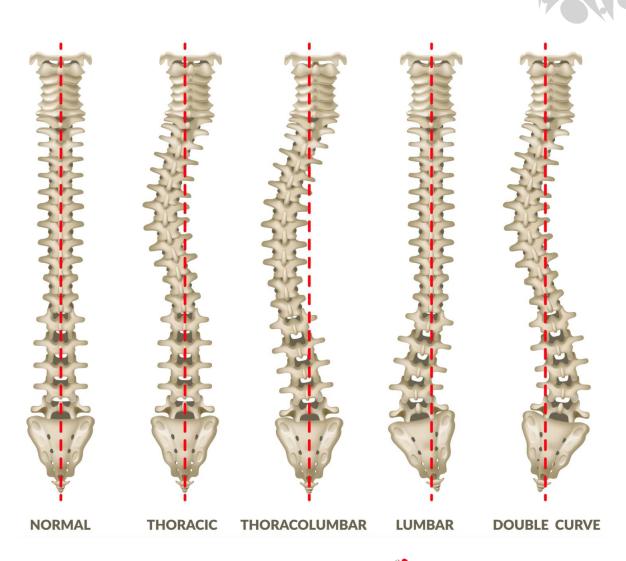
Masters HDR Candidate – University of Newcastle

Acknowledgements

Supervisors: Dr Heather Burnett, A/Prof Rani Bhatia,

Assistant Investigator: Ms Kristin Finlay-Jones

No conflicts of interest

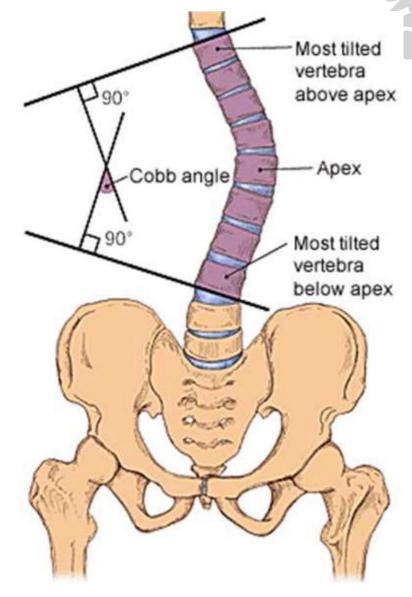

Scoliosis in Cerebral Palsy

Neuromuscular scoliosis

41% incidence of scoliosis in young people with CP in Australia (mean age 21 years) (Willoughby et. al, 2022)

Severe scoliosis complications (Koop 2009):

- Pain
- Pelvic obliquity
- Seating instability:
 - Vision, Communication, Feeding
 - Reach and bimanual activities
- Restrictive lung disease
- Skin pressure areas
- Reflux


Scoliosis in Cerebral Palsy

X-ray is gold-standard for measuring Cobb angle

Scoliosis Severity

Angle in degrees	Category	
0 to 10	Normal spine	
Between 10 to 20	Mild scoliosis	
Between 20 to 40	Moderate scoliosis	
Greater than 40	Severe scoliosis	

Measuring Cobb angle on spinal X-rays, $\triangle > 10^{\circ}$ is 95% likely to represent a true change in spinal curvature (Carmen D et.al, 1990)

(Reference: Maaliw III et.al, 2022)

Scoliosis in Cerebral Palsy

Risk factors scoliosis progression:

(Persson-Bunke et.al 2012; Bertoncelli et.al 2017; Hagglund et.al 2018)

- ↑ Age
- Higher GMFCS level
- Female
- Hip subluxation/dislocation, Previous hip surgery

Saito et.al (1998):

- n=37
- Participants: 40.5% quadriplegic severe CP, 59.5% mild-moderate quadriplegic, diplegic and hemiplegic CP
- 85% Cobb > 40° by 15 years, progressed to Cobb ≥ 60°

Gu et.al (2011):

- n=110
- Participants: spastic quadriplegic CP GMFCS V 99%, GMFCS IV 1%
- Cobb > 40° by 12 years scoliosis more likely to progress.

