## 8 – 12 JULY 2023 | SYDNEY, AUSTRALIA



@ThaoDao2020

Vision-based Assistance for Vocal Fold Identification in Laryngoscopy with Knowledge Distillation

#### Thao Dao

- Graduate Student in Information & Communication Technology Artificial Intelligence
   University of Science Vietnam National University Vietnam
- *Otolaryngologist* Thong Nhat Hospital Vietnam













# Vision-based Assistance for Vocal Fold Identification in Laryngoscopy with Knowledge Distillation

Thao Dao<sup>1,2,3,4</sup>, Minh-Khoi Pham<sup>1,2</sup>, Mai-Khiem Tran<sup>1,2,3</sup>, Bich Tran<sup>5</sup>, Ngoc Van<sup>6</sup>, Chanh Cong<sup>7</sup>, Minh-Triet Tran<sup>1,2,3</sup>
<sup>1</sup>University of Science, Ho Chi Minh City, <sup>2</sup>Viet Nam National University, Ho Chi Minh City, <sup>3</sup>John von Neumann Institute,

<sup>4</sup>Thong Nhat Hospital, <sup>5</sup>Cho Ray Hospital, <sup>6</sup>Vinmec Central Park International Hospital, <sup>7</sup>A Military Hospital

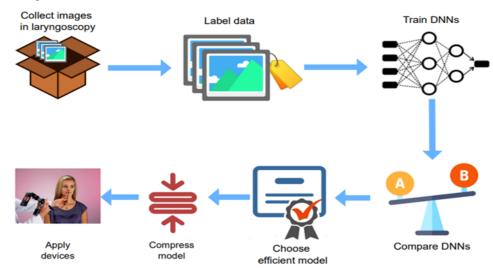
#### OUTLINE

- 1. Introduction
- 2. Dataset and Evaluate on backbones
- 3. Implement knowledge distillation
- 4. Portable laryngoscope with Al smart assistance



#### I. Introduction

#### Purposes


- •Introduce a **novel dataset** about vocal fold images, along with baseline performance and metrics on a number of backbones.
- Propose a lightweight network using knowledge distillation.
- •Propose a solution of Al assistance on smartphones for laryngoscopy.



#### 8 - 12 JULY 2023 | SYDNEY, AUSTRALIA

#### I. Introduction

#### Overview of our process



Develop a smart vision-based assistance for vocal fold detection and localization



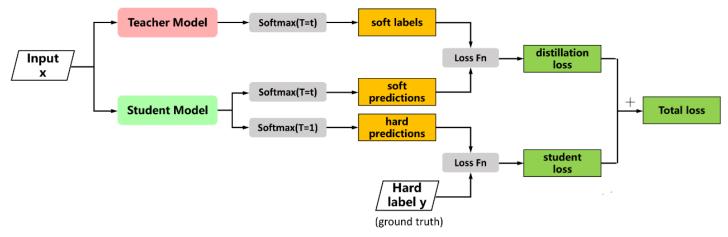
#### II. Dataset and Evaluate on backbones

- Dataset
  - Collect 4,624 images of 876 different patients
     at Department of Otorhinolaryngology, Cho Ray Hospital.
  - Filter samples to discard noisy images.
  - Two junior ENT doctors independently label images
    after that revise once again by an expert.





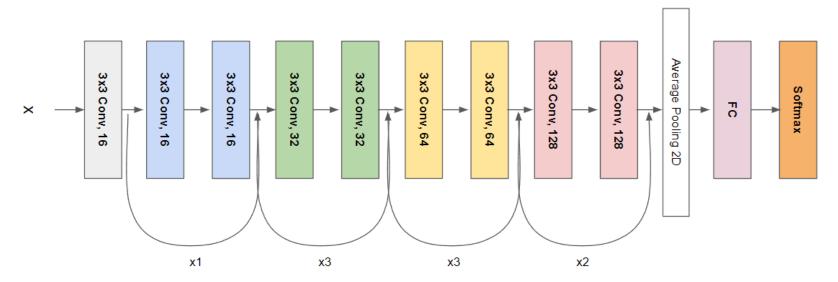
#### II. Dataset and Evaluate on backbones