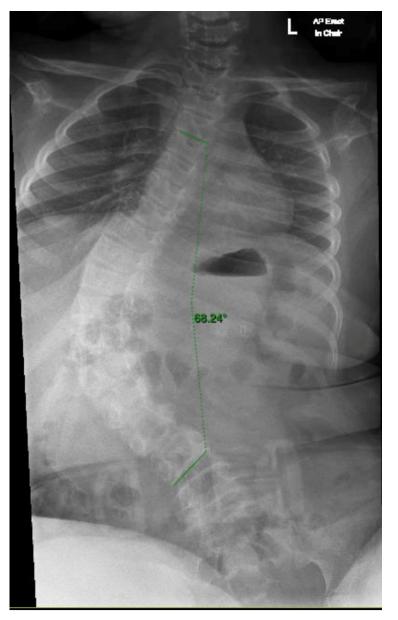
Scoliosis in Cerebral Palsy – current practice

- No evidence-based guideline for radiological surveillance of scoliosis in children with CP
- Australian Hip Surveillance Guidelines for children with Cerebral Palsy (2020)
- General guideline childhood scoliosis surveillance:
 International Society on Scoliosis Orthopaedic and Rehabilitation Treatment
 2012 Consensus Statements on frequency of spinal X-rays:
 - > 0 to 5 years old, early onset scoliosis every 6 months
 - > 6 to 12 years old juvenile scoliosis every 6 months
 - > 13 to 18 years old with adolescent idiopathic scoliosis every 12-18 months

Research Aims

Why?

 Measure scoliosis progression on X-rays over time, children with CP who are more at risk of progressive scoliosis, to inform development of a clinical guideline for spinal surveillance.


How:

 Observing if a ∆ Cobb angle ≥10° from the baseline spinal X-ray, can be detected at 6 month, 12 month, or 18 month intervals.

Study Design

- Prospective longitudinal observational study
- HNEkidsRehab Database
- HNE LHDs
- Spinal X-rays at 0, 6, 12 and 18 months
- 3 investigators measuring Cobb angles on PACS
 - Consensus on measurements
- Data stored on REDCap
- Quantitative data analysis

Study Design

一米一

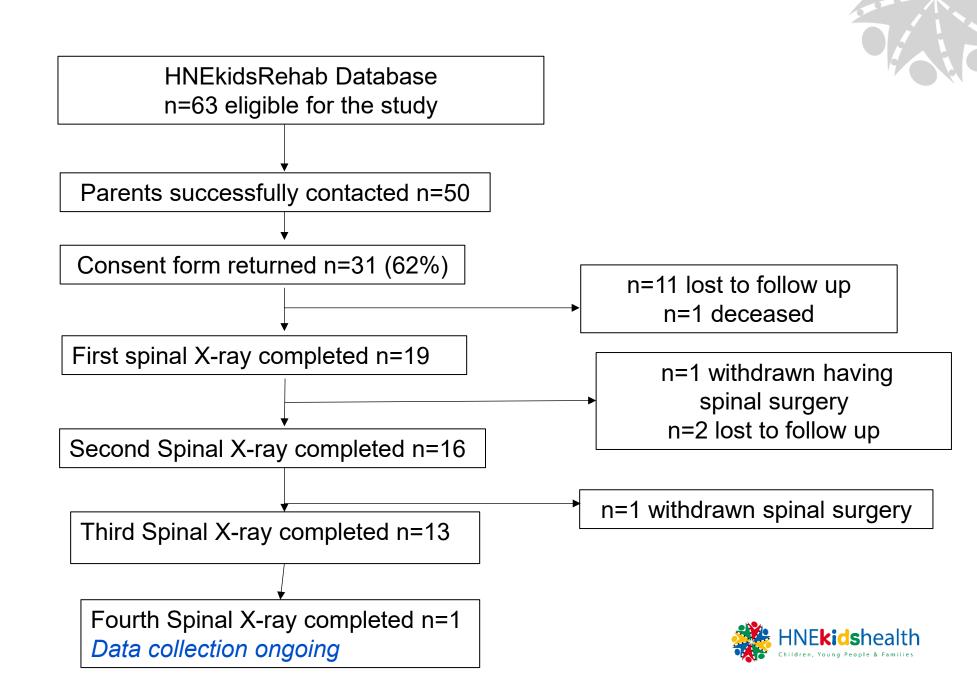
Participants

Inclusion criteria:

- CP GMFCS III, IV or V
- Age 8 17 years old

Exclusion criteria:

- Previous spinal surgery or had spinal surgery during the study
- Pregnancy


Ethics

- HNE HREC greater than low risk pathway
- HNE Area Radiation Safety Committee
- Radiation Dosimetry Report
 - >quantifying radiation exposure
- HNE Imaging
- Site Specific Assessment

Participants

Results

Descriptive Statistics

Sex

Male 10/16 (62.5%) Female 6/16 (37.5%)

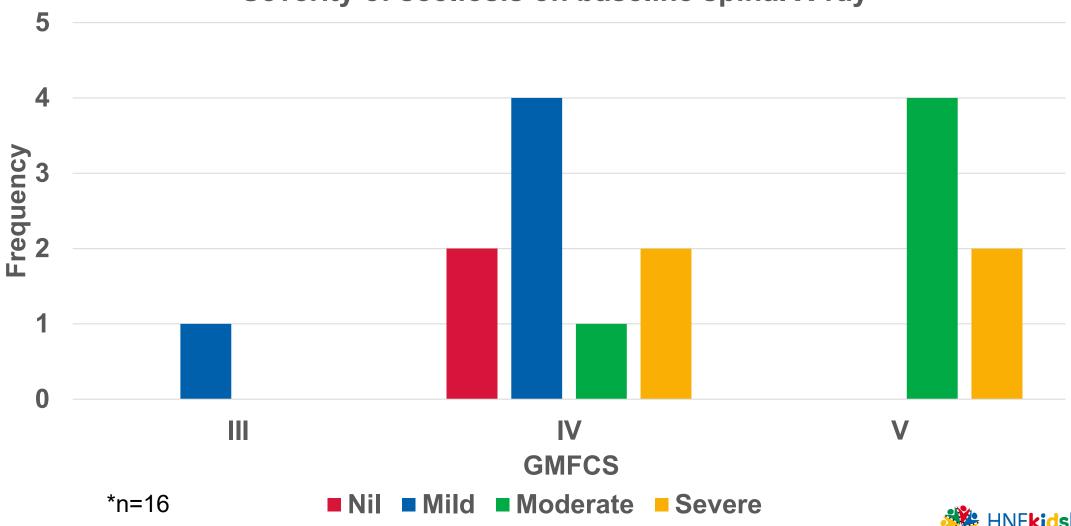
Age (years)

Mean 10.9

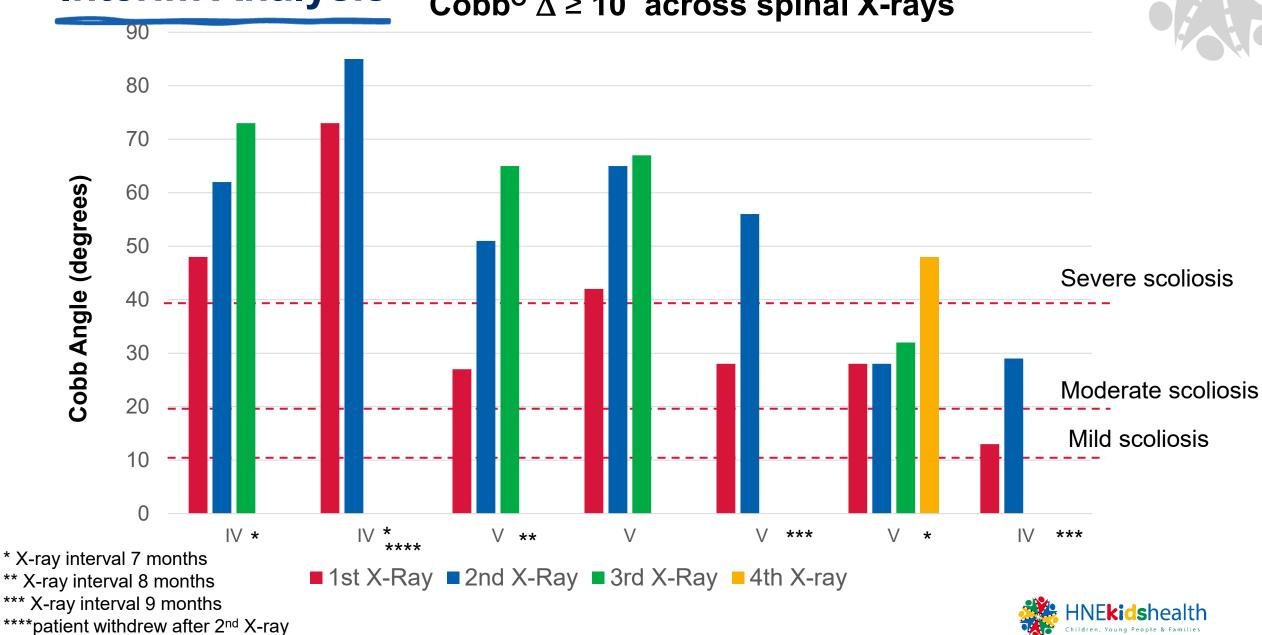
GMFCS

III 1/16 (6.2%)
IV 9/16 (56.2%)
V 6/16 (37.5%)

CP type


	9 .		
5	spastic	1/16	(6.2%)
C	dystonic	2/16	(12.5%)
(dyskinetic	1/16	(6.2%)
ł	nypotonic	3/16	(18.7%)
r	nixed tone	9/16	(56.3%)

Interim Analysis



Interim Analysis

Cobb^O $\Delta \ge 10$ across spinal X-rays

Interim Subgroup Analysis

Subgroup - Cobb^O $\Delta \ge 10$ degree across spinal X-rays n=6

- n=5 hip subluxation or dislocation
- n=4 hip surgery
- n=5 male, n=1 female
- Mean Age 12.9 years
- CP type n=2 dystonic quadriplegic, n=4 spastic dystonic quadriplegic

- From age 8, 12 monthly spinal X-rays
- From age 8 with a history of hip subluxation/dislocation, 6 monthly spinal X-rays
- Cobb^o > 40 degrees, 6 monthly spinal X-rays
- Cobb^O > 25 degrees and patient is approaching pubertal growth spurt, 6 monthly spinal X-rays

Discussion

Inter- rater measurement reliability good overall

- 1 spinal X-ray 2/3 consensus
- 1 spinal X-ray no consensus

Limitations:

- Small sample size
- Limited data for recommendations for GMFCS III
- Spinal X-rays physically challenging in this cohort
- Barriers for participants adhering to 6 monthly X-ray interval
- Ideally capture timing of spinal curve progression in relation to pubertal growth spurt, difficult to consistently measure height in this cohort

Future Outcomes

Further analysis is required after data collection is complete:

- Observe change in Cobb angle over the protocol timepoints.
- Analyse patient characteristics, strategise which patients would benefit more frequent surveillance spinal X-rays.

Bigger Picture:

- Unique research project in Australia.
- Develop a national guideline radiological spinal surveillance for children with CP.