#### Evaluate on backbones

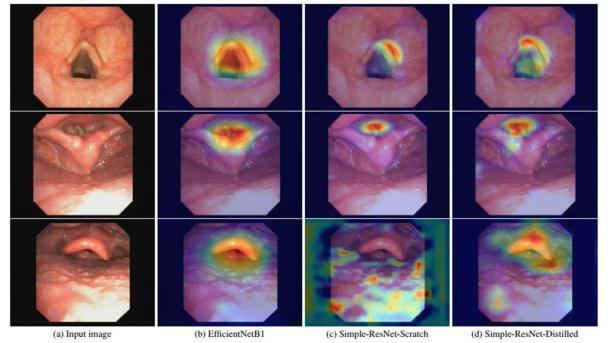
**EfficientNetB1** shows extremely **effective** results in assessing images of vocal fold appearance.

|                | VGG19 | ResNet50V2 | MobileNetV2 | InceptionV3 | DenseNet201 | Xception | EfficientNetB1 |
|----------------|-------|------------|-------------|-------------|-------------|----------|----------------|
| Accuracy (%)   | 91.8  | 98.5       | 96.1        | 98.3        | 98.2        | 98.2     | 98.7           |
| Recall (%)     |       |            |             |             |             |          |                |
| Non vocal fold | 94.2  | 98.8       | 96.7        | 98.3        | 98.3        | 98.5     | 99.2           |
| Vocal folds    | 88.7  | 98.0       | 95.3        | 98.3        | 98.0        | 97.8     | 98.0           |
| Precision(%)   |       |            |             |             |             |          |                |
| Non vocal fold | 91.4  | 98.5       | 96.4        | 98.6        | 98.5        | 98.3     | 98.5           |
| Vocal folds    | 92.3  | 98.5       | 95.8        | 97.8        | 97.8        | 98.0     | 99.0           |




Overview Knowledge Distillation




$$\alpha * CE(y_{gt}, y_s) + (1 - \alpha) * KL(y_t, y_s)$$
 with 
$$KL(y_t, y_s) = F(y_t) \times log(\frac{F(y_t)}{F(y_s)})$$



Architecture of our simple ResNet distilled







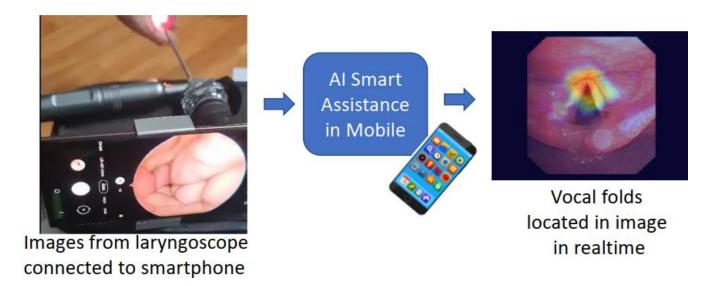


Distillation helps:

- The student's performance to approximately match the teacher's one.
- Faster convergence.
- Require minimal computing resource.

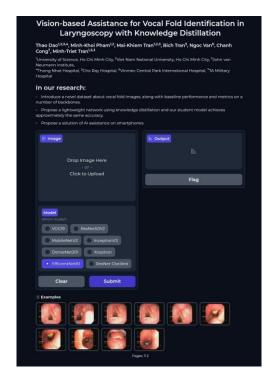
| Methods                 | Accuracy | No. parameters<br>6.7M |  |
|-------------------------|----------|------------------------|--|
| EfficientNet-B1         | 98.7%    |                        |  |
| MobileNetV2             | 96.1%    | 2.4M                   |  |
| Simple-ResNet-Scratch   | 96.7%    | 0.8M                   |  |
| Simple-ResNet-Distilled | 98.4%    | 0.8M                   |  |



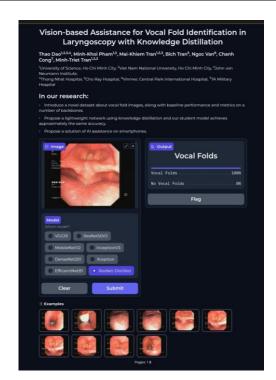

#### IV. Portable laryngoscope with AI smart assistance

- A system apply our distilled deep learning model to portable laryngoscopy devices.
- This system includes:
  - Mobile application that integrates our distilled model.
  - ✓ Smartphone.
  - ✓ Endoscope adaptor.
  - ✓ Light source.
  - ✓ Laryngeal endoscope.






#### IV. Portable laryngoscope with Al smart assistance




## MF023

#### 8 – 12 JULY 2023 | SYDNEY, AUSTRALIA







### Summary

- A novel dataset about the laryngscopy images.
- A suitable model for applying knowledge distillation.
- Al assistance on smartphones to create a portable laryngoscope system.



@TheInstituteDH #MEDINFO23