References

- 1. Vialle R, Thévenin-Lemoine C, Mary P. Neuromuscular scoliosis. Orthop Traumatol Surg Res. 2013;99(1 Suppl):S124–39.
- 2. Ng, S, and Bettany-Saltikov, J (2017) Imaging in the Diagnosis and Monitoring of Children with Idiopathic Scoliosis
- 3. Maaliw III, Renato & Susa, Julie & S. Alvin D.Eng, Alon & Lagman, Ace & Ambat, Shaneth & Garcia, Manuel & Piad, Keno & Fernando, Ma.Corazon. (2022). A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification. 111-117. 10.1109/AlloT54504.2022.9817290.
- 4. Carman DL, Brown RH, Birch JG (1990). Measurement of scoliosis and kyphosis radiograph: intraobserver and interobserver variation. *Journal of Bone and Joint Surgery*. 72 (3): 328-333.
- 5. Willoughby K., Ghee Ang, S., Thomason, P., Rutz, E., Shore, B., Buckland, A., Johnson, M. and Graham, H. (2022) Epidemiology of scoliosis in cerebral palsy: A population-based study at skeletal maturity. *J Paediatr Child Health*. Apr;58(4):743. Doi:10.1111/jpc.15943.
- 6. Bertoncelli CM, Solla F, Loughenbury PR, Tsirikos AI, Bertoncelli D, Rampal V. (2017) Risk Factors for Developing Scoliosis in Cerebral Palsy: A Cross-Sectional Descriptive Study. *Journal of Child Neurology.* 32(7):657-662, 2017 06.
- 7. Persson-Bunke, M., Hägglund, G., Lauge-Pedersen, H., Wagner, P and Westbom, L. (2012) Scoliosis in a Total Population of Children With Cerebral Palsy. Spine Deformity. 37(12):E708-E713.
- 8. Gu Y, Shelton JE, Ketchum JM, Cifu DX, Palmer D, Sparkman A, Jermer-Gu MK, Mendigorin M. Natural history of scoliosis in non-ambulatory spastic tetraplegic cerebral palsy. *PM R.* 2011;3:27–32. doi: 10.1016/j.pmrj.2010.09.015.
- 9. Koop, S. (2009). Scoliosis in Cerebral Palsy. Developmental Medicine and Child Neurology 51:92-98.
- 10. Pettersson, K., Wagner, P and Rodby-Bousquet E. (2020) Development of a risk score for scoliosis in children_with cerebral palsy. *Cta Orthopaedica*. 91 (2):203-208
- 11. American Association of Neurological Surgeons (2022) Neurosurgical Conditions and Treatments Scoliosis, www.aans.org website, accessed 16/9/2022.
- 12. Cobb JR (1948) Outline for the study of scoliosis. Am Acad Orthop Surg Instr Course Lect. 5:261–275.
- 13. Saito, N., Ebara, S., Ohotsuka, K., Kumeta, H. and Takaoka, T. (1998) Natural history of scoliosis in spastic cerebral palsy. *The Lancet* 351:1687-1692.
- 14. Hägglund G, Pettersson K, Czuba T, Persson-Bunke M, Rodby-Bousquet E. (2018) Incidence of scoliosis in cerebral palsy. *Acta Orthopaedica*. 89(3):443-447.
- 15. Master D, Son-Hing J, Poe-Kochert C, Armstrong, D. and Thompson, G. (2011) Risk factors for major complications after surgery for neuromuscular scoliosis. *Spine* (Phila Pa 1976) 36 (7):564–571.
- 16. Knott, P., Pappo, E., Cameron, M., deMauroy JC., Rivard, C., Kotwicki, T., Zaina, F., Wynne, J. Stikeleather, L., Bettany-Saltikov, J., Grivas, T., Durmala, J., Maruyama, T., Negrini, S., O'Brien, J. and Rigo, M. (2014) SOSORT 2012 Consensus paper: reducing x-ray exposure in pediatric patients with scoliosis. *Scoliosis*. 9:4. http://www.scoliosisjournal.com.content/9/1/4.
- 17. Cassar-Pullicino VN and Eisenstein SM (2002) Imaging in scoliosis: what, why and how? Clinical Radiology. 57: 543-562.
- 18. Hana Kim (2010) Scoliosis Imaging: What Radiologist Should Know. RadioGraphics. 30:1823-1842.
- 19. NSW Agency for Clinical Innovation (2022) Radiology Clinician Factsheet Radiation Information, https://aci.health.nsw.gov.au website, accessed 16/9/2022

Thank you!